Introduction to Nonlinear Control

Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett School of Engineering, Australian National University, Canberra, Australia

Part I:

Chapter 1: Nonlinear Systems - Fundamentals 1.1 State Space Models

1.2 Examples of dynamical systems

Nonlinear Systems - Fundamentals

[State Space Models](#page-2-0)

- [Notational Conventions](#page-19-0)
- **•** [Rescaling](#page-21-0)
- [Comparison Functions](#page-29-0)

² [Examples of Dynamical Systems](#page-30-0)

- [The Pendulum on a Cart](#page-31-0)
- [Mobile Robots The Nonholonomic Integrator](#page-31-0)

Section 1

[State Space Models](#page-2-0)

State Space Models

(Time-invariant) First order differential equations (or autonomous system):

$$
\dot{x}(t) = \frac{d}{dt}x(t) = f(x(t)), \quad f: \mathbb{R}^n \to \mathbb{R}^n \tag{1}
$$

A *solution* of [\(1\)](#page-3-0) is an absolutely continuous function that satisfies (1) for almost all t .

Non-autonomous/time-varying system:

$$
\dot{x}(t) = f(t, x(t)), \qquad f: \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}^n \tag{2}
$$

Theorem (Existence & Uniqueness)

Given $x_0 \in \mathbb{R}^n$, $r > 0$, and $0 \le t_0 \le t_1$, let $f(t, x)$ be *piecewise continuous in* t *and satisfy the (local) Lipschitz condition*

 $|f(t, x) - f(t, y)| \le L|x - y|$

for an $L > 0$ *, for all* $x, y \in {\{\xi \in \mathbb{R}^n : |\xi - x_0| \le r\}}$ *and* $t \in [t_0, t_1]$. Then there exists $\delta > 0$ so that

 $\dot{x}(t) = f(t, x(t)), \quad x(t_0) = x_0$

has a unique solution over $[t_0, t_0 + \delta]$ *.*

State Space Models

(Time-invariant) First order differential equations (or autonomous system):

$$
\dot{x}(t) = \frac{d}{dt}x(t) = f(x(t)), \quad f: \mathbb{R}^n \to \mathbb{R}^n \tag{1}
$$

A *solution* of [\(1\)](#page-3-0) is an absolutely continuous function that satisfies (1) for almost all t .

Non-autonomous/time-varying system:

$$
\dot{x}(t) = f(t, x(t)), \qquad f: \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}^n \tag{2}
$$

Theorem (Existence & Uniqueness)

Given $x_0 \in \mathbb{R}^n$, $r > 0$, and $0 \le t_0 \le t_1$, let $f(t, x)$ be *piecewise continuous in* t *and satisfy the (local) Lipschitz condition*

 $|f(t, x) - f(t, y)| \le L|x - y|$ *for an* $L > 0$ *, for all* $x, y \in {\{\xi \in \mathbb{R}^n : |\xi - x_0| \le r\}}$ *and* $t \in [t_0, t_1]$. Then there exists $\delta > 0$ so that

 $\dot{x}(t) = f(t, x(t)), \quad x(t_0) = x_0$

has a unique solution over $[t_0, t_0 + \delta]$ *.*

From n^{th} -order to first order:

$$
\frac{d^n}{dt^n}y(t) = \phi\left(y(t), \dot{y}(t), \dots, \frac{d^{n-1}}{dt^{n-1}}y(t)\right), \quad \phi: \mathbb{R}^n \to \mathbb{R}
$$

Define

$$
x_1 = y
$$
, $x_2 = \dot{y}$, $x_3 = \ddot{y}$, ..., $x_n = \frac{d^{n-1}}{dt^{n-1}}y$, (3)

Corresponding first order system:

$$
\dot{x}_1(t) = x_2(t),
$$

$$
\dot{x}_2(t) = x_3(t),
$$

. . .

$$
\dot{x}_{n-1}(t) = x_n(t), \n\dot{x}_n(t) = \phi(x_1(t), x_2(t), \dots, x_n(t)).
$$

State Space Models

(Time-invariant) First order differential equations (or autonomous system):

$$
\dot{x}(t) = \frac{d}{dt}x(t) = f(x(t)), \quad f: \mathbb{R}^n \to \mathbb{R}^n \tag{1}
$$

A *solution* of [\(1\)](#page-3-0) is an absolutely continuous function that satisfies (1) for almost all t .

Non-autonomous/time-varying system:

$$
\dot{x}(t) = f(t, x(t)), \qquad f: \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}^n \tag{2}
$$

Theorem (Existence & Uniqueness)

Given $x_0 \in \mathbb{R}^n$, $r > 0$, and $0 \le t_0 \le t_1$, let $f(t, x)$ be *piecewise continuous in* t *and satisfy the (local) Lipschitz condition*

 $|f(t, x) - f(t, y)| \le L|x - y|$ *for an* $L > 0$ *, for all* $x, y \in {\{\xi \in \mathbb{R}^n : |\xi - x_0| \le r\}}$ *and* $t \in [t_0, t_1]$. Then there exists $\delta > 0$ so that

 $\dot{x}(t) = f(t, x(t)), \quad x(t_0) = x_0$

has a unique solution over $[t_0, t_0 + \delta]$ *.*

From n^{th} -order to first order:

$$
\frac{d^n}{dt^n}y(t) = \phi\left(y(t), \dot{y}(t), \dots, \frac{d^{n-1}}{dt^{n-1}}y(t)\right), \quad \phi: \mathbb{R}^n \to \mathbb{R}
$$

Define

$$
x_1 = y
$$
, $x_2 = \dot{y}$, $x_3 = \ddot{y}$, ..., $x_n = \frac{d^{n-1}}{dt^{n-1}}y$, (3)

