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State Space Models
(Time-invariant) First order differential equations (or autono-
mous system):

ẋ(t) = d
dt
x(t) = f(x(t)), f : Rn → Rn (1)

A solution of (1) is an absolutely continuous function that sa-
tisfies (1) for almost all t.

Non-autonomous/time-varying system:

ẋ(t) = f(t, x(t)), f : R≥0 × Rn → Rn (2)

Theorem (Existence & Uniqueness)

Given x0 ∈ Rn, r > 0, and 0 ≤ t0 < t1, let f(t, x) be
piecewise continuous in t and satisfy the (local) Lipschitz
condition

|f(t, x)− f(t, y)| ≤ L|x− y|

for an L > 0, for all x, y ∈ {ξ ∈ Rn : |ξ − x0| ≤ r} and
t ∈ [t0, t1]. Then there exists δ > 0 so that

ẋ(t) = f(t, x(t)), x(t0) = x0

has a unique solution over [t0, t0 + δ].

From nth-order to first order:
dn

dtn
y(t) = ϕ

(
y(t), ẏ(t), . . . , dn−1

dtn−1 y(t)
)
, ϕ : Rn → R

Define

x1 = y, x2 = ẏ, x3 = ÿ, . . . , xn = dn−1

dtn−1 y, (3)

Corresponding first order system:

ẋ1(t) = x2(t),

ẋ2(t) = x3(t),

...
ẋn−1(t) = xn(t),

ẋn(t) = ϕ(x1(t), x2(t), . . . , xn(t)).

Systems with external inputs f : Rn × Rm → Rn:

ẋ = f(x, u), ẋ = f(x,w),

u : Rn → Rm, x 7→ u(x) ← degree of freedom

w : R→ Rm, t 7→ w(t) ← exogenous signal
(disturbance or reference)
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State Space Models (Example: Mass-Spring System)

m F

Ff

Fsp

y

Mass m, restoring force of the spring Fsp, friction force Ff ,
external driving force F , displacement y.

Newton’s second law of motion:

mÿ = F − Ff − Fsp = F − cẏ − ky (4)

(Ff = cẏ is viscous friction & Fsp = ky is a linear spring)

From second order to first order: (x1 = y, x2 = ẏ, u = F )

ẋ1(t) = x2(t)

ẋ2(t) = − k
m
x1(t)− c

m
x2(t) +

1
m
u(t)

x1, x2 (states of the system) & u (input of the system)

Potential energy (for u = 0):
1
2
ky2 = 1

2
kx2

1

Kinetic energy (for u = 0):
1
2
mv2 = 1

2
m(ẏ)2 = 1

2
mx2

2, (v : velocity of the block)

⇝ How does the total energy of the mass-spring system
evolve with time?

Total energy: potential + kinetic energy

E(x1, x2) = E(x) = 1
2
kx2

1 + 1
2
mx2

2 ≥ 0.

The time derivative of E:
d
dt
E(x(t)) = d

dt

(
1
2
kx1(t)

2 + 1
2
mx2(t)

2
)

= kx1ẋ1(t) +mx2ẋ2(t)

= kx1(t)x2(t)− kx1(t)x2(t)− cx2(t)
2 = −cx2(t)

2 ≤ 0

E is positive, Ė is decreasing⇝ eventually, the block must
stop moving.

⇝Where is the block going to stop?
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mÿ = F − Ff − Fsp = F − cẏ − ky (4)
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= kx1ẋ1(t) +mx2ẋ2(t)
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mÿ = F − Ff − Fsp = F − cẏ − ky (4)
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State Space Models (Equilibria and pairs of induced equilibria)

Definition (Equilibrium, ẋ = 0)

The point xe ∈ Rn is called an equilibrium of the system
ẋ = f(x) or ẋ = f(t, x), respectively, if

d
dt
x(t) = f(xe) = 0,

d
dt
x(t) = f(t, xe) = 0 ∀t ∈ R≥0.

The pair (xe, ue) ∈ Rn × Rm is called an equilibrium pair of
the system ẋ = f(x, u) if

d
dt
x(t) = f(xe, ue) = 0.

Without loss of generality xe = 0 (or (xe, ue) = 0).

To see this, consider coordinate transf. z = x− xe.

