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Section 1

State Space Models
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State Space Models

(Time-invariant) First order differential equations (or autono-
mous system):

#(t) = gra(t) = f(x(t), f:R" = R" M

A solution of (1) is an absolutely continuous function that sa-
tisfies (1) for almost all ¢.

Non-autonomous/time-varying system:
&(t) = f(t,z(t), f:RsoxR" =R" (2

Theorem (Existence & Uniqueness)

Givenzo € R™, r > 0, and 0 < to < t1, let f(t,z) be
piecewise continuous in t and satisfy the (local) Lipschitz
condition

[f(t =) = Ft,y)| < Lz -y

foran L > 0, forall z,y € {£ € R" : | — zo| < r} and
t € [to, t1]. Then there exists § > 0 so that

:L‘(t) = f(t’x(t))7 z(to) = To
has a unique solution over [to, to + ].
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From nt"-order to first order:
1

Loy®) =6 (v, 90), ., =), @R SR

Define

qn—1

1=y, Z2=9, x3:?ja"'7xn:dtn7—1y7 (3)

Corresponding first order system:
&1(t) = w2(2),
T (t) = x3 (t),

Tn—1(t) = zn(t),
J/'n(t) = ¢(x1(t)vx2(t)v s 7fcn(t))'

Ch. 1: Nonlinear Systems - Fundamentals 3/17



State Space Models

(Time-invariant) First order differential equations (or autono-
mous system):

i(t) = La(t) = f(x(t), f:R* —>R" (1)

A solution of (1) is an absolutely continuous function that sa-
tisfies (1) for almost all ¢.

Non-autonomous/time-varying system:
&(t) = f(t,z(t), f:RsoxR" =R" (2

Theorem (Existence & Uniqueness)

Givenzo € R™, r > 0, and 0 < to < t1, let f(t,z) be
piecewise continuous in t and satisfy the (local) Lipschitz
condition

[f(t =) = Ft,y)| < Lz -y

foran L > 0, forall z,y € {£ € R" : | — zo| < r} and
t € [to, t1]. Then there exists § > 0 so that

&(t) = f(t,x(t)), =(to) = o
has a unique solution over [to, to + ].

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

From nt"-order to first order:
1

Loy®) =6 (v, 90), ., =), @R SR

Define

qn—1

1=y, Z2=9, x3:?ja"'7xn:dtn7—1y7 (3)

Corresponding first order system:
&1(t) = w2(2),
T (t) = x3 (t),

Tn—1(t) = zn(t),
&n(t) = ¢(z1(t), 22(t), - - -, 20 (1))
Systems with external inputs f : R™ x R™ — R":
= flz,u), z=f(z,w),
@ u:R" - R™, z+— u(z) < degree of freedom

@ w:R—=R™, t— w(t) < exogenous signal

(disturbance or reference)
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State Space Models (Example: Mass-Spring System)
Iy

Fsp

Mass m, restoring force of the spring Fiy, friction force Fy,
external driving force F, displacement y.
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State Space Models (Example: Mass-Spring System)

Fy

Fsp

Mass m, restoring force of the spring Fiy, friction force Fy,
external driving force F, displacement y.

Newton’s second law of motion:

myj=F—Fy —Fsp=F —cy—ky (4)
(Fy = cy is viscous friction & Fs;, = ky is a linear spring)
From second order to first order: (z; =y, z2 =y, u = F)

z1(t) = z2(t)

ia(t) = —Ea1(t) — Sxa(t) + Su(t)

1,2 (states of the system) & w (input of the system)
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State Space Models (Example: Mass-Spring System)

Fy

Fsp

Mass m, restoring force of the spring Fiy, friction force Fy,
external driving force F, displacement y.

Newton’s second law of motion:
myj=F—Fy —Fsp=F —cy—ky (4)
(Fy = cy is viscous friction & Fs;, = ky is a linear spring)

From second order to first order: (z; =y, z2 =y, u = F)
&1(t) = x2(2)
ia(t) = —Ea1(t) — Sxa(t) + Su(t)

1,2 (states of the system) & w (input of the system)

Potential energy (for u = 0):
%ky2 = %kw%
Kinetic energy (for u = 0):

1 2 1

2 2

~» How does the total energy of the mass-spring system
evolve with time?

Total energy: potential + kinetic energy
E(z1,z2) = E(z) = %kx% + %mx% >0.
The time derivative of E:
%E(m(t)) = % (%kaﬁ(t)Q + %mxg(t)Q)
= kx1T1 (t) + mxzdf;z(t)

smu” = %m(y)2 = 1ma2, (v : velocity of the block)

= kxq (t)z2(t) — kxy ()22 (t) — cra(t)? = —caa(t)?2 <0
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State Space Models (Example: Mass-Spring System)

Fy

Fsp

Mass m, restoring force of the spring Fiy, friction force Fy,
external driving force F, displacement y.