Corresponding first order system:

$$
\dot{x}_1(t) = x_2(t),
$$

$$
\dot{x}_2(t) = x_3(t),
$$

. . .

$$
\dot{x}_{n-1}(t) = x_n(t), \n\dot{x}_n(t) = \phi(x_1(t), x_2(t), \dots, x_n(t)).
$$

Systems with external inputs $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$:

$$
\begin{array}{lll} & \dot{x}=f(x,u), & \dot{x}=f(x,w), \\ \bullet \; u:\mathbb{R}^n \rightarrow \mathbb{R}^m, \, x \mapsto u(x) & \leftarrow \text{degree of freedom} \\ \bullet \; w:\mathbb{R} \rightarrow \mathbb{R}^m, \, t \mapsto w(t) & \leftarrow \text{exogenous signal} \\ & \text{(disturbance or reference)} \end{array}
$$

Mass m, restoring force of the spring F_{sp} , friction force F_f , external driving force F , displacement y .

Mass m, restoring force of the spring F_{sn} , friction force F_f , external driving force F , displacement y .

Newton's second law of motion:

$$
m\ddot{y} = F - F_f - F_{sp} = F - c\dot{y} - ky \tag{4}
$$

 $(F_f = cy)$ is viscous friction & $F_{sp} = ky$ is a linear spring)

From second order to first order: $(x_1 = y, x_2 = y, u = F)$

$$
\dot{x}_1(t) = x_2(t)
$$

$$
\dot{x}_2(t) = -\frac{k}{m}x_1(t) - \frac{c}{m}x_2(t) + \frac{1}{m}u(t)
$$

 x_1, x_2 (states of the system) & u (input of the system)

Mass m, restoring force of the spring F_{sp} , friction force F_f , external driving force F , displacement y .

Newton's second law of motion:

$$
m\ddot{y} = F - F_f - F_{sp} = F - c\dot{y} - ky \tag{4}
$$

 $(F_f = cy)$ is viscous friction & $F_{sp} = ky$ is a linear spring)

From second order to first order: $(x_1 = y, x_2 = \dot{y}, u = F)$

$$
\dot{x}_1(t) = x_2(t)
$$

$$
\dot{x}_2(t) = -\frac{k}{m}x_1(t) - \frac{c}{m}x_2(t) + \frac{1}{m}u(t)
$$

 x_1, x_2 (states of the system) & u (input of the system)

Potential energy (for $u = 0$):

$$
\tfrac12ky^2=\tfrac12kx_1^2
$$

Kinetic energy (for $u = 0$): $\frac{1}{2}mv^2 = \frac{1}{2}m(\dot{y})^2 = \frac{1}{2}mx_2^2$ $(v:$ velocity of the block)

\rightarrow How does the total energy of the mass-spring system evolve with time?

Total energy: potential $+$ kinetic energy

$$
E(x_1, x_2) = E(x) = \frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2 \ge 0.
$$

The time derivative of E :

$$
\frac{d}{dt}E(x(t)) = \frac{d}{dt} \left(\frac{1}{2}kx_1(t)^2 + \frac{1}{2}mx_2(t)^2\right)
$$

= $kx_1\dot{x}_1(t) + mx_2\dot{x}_2(t)$
= $kx_1(t)x_2(t) - kx_1(t)x_2(t) - cx_2(t)^2 = -cx_2(t)^2 \le 0$

Mass m, restoring force of the spring F_{sp} , friction force F_f , external driving force F , displacement y .

Newton's second law of motion:

$$
m\ddot{y} = F - F_f - F_{sp} = F - c\dot{y} - ky \tag{4}
$$

 $(F_f = cy)$ is viscous friction & $F_{sp} = ky$ is a linear spring)

From second order to first order: $(x_1 = y, x_2 = y, u = F)$

$$
\dot{x}_1(t) = x_2(t)
$$

$$
\dot{x}_2(t) = -\frac{k}{m}x_1(t) - \frac{c}{m}x_2(t) + \frac{1}{m}u(t)
$$

 x_1, x_2 (states of the system) & u (input of the system)

Potential energy (for $u = 0$):

$$
\tfrac12ky^2=\tfrac12kx_1^2
$$

Kinetic energy (for $u = 0$): $\frac{1}{2}mv^2 = \frac{1}{2}m(\dot{y})^2 = \frac{1}{2}mx_2^2$ $(v:$ velocity of the block)

\rightarrow How does the total energy of the mass-spring system evolve with time?

Total energy: potential $+$ kinetic energy

$$
E(x_1, x_2) = E(x) = \frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2 \ge 0.
$$

The time derivative of E :

$$
\frac{d}{dt}E(x(t)) = \frac{d}{dt} \left(\frac{1}{2}kx_1(t)^2 + \frac{1}{2}mx_2(t)^2\right)
$$

= $kx_1\dot{x}_1(t) + mx_2\dot{x}_2(t)$
= $kx_1(t)x_2(t) - kx_1(t)x_2(t) - cx_2(t)^2 = -cx_2(t)^2 \le 0$

 E is positive, \dot{E} is decreasing \leadsto eventually, the block must stop moving.

 \rightsquigarrow Where is the block going to stop?

