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Section 1

Stability Notions
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Stability Notions
Consider

ẋ = f(x), (with f(x) = 0) (1)

Definition (Stability)

The origin is (Lyapunov) stable for system (1) if, for any
ε > 0 there exists δ = δ(ε) > 0 such that if |x(0)| ≤ δ then,
for all t ≥ 0,

|x(t)| ≤ ε. (2)

0

δε

x2

x1

x(0)

Note that:
Stability is a property of an equilibrium

Solutions need to be forward complete
Simple example:

ẋ = 0, x(0) = x0 ∈ R ⇝ x(t) = x0

For any ε > 0, we can choose δ = ε so that

|x0| ≤ δ implies |x(t)| = |x0| ≤ δ = ε ⇝ stability

Equivalent Definition:
The origin is stable if there exists α ∈ K and an open
neighborhood around the origin D ⊂ Rn, such that

|x(t)| ≤ α(|x(0)|), ∀ t ≥ 0, ∀ x0 ∈ D. (3)

Definition (Instability)
The origin is unstable for system (1) if it is not stable.

Simple Example:

ẋ = x, x(0) = x0 ∈ R ⇝ x(t) = x0e
t
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ẋ = f(x), (with f(x) = 0) (1)

Definition (Stability)

The origin is (Lyapunov) stable for system (1) if, for any
ε > 0 there exists δ = δ(ε) > 0 such that if |x(0)| ≤ δ then,
for all t ≥ 0,

|x(t)| ≤ ε. (2)

0

δε

x2

x1

x(0)

Note that:
Stability is a property of an equilibrium

Solutions need to be forward complete
Simple example:
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Stability Notions (Stability/Instability Examples)

Stability Example: (Oscillator)[
ẋ1
ẋ2

]
=

[
0 1

−1 0

] [
x1
x2

]
=

[
x2

−x1

]
Solution:[

x1(t)
x2(t)

]
=

[
x2(0) sin(t) + x1(0) cos(t)

−x1(0) sin(t) + x2(0) cos(t)

]
=

[
cos(t) sin(t)

− sin(t) cos(t)

] [
x1(0)
x2(0)

]
In polar coordinates (r, θ):

r(t) =
√
x1(t)2 + x2(t)2

=
√
x1(0)2 + x2(0)2 = |x(0)| = r(0)

θ(t) = t

For any ε > 0 choose δ = ε.
Then for any |x(0)| = r(0) ≤ δ we have that

|x(t)| = r(t) = r(0) ≤ δ = ε

and so the origin is stable.

Instability Example: (uncoupled dynamics)[
ẋ1
ẋ2

]
=

[
1 0
0 −1

] [
x1
x2

]
=

[
x1

−x2

]
Solution: [

x1(t)
x2(t)

]
=

[
x1(0)et

x2(0)e−t

]
For initial conditions[

x1(0)
x2(0)

]
=

[
0
x2,0

]
, x2,0 ∈ R

it holds that x(t) → 0 for t→ ∞.

However, for initial conditions[
x1(0)
x2(0)

]
=

[
δ
x2,0

]
, δ ̸= 0, x2,0 ∈ R

it holds that |x(t)| → ∞ for t→ ∞.

Thus, the system is unstable
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Stability Notions (Attractivity)

Definition (Attractivity)

The origin is attractive for ẋ = f(x) if there exists δ > 0 such
that if |x(0)| < δ then

lim
t→∞

x(t) = 0. (4)

Note that:
Stability ⇏ attractivity
The origin of ẋ = 0 (with solution x(t) = x0) is stable
but not attractive.

Attractivity ⇏ stability
Consider

ẋ1 =
x21(x2 − x1) + x52

(x21 + x22)
(
1 + (x21 + x22)

2
)

ẋ2 =
x22(x2 − 2x1)

(x21 + x22)
(
1 + (x21 + x22)

2
) .

-1 -0.5 0 0.5 1

-1
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Stability Notions (Asymptotic stability & exponential stability

Definition (Asymptotic stability)

The origin is asymptotically stable for ẋ = f(x) if it is both
stable and attractive.

Definition (KL-stability)

System ẋ = f(x) is said to be KL-stable if there exists
δ > 0 and β ∈ KL such that if |x(0)| ≤ δ then for all t ≥ 0,

|x(t)| ≤ β(|x(0)|, t). (5)

Proposition

The origin is asymptotically stable if and only if it is
KL-stable.