Newton’s second law of motion:
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1,2 (states of the system) & w (input of the system)
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Potential energy (for u = 0):

Sky® = $kat

Kinetic energy (for u = 0):
1 2 1

Lmo? = Lm(3)? = Lmad,

5 5 (v : velocity of the block)

~» How does the total energy of the mass-spring system
evolve with time?
Total energy: potential + kinetic energy
E(z1,z2) = E(z) = %kx% + %mx% >0.

The time derivative of E:
%E(w(t)) = % (%kw1(t)2 + %mxg(t)Q)

= kx1T1 (t) + maxato (t)

= kxq (t)z2(t) — kxy ()22 (t) — cra(t)? = —caa(t)?2 <0
E is positive, F is decreasing ~- eventually, the block must

stop moving.
~» Where is the block going to stop?
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State Space Models (Equilibria and pairs of induced equilibria)

Definition (Equilibrium, & = 0)

The point z¢ € R™ is called an equilibrium of the system
¢ = f(x) or & = f(t,x), respectively, if

SFa(t) = f(z°) =0,

Lat) = f(t,z°) =0  Vt€Rxq.

The pair (z¢,u¢) € R™ x R™ is called an equilibrium pair of
the system & = f(z,u) if

%m(t) = f(z°,u®) =0.
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State Space Models (Equilibria and pairs of induced equilibria)

Definition (Equilibrium, & = 0)
The point z¢ € R™ is called an equilibrium of the system
¢ = f(x) or & = f(t,x), respectively, if

SFa(t) = f(z°) =0,
&a(t) = f(t,2%) =0

The pair (z¢,u¢) € R™ x R™ is called an equilibrium pair of
the system & = f(z, u) if

%m(t) = f(z°,u®) =0.

vVt € R>0.
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@ Without loss of generality ¢ = 0 (or (z¢, u®) = 0).
@ To see this, consider coordinate transf. z = z — x°.

@ Then
da(t) = La(t) — La® = f(a(t)) = f(2(t) + ).
and
f) = fz+a%)  yields 2= f(z)
where (z¢ = 0)
F(%) = f(z°+2°) = f(=°) =0
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Definition (Equilibrium, & = 0)
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@ Without loss of generality ¢ = 0 (or (z¢, u®) = 0).
@ To see this, consider coordinate transf. z = z — x°.
@ Then

da(t) = La(t) — La® = f(a(t)) = f(2(t) + ).
and
f()=f(z+2°) yields z=f(z)
where (z¢ = 0)
fz9) = fz°+2%) = f(a*) =0

Exercise:

@ Use a similar translation z = z — z¢ and v = u — u® to
shift an equilibrium pair to the origin.
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Recall the mass-spring system:

0=2x1(t) = z2(t)

02 da(t) = —Eai(8) — Saa(t) + Sult)
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In the case that v = 0:
@ The first equation implies that 2 = 0.
@ The second equation implies that z; = 0.
@ Equilibrium:z1 =y =0,22 =y =0.

Ch. 1: Nonlinear Systems - Fundamentals 5/17



State Space Models (Equilibria and pairs of induced equilibria)

Definition (Equilibrium, & = 0)

The point z¢ € R™ is called an equilibrium of the system
¢ = f(x) or & = f(t,x), respectively, if

SFa(t) = f(z°) =0,
o) = f(t,2%) =0

)=
=
The pair (z¢,u®) € R™ x R™ is called an equilibrium pair of
the system & = f(z, u) if

() = f(a

vVt € R>0.

u®) = 0.

@ Without loss of generality ¢ = 0 (or (¢, u¢) = 0).
@ To see this, consider coordinate transf. z = z — x°.
@ Then

da(t) = La(t) — La® = f(x(t) = f(2(t) + 2°).
and
f()=f(z+2°) yields z=f(z)
where (z¢ = 0)
f(z) = f(z° +2°) = f(@°) = 0

Exercise:

@ Use a similar translation z = z — z® and v = u — u® to
shift an equilibrium pair to the origin.