Definition (Equilibrium, $\dot{x} = 0$)

The point $x^e \in \mathbb{R}^n$ is called an equilibrium of the system $\dot{x} = f(x)$ or $\dot{x} = f(t, x)$, respectively, if

$$
\frac{\frac{d}{dt}x(t) = f(x^e) = 0, \n\frac{d}{dt}x(t) = f(t, x^e) = 0 \quad \forall t \in \mathbb{R}_{\geq 0}.
$$

The pair $(x^e, u^e) \in \mathbb{R}^n \times \mathbb{R}^m$ is called an equilibrium pair of the system $\dot{x} = f(x, u)$ if

$$
\frac{d}{dt}x(t) = f(x^e, u^e) = 0.
$$

Definition (Equilibrium, $\dot{x} = 0$)

The point $x^e \in \mathbb{R}^n$ is called an equilibrium of the system $\dot{x} = f(x)$ or $\dot{x} = f(t, x)$, respectively, if

$$
\frac{d}{dt}x(t) = f(x^e) = 0,
$$

$$
\frac{d}{dt}x(t) = f(t, x^e) = 0 \quad \forall t \in \mathbb{R}_{\geq 0}.
$$

The pair $(x^e, u^e) \in \mathbb{R}^n \times \mathbb{R}^m$ is called an equilibrium pair of the system $\dot{x} = f(x, u)$ if

$$
\frac{d}{dt}x(t) = f(x^e, u^e) = 0.
$$

- Without loss of generality $x^e = 0$ (or $(x^e, u^e) = 0$).
- To see this, consider coordinate transf. $z = x x^e$.

Then

a

$$
\frac{d}{dt}z(t) = \frac{d}{dt}x(t) - \frac{d}{dt}x^e = f(x(t)) = f(z(t) + x^e).
$$

$$
\hat{f}(z) \doteq f(z+x^e) \qquad \text{yields} \qquad \dot{z} = \hat{f}(z)
$$

where $(z^e=0)$

$$
\hat{f}(z^e) = f(z^e + x^e) = f(x^e) = 0
$$

Definition (Equilibrium, $\dot{x} = 0$)

The point $x^e \in \mathbb{R}^n$ is called an equilibrium of the system $\dot{x} = f(x)$ or $\dot{x} = f(t, x)$, respectively, if

$$
\frac{d}{dt}x(t) = f(x^e) = 0,
$$

$$
\frac{d}{dt}x(t) = f(t, x^e) = 0 \quad \forall t \in \mathbb{R}_{\geq 0}.
$$

The pair $(x^e, u^e) \in \mathbb{R}^n \times \mathbb{R}^m$ is called an equilibrium pair of the system $\dot{x} = f(x, u)$ if

$$
\frac{d}{dt}x(t) = f(x^e, u^e) = 0.
$$

- Without loss of generality $x^e = 0$ (or $(x^e, u^e) = 0$).
- To see this, consider coordinate transf. $z = x x^e$.

Then

$$
\frac{d}{dt}z(t) = \frac{d}{dt}x(t) - \frac{d}{dt}x^e = f(x(t)) = f(z(t) + x^e).
$$

and

$$
\hat{f}(z) \doteq f(z + x^e)
$$
 yields $\dot{z} = \hat{f}(z)$

where $(z^e=0)$

$$
\hat{f}(z^e) = f(z^e + x^e) = f(x^e) = 0
$$

Exercise:

Use a similar translation $z = x - x^e$ and $v = u - u^e$ to shift an equilibrium pair to the origin.

Definition (Equilibrium, $\dot{x} = 0$)

The point $x^e \in \mathbb{R}^n$ is called an equilibrium of the system $\dot{x} = f(x)$ or $\dot{x} = f(t, x)$, respectively, if

$$
\frac{d}{dt}x(t) = f(x^e) = 0,
$$

$$
\frac{d}{dt}x(t) = f(t, x^e) = 0 \quad \forall t \in \mathbb{R}_{\geq 0}.
$$

The pair $(x^e, u^e) \in \mathbb{R}^n \times \mathbb{R}^m$ is called an equilibrium pair of the system $\dot{x} = f(x, u)$ if

$$
\frac{d}{dt}x(t) = f(x^e, u^e) = 0.
$$

- Without loss of generality $x^e = 0$ (or $(x^e, u^e) = 0$).
- To see this, consider coordinate transf. $z = x x^e$.

a Then

a

$$
\frac{d}{dt}z(t) = \frac{d}{dt}x(t) - \frac{d}{dt}x^e = f(x(t)) = f(z(t) + x^e).
$$

$$
\hat{f}(z) \doteq f(z + x^e)
$$
 yields $\dot{z} = \hat{f}(z)$

where $(z^e=0)$

$$
\hat{f}(z^e) = f(z^e + x^e) = f(x^e) = 0
$$

Exercise:

Use a similar translation $z = x - x^e$ and $v = u - u^e$ to shift an equilibrium pair to the origin.

Recall the mass-spring system:

$$
0 \stackrel{!}{=} \dot{x}_1(t) = x_2(t)
$$

\n
$$
0 \stackrel{!}{=} \dot{x}_2(t) = -\frac{k}{m}x_1(t) - \frac{c}{m}x_2(t) + \frac{1}{m}u(t)
$$

Definition (Equilibrium, $\dot{x} = 0$)

The point $x^e \in \mathbb{R}^n$ is called an equilibrium of the system $\dot{x} = f(x)$ or $\dot{x} = f(t, x)$, respectively, if

$$
\frac{d}{dt}x(t) = f(x^e) = 0,
$$

$$
\frac{d}{dt}x(t) = f(t, x^e) = 0 \quad \forall t \in \mathbb{R}_{\geq 0}.
$$

The pair $(x^e, u^e) \in \mathbb{R}^n \times \mathbb{R}^m$ is called an equilibrium pair of the system $\dot{x} = f(x, u)$ if

$$
\frac{d}{dt}x(t) = f(x^e, u^e) = 0.
$$

Recall the mass-spring system:

$$
0 \stackrel{!}{=} \dot{x}_1(t) = x_2(t)
$$

\n
$$
0 \stackrel{!}{=} \dot{x}_2(t) = -\frac{k}{m}x_1(t) - \frac{c}{m}x_2(t) + \frac{1}{m}u(t)
$$

Without loss of generality $x^e = 0$ (or $(x^e, u^e) = 0$).