Definition (Exponential stability)

The origin is exponentially stable for ẋ = f(x) if there exist
δ, λ,M > 0 such that if |x(0)| ≤ δ then for all t ≥ 0,

|x(t)| ≤M |x(0)|e−λt. (6)

Note that:
Exponential stability ⇒⇍ Asymptotic stability

Exponential stability corresponds to KL-stability
where β ∈ KL is of the form

β(s, t) =Mse−λt, s, t ≥ 0.

Exercise:
Show that the origin for ẋ = −x is exponentially
stable.

Show that the origin for ẋ = −x3 is asymptotically
stable but not exponentially stable.
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Stability Notions (Local versus global results)

Definition (Stability)

The origin is Lyapunov stable (or simply stable) for system ẋ = f(x) if, for any ε > 0 there exists δ > 0 (possibly dependent
on ε) such that if |x(0)| ≤ δ then, for all t ≥ 0, |x(t)| ≤ ε.

Definition (Global attractivity)
The origin is globally attractive for ẋ = f(x) if ∀ x(0) ∈ Rn,

lim
t→∞

x(t) = 0.

Definition (Global KL-stability)
System ẋ = f(x) is globally KL-stable if
|x(t)| ≤ β(|x(0)|, t) holds ∀ x(0) ∈ Rn and ∀ t ≥ 0.

Definition (Global exponential stability)
The origin is globally exponentially stable for ẋ = f(x) if
there exist M,λ > 0 such that

|x(t)| ≤M |x(0)|eλt ∀x(0) ∈ Rn, ∀t ≥ 0

Definition (Local attractivity)
The origin is locally attractive for ẋ = f(x) if there exists
γ > 0, so that ∀ x(0) ∈ Bγ(0),

lim
t→∞

x(t) = 0.

Definition (Local KL-stability)
System ẋ = f(x) is locally KL-stable if
|x(t)| ≤ β(|x(0)|, t) holds ∀ x(0) ∈ Bγ(0), γ > 0 and ∀t ≥ 0

Definition (Local exponential stability)
The origin is locally exponentially stable for ẋ = f(x) if there
exist M,λ > 0 and γ > 0 such that

|x(t)| ≤M |x(0)|eλt ∀x(0) ∈ Bγ(0), ∀t ≥ 0
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Stability Notions (Time-Varying Systems*)

So far: ẋ = f(x), x0 ∈ Rn, t ≥ t0 ≥ 0.
Exponential stability (depends on elapsed time):

|x(t)| ≤M |x(t0)|e−λ(t−t0), t ≥ t0.

(without loss of generality t0 = 0.)

Now consider:

ẋ = f(t, x), x(t0) ∈ Rn, t ≥ t0 ≥ 0. (7)

Example:

ẋ = −
x

t+ 1
, x(t0) ∈ R, t ≥ t0 ≥ 0.

with solution
x(t) = x(t0)

t0 + 1

t+ 1
.
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0.6

0.8

1

Definition (Stability)
The origin is stable for system (7) if, for any ε > 0 there
exists δ(t0) > 0 such that if |x(t0)| ≤ δ(t0) then, for all
t ≥ t0, |x(t)| ≤ ε.
If δ(t0) can be chosen independent of t0, then the origin is
uniformly stable for system (7).

For the example: Suppose we are given ε > 0. Then if

|x(t0)| ≤
ε

t0 + 1

.
= δ(t0)

then |x(t)| = |x(t0)| t0+1
t+1

≤ ε
t0+1

t0+1
t+1

≤ ε ∀ t ≥ t0.

Definition (KL-stability)
System (7) is said to be (globally) KL-stable if for each
t0 ≥ 0 there exists βt0 ∈ KL such that for all x(t0) ∈ Rn

and t ≥ t0, |x(t)| ≤ βt0 (|x(t0)|, t− t0).
If βt0 ∈ KL can be chosen independent of t0, then (7) is
said to be uniformly globally KL-stable.

In the example: βt0 (s, τ) = s t0+1
τ+t0+1
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ẋ = f(t, x), x(t0) ∈ Rn, t ≥ t0 ≥ 0. (7)

Example:
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Section 2

Comparison Principle
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Comparison Principle

Lemma
For any ρ ∈ P there exists β ∈ KL such that if y(·) is any
locally absolutely continuous function defined on some
interval [0, T ] with y(t) ≥ 0 for all t ∈ [0, T ], and if y(·)
satisfies the differential inequality

ẏ(t) ≤ −ρ(y(t))

for almost all t ∈ [0, T ] with y(0) = y0 ≥ 0 then

y(t) ≤ β(y0, t), ∀t ∈ [0, T ].