Recall the mass-spring system:
0= i1 (t) = aa(t)

02 da(t) = —Eai(8) — Saa(t) + Sult)

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

In the case that v = 0:
@ The first equation implies that 2 = 0.
@ The second equation implies that z; = 0.
@ Equilibrium:z1 =y =0,22 =y =0.
Exercise: How do the equilibrium pairs look like?
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State Space Models (Example: Pendulum)

Equilibria:
0=z, Ozf%sinxlfizg

~ 2¢ = [nm,0]T forn = 0,41, £2, etc..

System dynam.ics (by balancing forces):
meh = —mgsin 6 — k06, k > 0 friction coefficient
With z; = 6 and zo = 6:

&1(t) = @2(2),

@a(t) = — I sinzq(t) — %xg(t).
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State Space Models (Example: Pendulum)

System dynam.ics (by balancing forces):
meh = —mgsin 6 — k06, k > 0 friction coefficient
With 21 = 6 and 2o = 6:

&1(t) = @2(t),

@a(t) = — I sinzq(t) — %xz(t).
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Equilibria:
0=z, Ozf%sinxlfizg
~ 2¢ = [nm,0]T forn = 0,41, £2, etc..
Potential energy: mgé(1 — cos ) = mgl(1l — cosz1)
Kinetic energy: mv? = $m26? = Lme23.
Time evolution of the total energy:
%E(m(t)) = (mglsinzy) &1 + ml2zois
= (mglsinz1) xg — ml3zo (% sinxl) — mb?z,y (%x2>
= 7]6@2582(1‘/)2.

Note that:
@ If = x5 # 0'then E(x(t)) is decreasing.

@ However, since the pendulum exhibits multiple
equilibria, it is not clear where the equilibrium is going

to stop.
@ (We will return to this example)
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State Space Models (Systems with outputs)

Note that:
@ Full knowledge of € R™ is usually not available.

@ For the pendulum a common implementation includes
a sensor for measuring the angle 6 = z; but no
velocity sensor.

~ We can measure 6 = z; but not § = z.
@ System with output:

: &= f(z,u)
System dynamics (by balancing forces): y = h(z,u)
mlh = —mgsin 6 — k06, k > 0 friction coefficient @ In the example of the pendulum:
With 1 = 6 and z2 = 6: y=h(z) =1
&1(t) = 2(2),
@a(t) = =g sinzq(t) — %l’g(t).
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State Space Models: Notational Convention

A common abuse of notation: (we drop the ¢t-argument)
&= f(z), zo€R"

Absolutely continuous solutions = : R>q — R”™ such that
z(0) = xp € R™ satisfy

4 (t) = f(=(t)) foralmostallt € Rxo
Thus, depending on the context
@ z € R™ denotes a vector
@ z(-) : R™ — R™ denotes a function
The time-derivative of energy-like functions E : R™ — R>q:
FE(x(t)) = (VE(z),2) = (VE(z), f(z))
where (gradient)
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State Space Models: Notational Convention

A common abuse of notation: (we drop the ¢t-argument)
T = f(-’E),

Absolutely continuous solutions z
z(0) = xp € R™ satisfy

Fat) = f(a()
Thus, depending on the context
@ z € R™ denotes a vector
@ z(-) : R™ — R™ denotes a function
The time-derivative of energy-like functions E : R™ — R>q:
FE(x(t)) = (VE(z),2) = (VE(z), f(z))
where (gradient)

g € R™
: R>g — R” such that

for almost all t € R>g
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In the example of the mass-spring system (with u = 0):

p=1@=] 2, ., ]

E(z) = %kz% + %mx%

4 B(x(t) = (VE(x), f(x))

S N ET

= [kz1 ma2)] { %(

kxq
maxo

€2
—kx1 — cx2)

= kx1z2 + v2(—kz1 — cx2).
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State Space Models: (Time) Rescaling

Example: Mass-spring system (with v = 0):
. x
&= f(x) = ko

m

Assume that ¢ = 0 (i.e., no friction)

c
Tl — -T2

Time rescaling:
@ Letw >0sothatT = wt
@ Then % = w, i.e., dr = wdt.
@ Let

zZ1 = a1 and

@ Fixw = +/k/m;ie.,
Lo =2
%ZQ = —Z1.
which, quglitatively, captures the behavior of all
mass-spring.

d dt d at . _ &1 _ x2
29 = 5721 = -2 = R = — = —
dr dr dt dr w w
@ Therefore, we can calculate
1 22 k k
da., _dty _ - TL - _
d'rzz_ d.,.ZZ—w w - mwQII_ w2zl

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control Ch. 1: Nonlinear Systems - Fundamentals

9/17



State Space Models: (Time) Rescaling

Example: Mass-spring system (with w = 0): @ Fixw = \/k/m;ie.,
d
. €2 TSR = 22
p=f@)=| 5 e, .
m 1 m*2 FZQ = —21.
Assume that ¢ = 0 (i.e., no friction) which, qualitatively, captures the behavior of all
Time rescaling: mass-spring.
@ Letw > 0sothat T = wt @ In the case ¢ > 0 it holds that
dr _ _ 14 k
OThend—;—w,l.e.,dT—wdt. %22:%22:71772:_ o - chQ
o Let T T w w mw
21 =1 and @ Define w = y/k/m and a = ¢\/m/k then
. T1 T2 R B
zQ:%zlzg—:%zl:%zl:—:— d'rzl 225
w w d
grf2 = —21 — aza.