To see this, consider coordinate transf. $z = x - x^e$.

a Then

$$
\frac{d}{dt}z(t) = \frac{d}{dt}x(t) - \frac{d}{dt}x^e = f(x(t)) = f(z(t) + x^e).
$$

and

$$
\hat{f}(z) \doteq f(z + x^e)
$$
 yields $\dot{z} = \hat{f}(z)$

where $(z^e=0)$

$$
\hat{f}(z^e) = f(z^e + x^e) = f(x^e) = 0
$$

Exercise:

Use a similar translation $z = x - x^e$ and $v = u - u^e$ to shift an equilibrium pair to the origin.

In the case that $u = 0$.

- The first equation implies that $x_2 = 0$.
- The second equation implies that $x_1 = 0$.
- **•** Equilibrium: $x_1 = y = 0, x_2 = \dot{y} = 0.$

Definition (Equilibrium, $\dot{x} = 0$)

The point $x^e \in \mathbb{R}^n$ is called an equilibrium of the system $\dot{x} = f(x)$ or $\dot{x} = f(t, x)$, respectively, if

$$
\frac{d}{dt}x(t) = f(x^e) = 0,
$$

$$
\frac{d}{dt}x(t) = f(t, x^e) = 0 \quad \forall t \in \mathbb{R}_{\geq 0}.
$$

The pair $(x^e, u^e) \in \mathbb{R}^n \times \mathbb{R}^m$ is called an equilibrium pair of the system $\dot{x} = f(x, u)$ if

$$
\frac{d}{dt}x(t) = f(x^e, u^e) = 0.
$$

Recall the mass-spring system:

$$
0 \stackrel{!}{=} \dot{x}_1(t) = x_2(t)
$$

\n
$$
0 \stackrel{!}{=} \dot{x}_2(t) = -\frac{k}{m}x_1(t) - \frac{c}{m}x_2(t) + \frac{1}{m}u(t)
$$

Without loss of generality $x^e = 0$ (or $(x^e, u^e) = 0$).

To see this, consider coordinate transf. $z = x - x^e$.

Then

$$
\frac{d}{dt}z(t) = \frac{d}{dt}x(t) - \frac{d}{dt}x^e = f(x(t)) = f(z(t) + x^e).
$$

and

$$
\hat{f}(z) \doteq f(z + x^e)
$$
 yields $\dot{z} = \hat{f}(z)$

where $(z^e=0)$

$$
\hat{f}(z^e) = f(z^e + x^e) = f(x^e) = 0
$$

Exercise:

Use a similar translation $z = x - x^e$ and $v = u - u^e$ to shift an equilibrium pair to the origin.

In the case that $u = 0$.

- The first equation implies that $x_2 = 0$.
- The second equation implies that $x_1 = 0$.
- **•** Equilibrium: $x_1 = y = 0, x_2 = \dot{y} = 0.$

Exercise: How do the equilibrium pairs look like?

State Space Models (Example: Pendulum)

Equilibria:

$$
0 = x_2, \t 0 = -\frac{g}{\ell} \sin x_1 - \frac{k}{m} x_2
$$

$$
\sim x^e = [n\pi, 0]^T \text{ for } n = 0, \pm 1, \pm 2, \text{ etc.}
$$

System dynamics (by balancing forces):

 $m\ell\ddot{\theta} = -mg\sin\theta - k\ell\dot{\theta}, \qquad k > 0$ friction coefficient With $x_1 = \theta$ and $x_2 = \dot{\theta}$: $\dot{x}_1(t) = x_2(t),$ $\dot{x}_2(t) = -\frac{g}{\ell} \sin x_1(t) - \frac{k}{m} x_2(t).$

State Space Models (Example: Pendulum)

System dynamics (by balancing forces):

 $m\ell\ddot{\theta} = -mg\sin\theta - k\ell\dot{\theta}, \qquad k > 0$ friction coefficient With $x_1 = \theta$ and $x_2 = \dot{\theta}$: $\dot{x}_1(t) = x_2(t),$

$$
\dot{x}_2(t) = -\frac{g}{\ell} \sin x_1(t) - \frac{k}{m} x_2(t).
$$

Equilibria:

0 = x_2 , 0 = $-\frac{g}{\ell}\sin x_1 - \frac{k}{m}x_2$ $\mathbf{v} \cdot \mathbf{v}^e = [n\pi, 0]^T$ for $n = 0, \pm 1, \pm 2$, etc.. Potential energy: $mq\ell(1-\cos\theta) = ma\ell(1-\cos x_1)$ Kinetic energy: $\frac{1}{2}mv^2 = \frac{1}{2}m\ell^2\dot{\theta}^2 = \frac{1}{2}m\ell^2x_2^2$. Time evolution of the total energy: $\frac{d}{dt}E(x(t)) = (mg\ell\sin x_1)\dot{x}_1 + m\ell^2 x_2\dot{x}_2$ $= (mg\ell\sin x_1) x_2 - m\ell^2 x_2 (\frac{g}{\ell}\sin x_1) - m\ell^2 x_2 (\frac{k}{m}x_2)$ $= -k\ell^2 x_2(t)^2.$

Note that:

- If $\dot{\theta} = x_2 \neq 0$ then $E(x(t))$ is decreasing.
- However, since the pendulum exhibits multiple equilibria, it is not clear where the equilibrium is going to stop.
- (We will return to this example)

State Space Models (Systems with outputs)

System dynamics (by balancing forces):