Lemma

Consider the scalar differential equation ψ̇ = g(ψ),
ψ(0) = ψ0 ∈ R. Let [0, T ) be the maximal interval of
existence of the solution ψ(t). Let ϕ(t) be a continuously
differentiable function that satisfies

ϕ̇(t) ≤ g(ϕ(t)), ϕ(0) ≤ ψ(0).

Then ϕ(t) ≤ ψ(t) for all t ∈ [0, T ).

Example
Consider:

ẋ = −(1 + x2)x, x(0) = a ∈ R (8)

Let

v(t) = x(t)2.

Then:

v̇(t) = 2x(t)ẋ(t) = −2x(t)2 − 2x(t)4

≤ −2x(t)2 = −2v(t).

Define:

ψ̇ = −2ψ, ψ(0) = a2, (9)

with solution
ψ(t) = a2e−2t.

Then:
|x(t)| =

√
v(t) ≤

√
ψ(t) = |a|e−t.

⇝ origin of (9) asymp. stable ⇒ origin of (8) is asymp. stable
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locally absolutely continuous function defined on some
interval [0, T ] with y(t) ≥ 0 for all t ∈ [0, T ], and if y(·)
satisfies the differential inequality
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ψ(0) = ψ0 ∈ R. Let [0, T ) be the maximal interval of
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differentiable function that satisfies

ϕ̇(t) ≤ g(ϕ(t)), ϕ(0) ≤ ψ(0).

Then ϕ(t) ≤ ψ(t) for all t ∈ [0, T ).

Example
Consider:

ẋ = −(1 + x2)x, x(0) = a ∈ R (8)

Let

v(t) = x(t)2.

Then:
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Section 3

Stability by Lyapunov’s Second Method
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Stability by Lypunov’s Second Method

Theorem (Lyapunov stability theorem)

Given ẋ = f(x) with f(0) = 0, and a domain D ⊂ Rn,
suppose there exists a continuously differentiable function
V : D → R≥0 and α1, α2 ∈ K such that, for all x ∈ D,

α1(|x|) ≤ V (x) ≤ α2(|x|) and ⟨∇V (x), f(x)⟩≤ 0.

Then the origin is stable. If, additionally, D = Rn and
α1, α2 ∈ K∞, then the origin is globally stable.

Theorem (Asymptotic stability theorem)
Given ẋ = f(x) with f(0) = 0, and a domain D ⊂ Rn,
suppose there exists a continuously differentiable function
V : D → R≥0, α1, α2 ∈ K, and ρ ∈ P such that, for all
x ∈ D,

α1(|x|) ≤ V (x) ≤ α2(|x|) and ⟨∇V (x), f(x)⟩≤ −ρ(|x|).

Then the origin is asymptotically stable. If, additionally,
D = Rn and α1, α2 ∈ K∞, then the origin is globally
asymptotically stable.

Theorem (Exponential stability theorem)
Given ẋ = f(x) with f(0) = 0, and a domain D ⊂ Rn,
suppose there exist a continuously differentiable function
V : D → R≥0 and constants λ1, λ2, c > 0 and p ≥ 1 such
that, for all x ∈ D

λ1|x|p ≤ V (x) ≤ λ2|x|p and ⟨∇V (x), f(x)⟩≤ −cV (x).

Then the origin is exponentially stable. If, additionally,
D = Rn, then the origin is globally exponentially stable.

Interpretation:
The time derivative of the “generalized energy
function” V does not increase over time

d
dt
V (x(t)) = ⟨∇V (x), f(x)⟩

Stability of the origin can be concluded without
knowledge of the solution.

The theorems represent a sufficient condition
(i.e., if ... then ...)
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Given ẋ = f(x) with f(0) = 0, and a domain D ⊂ Rn,
suppose there exist a continuously differentiable function
V : D → R≥0 and constants λ1, λ2, c > 0 and p ≥ 1 such
that, for all x ∈ D

λ1|x|p ≤ V (x) ≤ λ2|x|p and ⟨∇V (x), f(x)⟩≤ −cV (x).