@ Therefore, we can calculate
d ae . _ 12 k k

— 1= —

arf2 T g2 =

= — 233
w w mw
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State Space Models: (Time) Rescaling

Example: Mass-spring system (with w = 0): @ Fixw = \/k/m;ie.,
d
. xr2 TSR = 22
@ =f@) = —Eg— Ly ddT
m m gr2 = —21.
Assume that ¢ = 0 (i.e., no friction) which, qualitatively, captures the behavior of all
Time rescaling: mass-spring.
@ Letw > 0sothat T = wt @ In the case ¢ > 0 it holds that
dr _ i _ 1a k c
@ Then o = w, e, dr =wdt. %22:%22:75572:_ - -
o Let ! T o ww o
21 =1 and @ Define w = y/k/m and a = ¢\/m/k then
. T1 X2 d ., _
zQ:%zlzg—:%zl:%zl:—:— d'rzl 225
w w d
572 = —21 — aza.
@ Therefore, we can calculate s
. ummary:
A, sy _ 1% _ ko k /
T2 = grRe = = 5T1 = 5 21 @ Instead of three parameters m, k, ¢ > 0, we have an
w w mw W

equivalent representation with one parameter o > 0.
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State Space Models: (State) Rescaling

Example: Pendulum

. 2
xr = x) =

f(=) —%smxl—ﬁxg
Time & state rescaling:

@ Letw > 0sothat T = wt

o Thend—t:w, i.e., dr = wdt.
@ Let
T
zlz—l and
B
_ 4 at . _ L1 m2
Z2 = g- 1—d_rz1—m—ﬁ.
@ Then
1 g 1 g k
d dt .
Lrg=Lig=——"=—|—-=sinzg — —=x
dr 2 = 4r*2 w Bw /BW2<Z L=

= ﬂ% (—% sin(8z1) — %zz)

KB ——— sin(Bz1) — mLZQ
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State Space Models: (State) Rescaling

Example: Pendulum

@ If we define w = k/m, B =1 and a = g/(fw?) then
. T2 d _ d _ B
— — =21 = 22, ——-29 = —QasInzy — z2.
x_f(:r)_ —%sinxl—ﬁxg dr~1 2 dar ~2 1 2
m
Time & state rescaling:
@ Letw > 0sothat T = wt

@ Then ‘;—I = w,i.e., dr = wdt.

= 5% (—% sin(8z1) — %zz)

@ Let
1
21 = — and
B
_ 4 _dt. _ ®1 X2
Z2_EZ1_EZ1_E_E'
@ Then
d dt ; 1@ 1 g . k
2= g = — - = — | - sinxy — —x2
T T wPBw  Pw? l m

k
sin(Bz1) — oL

__9
{Bw?

P. Braun & C.M. Kellett (ANU)
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State Space Models: (State) Rescaling

Example: Pendulum
. x
&= f(z) = —%sinazf— %xg
Time & state rescaling:
@ Letw > 0sothat T = wt
@ Then ‘;—I = w,i.e., dr = wdt.
@ Let
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@ If we define w = k/m, B =1 and a = g/(fw?) then

d
ar?1 = 22,

d o _
i I-%2 = —asinz; — z3.

@ Alternatively forw = /g/¢, 8 =1and a = k/(mw)
obtain

da ., _ AU _
=21 = 22, dr72 = —sinzi — az.
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State Space Models: (State) Rescaling

Example: Pendulum
. o z2
&= f(x) = [ —Zsinzy — %rg }
Time & state rescaling:
@ Letw > 0sothat T = wt
@ Then % = w,i.e., dr = wdt.

@ Let
x
zlz—l and
B
_d. _dt, _ %1 T2
z2 arcl = gr 1—@—@
@ Then
W _as _Li 1 (g ko
d dr wphw  Pw? 14
kw
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If we define w = k/m, 8 =1 and a = g/(fw?) then

d — d 0 — _si _
s Zl = 22, g-%2 = —Qsinz] — z2.