 $m\ell\ddot{\theta} = -mg\sin\theta - k\ell\dot{\theta}, \qquad k > 0$ friction coefficient With $x_1 = \theta$ and $x_2 = \dot{\theta}$:

$$
\dot{x}_1(t) = x_2(t), \n\dot{x}_2(t) = -\frac{g}{\ell} \sin x_1(t) - \frac{k}{m} x_2(t).
$$

Note that:

- Full knowledge of $x \in \mathbb{R}^n$ is usually not available.
- For the pendulum a common implementation includes a sensor for measuring the angle $\theta = x_1$ but no velocity sensor.
- \rightsquigarrow We can measure $\theta = x_1$ but not $\dot{\theta} = x_2$.
- System with output:

$$
\begin{aligned}\n\dot{x} &= f(x, u) \\
y &= h(x, u)\n\end{aligned}
$$

• In the example of the pendulum:

$$
y = h(x) = x_1
$$

State Space Models: Notational Convention

A common abuse of notation: (we drop the t -argument)

$$
\dot{x} = f(x), \quad x_0 \in \mathbb{R}^n
$$

Absolutely continuous solutions $x : \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ such that $x(0) = x_0 \in \mathbb{R}^n$ satisfy

$$
\frac{d}{dt}x(t) = f(x(t)) \quad \text{ for almost all } t \in \mathbb{R}_{\geq 0}
$$

Thus, depending on the context

- $\bullet x \in \mathbb{R}^n$ denotes a vector
- $\bullet x(\cdot): \mathbb{R}^n \to \mathbb{R}^n$ denotes a function

The time-derivative of energy-like functions $E : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$:

$$
\frac{d}{dt}E(x(t)) = \langle \nabla E(x), \dot{x} \rangle = \langle \nabla E(x), f(x) \rangle
$$

where (gradient)

$$
\nabla E(x) = \begin{bmatrix} \frac{\partial}{\partial x_1} E(x) \\ \frac{\partial}{\partial x_2} E(x) \\ \vdots \\ \frac{\partial}{\partial x_n} E(x) \end{bmatrix}.
$$

State Space Models: Notational Convention

A common abuse of notation: (we drop the t -argument)

$$
\dot{x} = f(x), \quad x_0 \in \mathbb{R}^n
$$

Absolutely continuous solutions $x : \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ such that $x(0) = x_0 \in \mathbb{R}^n$ satisfy

$$
\frac{d}{dt}x(t) = f(x(t)) \quad \text{ for almost all } t \in \mathbb{R}_{\geq 0}
$$

Thus, depending on the context

 $\bullet x \in \mathbb{R}^n$ denotes a vector

 $\bullet x(\cdot): \mathbb{R}^n \to \mathbb{R}^n$ denotes a function

The time-derivative of energy-like functions $E : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$:

$$
\frac{d}{dt}E(x(t)) = \langle \nabla E(x), \dot{x} \rangle = \langle \nabla E(x), f(x) \rangle
$$

where (gradient)

$$
\nabla E(x) = \begin{bmatrix} \frac{\partial}{\partial x_1} E(x) \\ \frac{\partial}{\partial x_2} E(x) \\ \vdots \\ \frac{\partial}{\partial x_n} E(x) \end{bmatrix}.
$$

In the example of the mass-spring system (with $u = 0$):

$$
\dot{x} = f(x) = \begin{bmatrix} x_2 \\ -\frac{k}{m}x_1 - \frac{c}{m}x_2 \end{bmatrix}
$$

$$
E(x) = \frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2
$$

$$
\frac{d}{dt}E(x(t)) = \langle \nabla E(x), f(x) \rangle
$$
\n
$$
= \begin{bmatrix} kx_1 \\ mx_2 \end{bmatrix}^T \begin{bmatrix} x_2 \\ \frac{1}{m}(-kx_1 - cx_2) \end{bmatrix}
$$
\n
$$
= [kx_1 \space mx_2] \begin{bmatrix} x_2 \\ \frac{1}{m}(-kx_1 - cx_2) \end{bmatrix}
$$
\n
$$
= kx_1x_2 + x_2(-kx_1 - cx_2).
$$

Example: Mass-spring system (with $u = 0$):

$$
\dot{x} = f(x) = \begin{bmatrix} x_2 \\ -\frac{k}{m}x_1 - \frac{c}{m}x_2 \end{bmatrix}
$$

Assume that $c = 0$ (i.e., no friction)

Time rescaling:

- **•** Let $\omega > 0$ so that $\tau = \omega t$
- Then $\frac{d\tau}{dt} = \omega$, i.e., $d\tau = \omega dt$.
- **o** Let

 $z_1 = x_1$ and $z_2 = \frac{d}{d\tau} z_1 = \frac{dt}{d\tau} \frac{d}{dt} z_1 = \frac{dt}{d\tau} \dot{z}_1 = \frac{\dot{x}_1}{dt}$ $rac{\dot{x}_1}{\omega} = \frac{x_2}{\omega}$ ω

• Therefore, we can calculate

$$
\frac{d}{d\tau}z_2 = \frac{dt}{d\tau}\dot{z}_2 = \frac{1}{\omega}\frac{\dot{x}_2}{\omega} = -\frac{k}{m\omega^2}x_1 = -\frac{k}{m\omega^2}z_1
$$

• Fix
$$
\omega = \sqrt{k/m}
$$
; i.e.,
\n
$$
\frac{d}{d\tau}z_1 = z_2
$$
\n
$$
\frac{d}{d\tau}z_2 = -z_1.
$$

which, qualitatively, captures the behavior of all mass-spring.