Then
d
dt
z(t) = d

dt
x(t)− d

dt
xe = f(x(t)) = f(z(t) + xe).

and

f̂(z)
.
= f(z + xe) yields ż = f̂(z)

where (ze = 0)

f̂(ze) = f(ze + xe) = f(xe) = 0

Exercise:
Use a similar translation z = x− xe and v = u− ue to
shift an equilibrium pair to the origin.

Recall the mass-spring system:

0
!
= ẋ1(t) = x2(t)

0
!
= ẋ2(t) = − k

m
x1(t)− c

m
x2(t) +

1
m
u(t)

In the case that u = 0:
The first equation implies that x2 = 0.

The second equation implies that x1 = 0.

Equilibrium: x1 = y = 0, x2 = ẏ = 0.
Exercise: How do the equilibrium pairs look like?
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= ẋ1(t) = x2(t)

0
!
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Exercise: How do the equilibrium pairs look like?

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 1: Nonlinear Systems - Fundamentals 5 / 17



State Space Models (Equilibria and pairs of induced equilibria)

Definition (Equilibrium, ẋ = 0)
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State Space Models (Example: Pendulum)

m

ℓ
θ

System dynamics (by balancing forces):

mℓθ̈ = −mg sin θ − kℓθ̇, k > 0 friction coefficient

With x1 = θ and x2 = θ̇:

ẋ1(t) = x2(t),

ẋ2(t) = − g
ℓ
sinx1(t)− k

m
x2(t).

Equilibria:

0 = x2, 0 = − g
ℓ
sinx1 − k

m
x2

⇝ xe = [nπ, 0]T for n = 0,±1,±2, etc..

Potential energy: mgℓ(1− cos θ) = mgℓ(1− cosx1)

Kinetic energy: 1
2
mv2 = 1

2
mℓ2θ̇2 = 1

2
mℓ2x2

2.

Time evolution of the total energy:
d
dt
E(x(t)) = (mgℓ sinx1) ẋ1 +mℓ2x2ẋ2

= (mgℓ sinx1)x2 −mℓ2x2

( g
ℓ
sinx1

)
−mℓ2x2

(
k
m
x2

)
= −kℓ2x2(t)

2.

Note that:
If θ̇ = x2 ̸= 0 then E(x(t)) is decreasing.

However, since the pendulum exhibits multiple
equilibria, it is not clear where the equilibrium is going
to stop.

(We will return to this example)

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 1: Nonlinear Systems - Fundamentals 6 / 17



State Space Models (Example: Pendulum)

m

ℓ
θ

System dynamics (by balancing forces):

mℓθ̈ = −mg sin θ − kℓθ̇, k > 0 friction coefficient

With x1 = θ and x2 = θ̇:
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Kinetic energy: 1
2
mv2 = 1

2
mℓ2θ̇2 = 1

2
mℓ2x2

2.

Time evolution of the total energy:
d
dt
E(x(t)) = (mgℓ sinx1) ẋ1 +mℓ2x2ẋ2

= (mgℓ sinx1)x2 −mℓ2x2

( g
ℓ
sinx1

)
−mℓ2x2

(
k
m
x2

)
= −kℓ2x2(t)

2.

Note that:
If θ̇ = x2 ̸= 0 then E(x(t)) is decreasing.

However, since the pendulum exhibits multiple
equilibria, it is not clear where the equilibrium is going
to stop.

(We will return to this example)
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State Space Models (Systems with outputs)

m

ℓ
θ

System dynamics (by balancing forces):

mℓθ̈ = −mg sin θ − kℓθ̇, k > 0 friction coefficient

With x1 = θ and x2 = θ̇:

ẋ1(t) = x2(t),

ẋ2(t) = − g
ℓ
sinx1(t)− k

m
x2(t).

Note that:
Full knowledge of x ∈ Rn is usually not available.

For the pendulum a common implementation includes
a sensor for measuring the angle θ = x1 but no
velocity sensor.

⇝ We can measure θ = x1 but not θ̇ = x2.