Alternatively for w = \/g/¢, 8 = 1 and a = k/(mw) we
obtain

da ., _ AU _
dr Fl1 = 22, 2= sin 21 azo.

The rescaled system makes certain qualitative
elements clearer.

For example, observe that near z = 0, sinz ~ z and
thus near the point z; = z2 = 0, it holds that

d _ a.,
1-21 = 22, 172 = —21 — aza.

Close to the equilibrium z; = z2 = 0, the pendulum
and the mass-spring system have the same qualitative
behavior.
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State Space Models: (State) Rescaling

Example: Pendulum @ If we define w = k/m, 8 = 1 and a = g/(fw?) then

. T2 d _ d _ B
= f(z) = . 21 = 22, & 20 = —asinzy — z2.
f(=) [ —%smxl——:lrz } dr dar

Time & state rescaling: @ Alternatively for w = /g/¢, 8 = 1and a = k/(mw) we

@ Letw > 0sothat T = wt obtain
dr __ i —
@ Then &% = w, i.e., dT = wdt. %zl = 29, %zgz—sinzl—azz.
@ Let
x1
zZ1 = B and ~ The rescaled system makes certain qualitative
. elements clearer.
d dt r1 T2 .
22 = go2l = grRl = E = E @ For example, observe that near z = 0, sinz ~ = and
thus near the point z; = z2 = 0, it holds that
@ Then d d
. ar ?1 = 22, qrR2 = —21 — Qza.
A, _dty 1A 1 (g o Kk
dr®2 = 4?2 T 030 T gar \ TS T ~ Close to the equilibrium z1 = 22 = 0, the pendulum
and the mass-spring system have the same qualitative
1 g . kwp behavi
== -7 sin(8z1) — ——z2 ehavior.
pu m Reminder: While rescaling can make a system easier to deal
___9 sin(fz1) — ——z. with numerically or analytically, it is necessary to reverse the
£Bw? transformations to get back to the specific system of interest.
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State Space Models: Comparison Functions

Some properties:
o : ° i . . ible.
Definition (Class-P, K, K., £, KL functions) Class-Koo functions are invertible
@ If a1, a9 € Koo then

@ A continuous function p : R™ — R is said to be
positive definite (p € P™) if p(0) = 0 and
p(z) >0V z e R™\{0}. @ lfaeckK,ceLthenaoo e L.

@ Forp:R>g — R>gweusepcP.
@ « € P is said to be of class-K (« € K) if « strictly

a(s) = a1 (az(s)) = a1 0 az(s) € Keo.

increasing. = o
B 5]
@ o € K is said to be of class-Ko (o € Koo) if
lim a(s) = oco. — % K, % # K
S§—00 ——tanh(s) € K, tanh(s) ¢ K
@ A continuous function ¢ : R>¢ — R is said to be of N

class-L (o € L) if o is strictly decreasing and
lim o(s) =0.
S§—>00

ofs)
a(s)

@ A continuous function 8 : RZ ; — R is said to be of

class-KL (8 € KL) if for each fixed ¢ € Rxq,
B(+,t) € Koo and for each fixed s € R~o, B(s,) € L.

~ Koo CKCP
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Section 2

Examples of Dynamical Systems
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Examples of dynamical systems: The inverted pendulum on a cart

General dynamics of a mechanical system:
M(q)§ + C(g,4) + K(q) = B(q)u

* M £ @ M(q) : inertia matrix
@ C(q,q) : Coriolis forces
5 ) @ K(q) : potential energy terms
@ B(q) : external forces
m
M+m —mlcos(0) | [ & i cp +ml sin(0)2 ] [ 1 r
—ml cos(6) J +mi? | 0 ~0 —mglsin(@) | | O

q= { 70) } , parameters, states, inputs
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Examples of dynamical systems: The inverted pendulum as a rocket

How to define F to stabilize the pendulum/rocket in the upright position?

p : position; 6 : angle; ;0 :angular velocity

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 1: Nonlinear Systems - Fundamentals 14/17



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




Examples of dynamical systems: The inverted pendulum as a tower crane

How to define F to stabilize the pendulum/tower crane in the lower right position?
How to define F" to drive the pendulum/tower crane to a specific position?
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Examples of dynamical systems: The inverted pendulum as a segway

How to define F to drive the pendulum/segway with a fixed velocity? (reference tracking)
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Examples of dynamical systems: Local versus global stability properties

@ p : position
@ 0 :angle
° 10
. St
@ 0 : angular velocity ERA
5
-10
0 5 10 15 20

t
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