Example: Mass-spring system (with $u = 0$):

$$
\dot{x} = f(x) = \begin{bmatrix} x_2 \\ -\frac{k}{m}x_1 - \frac{c}{m}x_2 \end{bmatrix}
$$

Assume that $c = 0$ (i.e., no friction)

Time rescaling:

• Let $\omega > 0$ so that $\tau = \omega t$

• Then
$$
\frac{d\tau}{dt} = \omega
$$
, i.e., $d\tau = \omega dt$.

o Let

$$
z_1 = x_1 \quad \text{and}
$$
\n
$$
z_2 = \frac{d}{d\tau} z_1 = \frac{dt}{d\tau} \frac{d}{dt} z_1 = \frac{dt}{d\tau} \dot{z}_1 = \frac{\dot{x}_1}{\omega} = \frac{x_2}{\omega}
$$

• Therefore, we can calculate

$$
\frac{d}{d\tau}z_2 = \frac{dt}{d\tau}\dot{z}_2 = \frac{1}{\omega}\frac{\dot{x}_2}{\omega} = -\frac{k}{m\omega^2}x_1 = -\frac{k}{m\omega^2}z_1
$$

• Fix
$$
\omega = \sqrt{k/m}
$$
; i.e.,
\n
$$
\frac{d}{d\tau}z_1 = z_2
$$
\n
$$
\frac{d}{d\tau}z_2 = -z_1.
$$

which, qualitatively, captures the behavior of all mass-spring.

 \bullet In the case $c > 0$ it holds that

$$
\frac{d}{d\tau}z_2 = \frac{dt}{d\tau}\dot{z}_2 = \frac{1}{\omega}\frac{\dot{x}_2}{\omega} = -\frac{k}{m\omega^2}x_1 - \frac{c}{m\omega^2}x_2.
$$

• Define
$$
\omega = \sqrt{k/m}
$$
 and $\alpha = c\sqrt{m/k}$ then

$$
\frac{d}{d\tau}z_1 = z_2,
$$

$$
\frac{d}{d\tau}z_2 = -z_1 - \alpha z_2.
$$

Example: Mass-spring system (with $u = 0$):

$$
\dot{x} = f(x) = \begin{bmatrix} x_2 \\ -\frac{k}{m}x_1 - \frac{c}{m}x_2 \end{bmatrix}
$$

Assume that $c = 0$ (i.e., no friction)

Time rescaling:

Let $\omega > 0$ so that $\tau = \omega t$

• Then
$$
\frac{d\tau}{dt} = \omega
$$
, i.e., $d\tau = \omega dt$.

o Let

$$
z_1 = x_1 \quad \text{and}
$$
\n
$$
z_2 = \frac{d}{d\tau} z_1 = \frac{dt}{d\tau} \frac{d}{dt} z_1 = \frac{dt}{d\tau} \dot{z}_1 = \frac{\dot{x}_1}{\omega} = \frac{x_2}{\omega}
$$

• Therefore, we can calculate

$$
\frac{d}{d\tau}z_2 = \frac{dt}{d\tau}\dot{z}_2 = \frac{1}{\omega}\frac{\dot{x}_2}{\omega} = -\frac{k}{m\omega^2}x_1 = -\frac{k}{m\omega^2}z_1
$$

Fix $\omega = \sqrt{k/m}$; i.e., $\frac{d}{d\tau}z_1=z_2$ $\frac{d}{d\tau}z_2=-z_1.$

which, qualitatively, captures the behavior of all mass-spring.

 \bullet In the case $c > 0$ it holds that

$$
\frac{d}{d\tau}z_2 = \frac{dt}{d\tau}\dot{z}_2 = \frac{1}{\omega}\frac{\dot{x}_2}{\omega} = -\frac{k}{m\omega^2}x_1 - \frac{c}{m\omega^2}x_2.
$$

• Define
$$
\omega = \sqrt{k/m}
$$
 and $\alpha = c\sqrt{m/k}$ then

$$
\frac{d}{d\tau}z_1 = z_2,
$$

$$
\frac{d}{d\tau}z_2 = -z_1 - \alpha z_2.
$$

Summary:

Instead of three parameters $m, k, c > 0$, we have an equivalent representation with one parameter $\alpha > 0$.

Example: Pendulum

$$
\dot{x} = f(x) = \begin{bmatrix} x_2 \\ -\frac{g}{\ell} \sin x_1 - \frac{k}{m} x_2 \end{bmatrix}
$$

Time & state rescaling:

- Let $\omega > 0$ so that $\tau = \omega t$
- Then $\frac{d\tau}{dt} = \omega$, i.e., $d\tau = \omega dt$.

Let

$$
z_1 = \frac{x_1}{\beta} \quad \text{and}
$$

$$
z_2 = \frac{d}{d\tau} z_1 = \frac{dt}{d\tau} \dot{z}_1 = \frac{\dot{x}_1}{\omega \beta} = \frac{x_2}{\omega \beta}.
$$

o Then

$$
\frac{d}{d\tau}z_2 = \frac{dt}{d\tau}\dot{z}_2 = \frac{1}{\omega}\frac{\dot{x}_2}{\beta\omega} = \frac{1}{\beta\omega^2} \left(-\frac{g}{\ell}\sin x_1 - \frac{k}{m}x_2 \right)
$$

$$
= \frac{1}{\beta\omega^2} \left(-\frac{g}{\ell}\sin(\beta z_1) - \frac{k\omega\beta}{m}z_2 \right)
$$

$$
= -\frac{g}{\ell\beta\omega^2}\sin(\beta z_1) - \frac{k}{m\omega}z_2.
$$

Example: Pendulum

$$
\dot{x} = f(x) = \begin{bmatrix} x_2 \\ -\frac{g}{\ell} \sin x_1 - \frac{k}{m} x_2 \end{bmatrix}
$$

Time & state rescaling:

- **Let** $\omega > 0$ so that $\tau = \omega t$
- Then $\frac{d\tau}{dt} = \omega$, i.e., $d\tau = \omega dt$.