System with output:

ẋ = f(x, u)

y = h(x, u)

In the example of the pendulum:

y = h(x) = x1

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 1: Nonlinear Systems - Fundamentals 7 / 17



State Space Models: Notational Convention

A common abuse of notation: (we drop the t-argument)

ẋ = f(x), x0 ∈ Rn

Absolutely continuous solutions x : R≥0 → Rn such that
x(0) = x0 ∈ Rn satisfy

d
dt
x(t) = f(x(t)) for almost all t ∈ R≥0

Thus, depending on the context
x ∈ Rn denotes a vector

x(·) : Rn → Rn denotes a function
The time-derivative of energy-like functions E : Rn → R≥0:

d
dt
E(x(t)) = ⟨∇E(x), ẋ⟩ = ⟨∇E(x), f(x)⟩

where (gradient)

∇E(x) =


∂

∂x1
E(x)

∂
∂x2

E(x)

...
∂

∂xn
E(x)

 .

In the example of the mass-spring system (with u = 0):

ẋ = f(x) =

[
x2

− k
m
x1 − c

m
x2

]
E(x) = 1

2
kx2

1 + 1
2
mx2

2

d
dt
E(x(t)) = ⟨∇E(x), f(x)⟩

=

[
kx1

mx2

]T [
x2

1
m
(−kx1 − cx2)

]
= [kx1 mx2]

[
x2

1
m
(−kx1 − cx2)

]
= kx1x2 + x2(−kx1 − cx2).
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State Space Models: (Time) Rescaling

Example: Mass-spring system (with u = 0):

ẋ = f(x) =

[
x2

− k
m
x1 − c

m
x2

]
Assume that c = 0 (i.e., no friction)

Time rescaling:
Let ω > 0 so that τ = ωt

Then dτ
dt

= ω, i.e., dτ = ωdt.

Let

z1 = x1 and

z2 = d
dτ

z1 = dt
dτ

d
dt
z1 = dt

dτ
ż1 =

ẋ1

ω
=

x2

ω

Therefore, we can calculate

d
dτ

z2 = dt
dτ

ż2 =
1

ω

ẋ2

ω
= −

k

mω2
x1 = −

k

mω2
z1

Fix ω =
√

k/m; i.e.,

d
dτ

z1 = z2

d
dτ

z2 = −z1.

which, qualitatively, captures the behavior of all
mass-spring.

In the case c > 0 it holds that

d
dτ

z2 = dt
dτ

ż2 =
1

ω

ẋ2

ω
= −

k

mω2
x1 −

c

mω2
x2.

Define ω =
√

k/m and α = c
√

m/k then

d
dτ

z1 = z2,

d
dτ

z2 = −z1 − αz2.

Summary:
Instead of three parameters m, k, c > 0, we have an
equivalent representation with one parameter α > 0.
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ż2 =
1

ω

ẋ2

ω
= −

k

mω2
x1 −

c

mω2
x2.

Define ω =
√

k/m and α = c
√

m/k then

d
dτ

z1 = z2,

d
dτ

z2 = −z1 − αz2.

Summary:
Instead of three parameters m, k, c > 0, we have an
equivalent representation with one parameter α > 0.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 1: Nonlinear Systems - Fundamentals 9 / 17



State Space Models: (State) Rescaling

Example: Pendulum

ẋ = f(x) =

[
x2

− g
ℓ
sinx1 − k

m
x2

]
Time & state rescaling:

Let ω > 0 so that τ = ωt

Then dτ
dt

= ω, i.e., dτ = ωdt.

Let

z1 =
x1

β
and

z2 = d
dτ

z1 = dt
dτ

ż1 =
ẋ1

ωβ
=

x2

ωβ
.

Then

d
dτ

z2 = dt
dτ

ż2 =
1

ω

ẋ2

βω
=

1

βω2

(
−
g

ℓ
sinx1 −

k

m
x2

)
=

1

βω2

(
−
g

ℓ
sin(βz1)−

kωβ

m
z2

)
= −

g

ℓβω2
sin(βz1)−

k

mω
z2.

If we define ω = k/m, β = 1 and α = g/(ℓω2) then
d
dτ

z1 = z2,
d
dτ

z2 = −α sin z1 − z2.

Alternatively for ω =
√

g/ℓ, β = 1 and α = k/(mω) we
obtain

d
dτ

z1 = z2,
d
dτ

z2 = − sin z1 − αz2.

⇝ The rescaled system makes certain qualitative
elements clearer.

For example, observe that near x = 0, sinx ≈ x and
thus near the point z1 = z2 = 0, it holds that

d
dτ

z1 = z2,
d
dτ

z2 = −z1 − αz2.

⇝ Close to the equilibrium z1 = z2 = 0, the pendulum
and the mass-spring system have the same qualitative
behavior.