Then the origin is exponentially stable. If, additionally,
D = Rn, then the origin is globally exponentially stable.

Interpretation:
The time derivative of the “generalized energy
function” V does not increase over time

d
dt
V (x(t)) = ⟨∇V (x), f(x)⟩

Stability of the origin can be concluded without
knowledge of the solution.

The theorems represent a sufficient condition
(i.e., if ... then ...)

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 2: Nonlinear Systems - Stability Notions 13 / 29



Stability by Lyapunov’s Second Method (Example)

Pendulum dynamics:

ẋ1 = x2

ẋ2 = − g
ℓ
sinx1 − k

m
x2,

Total energy: V : D → R≥0, (D = (−π
2
, π
2
)× R)

V (x) = mgℓ(1− cosx1) +
1
2
mℓ2x22

Time derivative of candidate Lyapunov function (for k = 0):

⟨∇V (x), f(x)⟩ =
[
mgℓ sinx1 mℓ2x2

] [ x2
− g

ℓ
sinx1

]
= mgℓx2 sinx1 −mgℓx2 sinx1 = 0 ≤ 0 ∀x ∈ D

(Show that α1, α2 ∈ K with

α1(|x|) ≤ V (x) ≤ α2(|x|)

for all x in a neighborhood around the origin exist.)

⇝ Stability of the origin follows.

m

ℓ
θ
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Stability by Lyapunov’s Second Method (Example)

Pendulum dynamics (focus on downward equilibrium):

ẋ1 = x2

ẋ2 = − g
ℓ
sinx1 − k

m
x2,

For k > 0 consider the function:

V (x) = 1
2

(
ax21 + bx1x2 + x22

)
+ g

ℓ
(1− cosx1),

for a, b > 0 to be determined.
We compute the inner product

⟨∇V (x), f(x)⟩=
[
ax1 + b

2
x2 + g

ℓ
sinx1

b
2
x1 + x2

]T[
x2

− g
ℓ
sinx1 − k

m
x2

]
= ax1x2 + b

2
x22 + g

ℓ
x2 sinx1

− b
2

g
ℓ
x1 sinx1 − b

2
k
m
x1x2 − g

ℓ
x2 sinx1 − k

m
x22

= − b
2

g
ℓ
x1 sinx1 −

(
k
m

− b
2

)
x22 +

(
a− b

2
k
m

)
x1x2.

Define a = b
2

k
m

and b = k
m

(to eliminate the cross term and ensure that the coefficient of
x22 is negative)

Then

⟨∇V (x), f(x)⟩ = − gk
2ℓm

x1 sinx1 − k
2m

x22<0 ∀x ∈ D\{0}

Check that V is positive definite:

V (x) = 1
2
xTPx+ g

ℓ
(1− cos(x1))

P =

[
a 1

2
b

1
2
b 1

]
=

[
1
2

(
k
m

)2
1
2

k
m

1
2

k
m

1

]
.

The matrix P is positive definite since

1
2

(
k
m

)2
> 0, 1

2

(
k
m

)2
− 1

4

(
k
m

)2
> 0

(leading principal minors are all positive)

⇝ V is a Lyapunov function and asymptotic stability follows
Advantages and disadvantages:

No solution of ẋ = f(x) necessary. ✓

How to find Lyapunov function V ?
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Stability by Lyapunov’s Second Method (Proof: Lyapunov function ⇒ asymptotic stability)

For simplicity, assume that D = Rn (i.e., we show global
asymptotic stability).
It holds that

α1(|x|) ≤ V (x) ≤ α2(|x|).

For ρ ∈ P, there exist α̂ ∈ K∞, σ ∈ L so that

ρ(|x|) > α̂(|x|)σ(|x|).

The decrease condition of the Lyapunov function implies:

⟨∇V (x), f(x)⟩ ≤ −ρ(|x|) ≤ −α̂(|x|)σ(|x|)

≤ −α̂(α−1
2 (V (x)))σ(α−1

1 (V (x)))

≤ −ρ̂(V (x))

where

ρ̂(s)
.
= α̂(α−1

2 (s))σ(α−1
1 (s)), ∀s ∈ R≥0, ρ̂ ∈ P.

Hence
d
dt
V (x(t)) = ⟨∇V (x(t)), f(x(t))⟩ ≤ −ρ̂(V (x(t)))

Then there exists β̂ ∈ KL (see Comparison Principle) so that

V (x(t)) ≤ β̂(V (x(0)), t), ∀t ≥ 0.