Let

$$
z_1 = \frac{x_1}{\beta} \quad \text{and}
$$

$$
z_2 = \frac{d}{d\tau} z_1 = \frac{dt}{d\tau} \dot{z}_1 = \frac{\dot{x}_1}{\omega \beta} = \frac{x_2}{\omega \beta}.
$$

• Then

$$
\frac{d}{d\tau}z_2 = \frac{dt}{d\tau}\dot{z}_2 = \frac{1}{\omega}\frac{\dot{x}_2}{\beta\omega} = \frac{1}{\beta\omega^2} \left(-\frac{g}{\ell}\sin x_1 - \frac{k}{m}x_2 \right)
$$

$$
= \frac{1}{\beta\omega^2} \left(-\frac{g}{\ell}\sin(\beta z_1) - \frac{k\omega\beta}{m}z_2 \right)
$$

$$
= -\frac{g}{\ell\beta\omega^2}\sin(\beta z_1) - \frac{k}{m\omega}z_2.
$$

If we define $\omega = k/m$, $\beta = 1$ and $\alpha = g/(\ell \omega^2)$ then $\frac{d}{d\tau}z_1 = z_2,$ $\frac{d}{d\tau}z_2 = -\alpha \sin z_1 - z_2.$

Example: Pendulum

$$
\dot{x} = f(x) = \begin{bmatrix} x_2 \\ -\frac{g}{\ell} \sin x_1 - \frac{k}{m} x_2 \end{bmatrix}
$$

Time & state rescaling:

Let $\omega > 0$ so that $\tau = \omega t$

• Then
$$
\frac{d\tau}{dt} = \omega
$$
, i.e., $d\tau = \omega dt$.

Let

$$
z_1 = \frac{x_1}{\beta} \quad \text{and}
$$

$$
z_2 = \frac{d}{d\tau} z_1 = \frac{dt}{d\tau} \dot{z}_1 = \frac{\dot{x}_1}{\omega \beta} = \frac{x_2}{\omega \beta}.
$$

o Then

$$
\frac{d}{d\tau}z_2 = \frac{dt}{d\tau}\dot{z}_2 = \frac{1}{\omega}\frac{\dot{x}_2}{\beta\omega} = \frac{1}{\beta\omega^2} \left(-\frac{g}{\ell}\sin x_1 - \frac{k}{m}x_2 \right)
$$

$$
= \frac{1}{\beta\omega^2} \left(-\frac{g}{\ell}\sin(\beta z_1) - \frac{k\omega\beta}{m}z_2 \right)
$$

$$
= -\frac{g}{\ell\beta\omega^2}\sin(\beta z_1) - \frac{k}{m\omega}z_2.
$$

- If we define $\omega = k/m$, $\beta = 1$ and $\alpha = g/(\ell \omega^2)$ then $\frac{d}{d\tau}z_1 = z_2,$ $\frac{d}{d\tau}z_2 = -\alpha \sin z_1 - z_2.$
- Alternatively for $\omega=\sqrt{g/\ell},$ $\beta=1$ and $\alpha=k/(m\omega)$ we obtain

$$
\frac{d}{d\tau}z_1=z_2, \qquad \frac{d}{d\tau}z_2=-\sin z_1-\alpha z_2.
$$

Example: Pendulum

$$
\dot{x} = f(x) = \begin{bmatrix} x_2 \\ -\frac{g}{\ell} \sin x_1 - \frac{k}{m} x_2 \end{bmatrix}
$$

Time & state rescaling:

A Let $\omega > 0$ so that $\tau = \omega t$

• Then
$$
\frac{d\tau}{dt} = \omega
$$
, i.e., $d\tau = \omega dt$.

o Let

$$
z_1 = \frac{x_1}{\beta} \quad \text{and}
$$

$$
z_2 = \frac{d}{d\tau} z_1 = \frac{dt}{d\tau} \dot{z}_1 = \frac{\dot{x}_1}{\omega \beta} = \frac{x_2}{\omega \beta}.
$$

o Then $rac{d}{dt}$

$$
\frac{d}{d\tau}z_2 = \frac{dt}{d\tau}\dot{z}_2 = \frac{1}{\omega}\frac{\dot{x}_2}{\beta\omega} = \frac{1}{\beta\omega^2} \left(-\frac{g}{\ell}\sin x_1 - \frac{k}{m}x_2 \right)
$$

$$
= \frac{1}{\beta\omega^2} \left(-\frac{g}{\ell}\sin(\beta z_1) - \frac{k\omega\beta}{m}z_2 \right)
$$

$$
= -\frac{g}{\ell\beta\omega^2}\sin(\beta z_1) - \frac{k}{m\omega}z_2.
$$

- If we define $\omega = k/m$, $\beta = 1$ and $\alpha = g/(\ell \omega^2)$ then $\frac{d}{d\tau}z_1 = z_2,$ $\frac{d}{d\tau}z_2 = -\alpha \sin z_1 - z_2.$
- Alternatively for $\omega=\sqrt{g/\ell},$ $\beta=1$ and $\alpha=k/(m\omega)$ we obtain

$$
\frac{d}{d\tau}z_1=z_2, \qquad \frac{d}{d\tau}z_2=-\sin z_1-\alpha z_2.
$$

- \rightarrow The rescaled system makes certain qualitative elements clearer.
- For example, observe that near $x = 0$, $\sin x \approx x$ and thus near the point $z_1 = z_2 = 0$, it holds that

$$
\frac{d}{d\tau}z_1=z_2, \qquad \frac{d}{d\tau}z_2=-z_1-\alpha z_2.
$$

 \rightarrow Close to the equilibrium $z_1 = z_2 = 0$, the pendulum and the mass-spring system have the same qualitative behavior.