Reminder: While rescaling can make a system easier to deal
with numerically or analytically, it is necessary to reverse the
transformations to get back to the specific system of interest.
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State Space Models: (State) Rescaling
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State Space Models: (State) Rescaling
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ẋ2

βω
=

1

βω2

(
−
g

ℓ
sinx1 −

k

m
x2

)
=

1

βω2

(
−
g

ℓ
sin(βz1)−

kωβ

m
z2

)
= −

g

ℓβω2
sin(βz1)−

k

mω
z2.

If we define ω = k/m, β = 1 and α = g/(ℓω2) then
d
dτ

z1 = z2,
d
dτ

z2 = −α sin z1 − z2.

Alternatively for ω =
√

g/ℓ, β = 1 and α = k/(mω) we
obtain

d
dτ

z1 = z2,
d
dτ

z2 = − sin z1 − αz2.

⇝ The rescaled system makes certain qualitative
elements clearer.

For example, observe that near x = 0, sinx ≈ x and
thus near the point z1 = z2 = 0, it holds that

d
dτ

z1 = z2,
d
dτ

z2 = −z1 − αz2.

⇝ Close to the equilibrium z1 = z2 = 0, the pendulum
and the mass-spring system have the same qualitative
behavior.

Reminder: While rescaling can make a system easier to deal
with numerically or analytically, it is necessary to reverse the
transformations to get back to the specific system of interest.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 1: Nonlinear Systems - Fundamentals 10 / 17



State Space Models: Comparison Functions

Definition (Class-P,K,K∞,L,KL functions)

A continuous function ρ : Rn → R≥0 is said to be
positive definite (ρ ∈ Pn) if ρ(0) = 0 and
ρ(x) > 0 ∀ x ∈ Rn\{0}.
For ρ : R≥0 → R≥0 we use ρ ∈ P.

α ∈ P is said to be of class-K (α ∈ K) if α strictly
increasing.

α ∈ K is said to be of class-K∞ (α ∈ K∞) if
lim

s→∞
α(s) =∞.

A continuous function σ : R≥0 → R≥0 is said to be of
class-L (σ ∈ L) if σ is strictly decreasing and
lim

s→∞
σ(s) = 0.

A continuous function β : R2
≥0 → R≥0 is said to be of

class-KL (β ∈ KL) if for each fixed t ∈ R≥0,
β(·, t) ∈ K∞ and for each fixed s ∈ R>0, β(s, ·) ∈ L.

⇝ K∞ ⊂ K ⊂ P

Some properties:
Class-K∞ functions are invertible.

If α1, α2 ∈ K∞ then

α(s)
.
= α1 (α2(s)) = α1 ◦ α2(s) ∈ K∞.

If α ∈ K, σ ∈ L then α ◦ σ ∈ L.
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Section 2

Examples of Dynamical Systems
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Examples of dynamical systems: The inverted pendulum on a cart

θ
ℓ

p

m

M F

ℓp

m

M F

General dynamics of a mechanical system:

M(q)q̈ + C(q, q̇) +K(q) = B(q)u

M(q) : inertia matrix

C(q, q̇) : Coriolis forces

K(q) : potential energy terms

B(q) : external forces

[
M +m −ml cos(θ)
−ml cos(θ) J +ml2

] [
p̈

θ̈

]
+

[
cṗ+ml sin(θ)θ̇2

γθ̇ −mgl sin(θ)

]
=

[
1
0

]
F

q =

[
p
θ

]
, parameters, states, inputs
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Examples of dynamical systems: The inverted pendulum as a rocket

F

0 2 4 6 8 10

-2

-1

0

1

0 2 4 6 8 10

t

-30

-20

-10

0

10

How to define F to stabilize the pendulum/rocket in the upright position?

p : position; θ : angle; ṗ : velocity; θ̇ : angular velocity
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Examples of dynamical systems: The inverted pendulum as a tower crane

F

How to define F to stabilize the pendulum/tower crane in the lower right position?
How to define F to drive the pendulum/tower crane to a specific position?
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Examples of dynamical systems: The inverted pendulum as a segway

F

How to define F to drive the pendulum/segway with a fixed velocity? (reference tracking)
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Examples of dynamical systems: Local versus global stability properties

θ
ℓ

p

m

M F

ℓp

m

M F

p : position

θ : angle

ṗ : velocity

θ̇ : angular velocity
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