Then

α1(|x(t)|) ≤ V (x(t)) ≤ β̂(V (x(0)), t) ≤ β̂(α2(|x(0)|), t)

and with the KL function β(s, t) .
= α−1

1 (β̂(α2(s), t)) for all
s, t ∈ R≥0, global KL-stability of the system follows.
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Stability by Lyapunov’s Second Method (Proof: Lyapunov function ⇒ asymptotic stability)

0

δ

ε

∇V (x)

f(x)

V (x) = c

Given ε > 0, define

Bε = {x ∈ Rn : |x| ≤ ε}.

Without loss of generality, Bε ⊂ D
(otherwise shrink ε)

Let a = min|x|=ε V (x) and take c ∈ (0, a). Define

Ωc = {x ∈ D : V (x) ≤ c}

and observe that Ωc ⊂ Bε.
For x on the boundary of Ωc, ∇V (x) is the outward-facing
normal vector.
The decrease condition implies

⟨∇V (x), f(x)⟩ = |∇V (x)||f(x)| cos(θ) ≤ 0,

i.e., |θ| ≥ π
2

Thus Ωc is invariant; i.e., solutions starting in Ωc will always
remain in Ωc.
ε-δ game: We choose δ > 0 so that

Bδ = {x ∈ D : |x| ≤ δ} ⊂ Ωc

Therefore, if |x(0)| ≤ δ then x(0) ∈ Bδ ⊂ Ωc and, forward
invariance implies x(t) ∈ Ωc ⊂ Bε

Thus |x(t)| ≤ ε for all t ≥ 0 (i.e., stability).
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Stability by Lyapunov’s Second Method (Additional results)

Theorem (Rescaling of Lyapunov functions)
Let α ∈ K∞ be continuously differentiable on R>0 and
α′(s) > 0 for all s > 0. If V : Rn → R≥0 is a Lyapunov
function for ẋ = f(x), then W : Rn → R≥0 defined by

W (x)
.
= α(V (x)), ∀x ∈ Rn

is also a Lyapunov function for ẋ = f(x).

Theorem (Exp. decreasing Lyapunov functions)
If there exists a Lyapunov function for system ẋ = f(x)
satisfying

α1(|x|) ≤ V (x) ≤ α2(|x|) and ⟨∇V (x), f(x)⟩ ≤ −ρ(|x|).

then there exist a continuously differentiable function
W : Rn → R≥0 with W (0) = 0 and α̂1, α̂2 ∈ K∞ so that,
for all x ∈ Rn,

α̂1(|x|) ≤W (x) ≤ α̂2(|x|) and ⟨∇W (x), f(x)⟩ ≤ −W (x)

These results imply that
If we know one Lyapunov function we can construct
infinitely many

If we know one Lyapunov function we can construct a
Lyapunov function which decreases exponentially.
(This follows from ẇ ≤ −w ⇒ w(t) ≤ w(0)e−t,
comparison principle)

This does not imply that |x(t)| decreases exponentially
(i.e., it does not imply exponential stability)!
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(This follows from ẇ ≤ −w ⇒ w(t) ≤ w(0)e−t,
comparison principle)

This does not imply that |x(t)| decreases exponentially
(i.e., it does not imply exponential stability)!

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 2: Nonlinear Systems - Stability Notions 18 / 29



Stability by Lyapunov’s Second Method (Time-Varying Systems)

Theorem (Lyapunov uniform asymptotic stab.)
Given the time-varying system ẋ = f(t, x) with f(t, 0) = 0
for all t ≥ t0 ≥ 0. If there exist a continuously differentiable
function V : R≥0 ×D → R≥0, and functions α1, α2 ∈ K
and ρ ∈ P such that, for all x ∈ D and t ≥ t0 ≥ 0,

α1(|x|) ≤V (t, x) ≤ α2(|x|) and
d
dt
V (t, x) = ∇tV (t, x) + ⟨∇xV (t, x), f(t, x)⟩ ≤ −ρ(|x|)

then the origin is uniformly asymptotically stable.
If additionally D = Rn and α1, α2 ∈ K∞, then the origin is
uniformly globally asymptotically stable.