Example: Pendulum

$$
\dot{x} = f(x) = \begin{bmatrix} x_2 \\ -\frac{g}{\ell} \sin x_1 - \frac{k}{m} x_2 \end{bmatrix}
$$

Time & state rescaling:

A Let $\omega > 0$ so that $\tau = \omega t$

• Then
$$
\frac{d\tau}{dt} = \omega
$$
, i.e., $d\tau = \omega dt$.

o Let

$$
z_1 = \frac{x_1}{\beta} \quad \text{and}
$$

$$
z_2 = \frac{d}{d\tau} z_1 = \frac{dt}{d\tau} \dot{z}_1 = \frac{\dot{x}_1}{\omega \beta} = \frac{x_2}{\omega \beta}.
$$

o Then $rac{d}{dt}$

$$
\frac{d}{d\tau}z_2 = \frac{dt}{d\tau}\dot{z}_2 = \frac{1}{\omega}\frac{\dot{x}_2}{\beta\omega} = \frac{1}{\beta\omega^2} \left(-\frac{g}{\ell}\sin x_1 - \frac{k}{m}x_2 \right)
$$

$$
= \frac{1}{\beta\omega^2} \left(-\frac{g}{\ell}\sin(\beta z_1) - \frac{k\omega\beta}{m}z_2 \right)
$$

$$
= -\frac{g}{\ell\beta\omega^2}\sin(\beta z_1) - \frac{k}{m\omega}z_2.
$$

• If we define
$$
\omega = k/m
$$
, $\beta = 1$ and $\alpha = g/(\ell \omega^2)$ then
\n
$$
\frac{d}{d\tau}z_1 = z_2, \qquad \frac{d}{d\tau}z_2 = -\alpha \sin z_1 - z_2.
$$

Alternatively for $\omega=\sqrt{g/\ell},$ $\beta=1$ and $\alpha=k/(m\omega)$ we obtain

$$
\frac{d}{d\tau}z_1=z_2, \qquad \frac{d}{d\tau}z_2=-\sin z_1-\alpha z_2.
$$

- \rightarrow The rescaled system makes certain qualitative elements clearer.
- For example, observe that near $x = 0$, $\sin x \approx x$ and thus near the point $z_1 = z_2 = 0$, it holds that

$$
\frac{d}{d\tau}z_1=z_2, \qquad \frac{d}{d\tau}z_2=-z_1-\alpha z_2.
$$

 \rightarrow Close to the equilibrium $z_1 = z_2 = 0$, the pendulum and the mass-spring system have the same qualitative behavior.

Reminder: While rescaling can make a system easier to deal with numerically or analytically, it is necessary to reverse the transformations to get back to the specific system of interest.

State Space Models: Comparison Functions

Definition (Class- P, K, K_{∞}, L, KL functions)

- A continuous function $\rho : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is said to be positive definite ($\rho \in \mathcal{P}^n$) if $\rho(0) = 0$ and $\rho(x) > 0 \,\forall x \in \mathbb{R}^n \backslash \{0\}.$
- For $\rho : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ we use $\rho \in \mathcal{P}$.
- $\bullet \ \alpha \in \mathcal{P}$ is said to be of class- \mathcal{K} ($\alpha \in \mathcal{K}$) if α strictly increasing.
- $\bullet \ \alpha \in \mathcal{K}$ is said to be of class- \mathcal{K}_{∞} ($\alpha \in \mathcal{K}_{\infty}$) if $\lim_{s\to\infty}\alpha(s)=\infty.$
- A continuous function $\sigma : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is said to be of class- \mathcal{L} ($\sigma \in \mathcal{L}$) if σ is strictly decreasing and $\lim_{s\to\infty}\sigma(s)=0.$
- A continuous function $\beta: \mathbb{R}_{\geq 0}^2 \to \mathbb{R}_{\geq 0}$ is said to be of class- KL ($\beta \in KL$) if for each fixed $t \in \mathbb{R}_{\geq 0}$, $\beta(\cdot,t) \in \mathcal{K}_{\infty}$ and for each fixed $s \in \mathbb{R}_{>0}$, $\overline{\beta}(s,\cdot) \in \mathcal{L}$.

 \rightsquigarrow K_∞ ⊂ K ⊂ P

Some properties:

- \bullet Class- \mathcal{K}_{∞} functions are invertible.
- **If** $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ then

 $\alpha(s) \doteq \alpha_1 (\alpha_2(s)) = \alpha_1 \circ \alpha_2(s) \in \mathcal{K}_{\infty}.$

If $\alpha \in \mathcal{K}, \sigma \in \mathcal{L}$ then $\alpha \circ \sigma \in \mathcal{L}$.

Section 2

[Examples of Dynamical Systems](#page-30-0)

Examples of dynamical systems: The inverted pendulum on a cart

Examples of dynamical systems: The inverted pendulum as a rocket

 $p:$ position, $-\theta:$ angle; $-\dot{p}:$ velocity; $-\dot{\theta}:$ angular velocity

Examples of dynamical systems: The inverted pendulum as a tower crane

How to define F to *stabilize* the pendulum/tower crane in the lower right position? How to define F to *drive* the pendulum/tower crane to a specific position?

Examples of dynamical systems: The inverted pendulum as a segway

How to define F to *drive* the pendulum/segway with a fixed velocity? (reference tracking)

Examples of dynamical systems: Local versus global stability properties

Introduction to Nonlinear Control

Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett School of Engineering, Australian National University, Canberra, Australia

Part I:

Chapter 1: Nonlinear Systems - Fundamentals 1.1 State Space Models

1.2 Examples of dynamical systems