Compared to the time-invariant setting
time varying-Lyapunov functions need to be
considered

the bound V (t, x) ≤ α2(|x|) is restrictive
(This property is called decrescent)
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Stability by Lyapunov’s Second Method (Instability)

Theorem (Lyapunov theorem for instability)
Given ẋ = f(x) with f(0) = 0, suppose there exist a
continuously differentiable positive definite function
V : Rn → R≥0 and an ε > 0 such that

⟨∇V (x), f(x)⟩> 0

for all x ∈ Bε\{0}. Then the origin is unstable.
(In fact, the origin is completely unstable.)

Cannot be used to show that the origin of ẋ1 = x1 ẋ2 = −x2
is unstable. (Not uncommon that a system exhibits stable
behavior in some directions and unstable in others.)

Theorem (Chetaev’s theorem)
Given ẋ = f(x) with f(0) = 0, let V : Rn → R be a
continuously differentiable function with V (0) = 0 and
Or = {x ∈ Br(0)| V (x) > 0} ̸= ∅ for all r > 0. If for certain
r > 0,

⟨∇V (x), f(x)⟩> 0, ∀ x ∈ Or

then the origin is unstable.

0 x1

r

V (x) = 0
x2

V (x) > 0

ẋ1 = x1

ẋ2 = −x2
V (x) = 1

2
x21 − 1

2
x22

It holds that:
V (x) > 0 for all |x1| > |x2|
Or = {x ∈ Br(0)| V (x) > 0} ̸= ∅ for all r > 0

For all x ∈ Or (in fact, for all x ∈ R2\{0}):

⟨∇V (x), f(x)⟩ = [x1 − x2]

[
x1
−x2

]
= x21 + x22 > 0
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ẋ2 = −x2
V (x) = 1

2
x21 − 1

2
x22

It holds that:
V (x) > 0 for all |x1| > |x2|
Or = {x ∈ Br(0)| V (x) > 0} ̸= ∅ for all r > 0

For all x ∈ Or (in fact, for all x ∈ R2\{0}):

⟨∇V (x), f(x)⟩ = [x1 − x2]

[
x1
−x2

]
= x21 + x22 > 0

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 2: Nonlinear Systems - Stability Notions 20 / 29



Section 4

Region of Attraction
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The Region of Attraction (Estimates using Lyapunov Functions)

Definition (Region of attraction)
Consider ẋ = f(x) with an asymptotically stable eq.
f(xe) = 0, xe ∈ Rn. The region of attraction of xe:

Rf (x
e) = {x ∈ Rn| x(t) → xe as t→ ∞, x(0) = x} .

Properties:
The region of attraction is an open, connected,
invariant set

The calculation is far from trivial
Example: Consider the system

ẋ1 = −x2, ẋ2 = x1 + (x21 − 1)x2

with locally asymptotically stable equilibrium xe = 0.

Lemma (Young’s inequality)

Let p, q ∈ R>0 such that 1
p
+ 1

q
= 1. Then for any

x, y ∈ Rn the inequality xT y ≤ 1
p
|x|p + 1

q
|y|q is satisfied.

Example (Lyapunov function based estimate)
The function

V (x) = xTPx = xT
[ 3

2
− 1

2
− 1

2
1

]
x satisfies

0.69|x|2 ≤ λmin(P )|x|2 ≤ V (x) ≤ λmax(P )|x|2 ≤ 1.81|x|2

Moreover,
d
dt
V (x) = −x21 − x22 − x31x2 + 2x22x

2
1

≤ −x21 − x22 + x61 + 1
4
x22 + x41 + x42

= −x21
(
1− x21 − x41

)
− x22

(
3
4
− x22

)

which implies that V̇ (x) < 0 whenever

1− x21 − x41 > 0 and 3
4
− x22 > 0.

The constraints can be translated into the constraints

C = {x ∈ R2| − 0.79 < x1 < 0.79, −0.89 < x2 < 0.89}
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The Region of Attraction (Estimates using Lyapunov Functions), continued
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Properties:
The set C is not necessarily forward invariant

Thus, we need to define a forward invariant sublevel
set.

It holds that

{x ∈ R2 : xTPx ≤ λmin} ⊂ {x ∈ R2 : xT x ≤ 1},

{x ∈ R2 : xT x ≤ 0.792} ⊂ C

and thus {x ∈ R2| xTPx ≤ 0.792λmin} ⊂ C
We conclude {x ∈ R2| xTPx ≤ 0.792λmin} ⊂ Rf (0)
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The region of attraction (Estimates in R2 using time reversal dynamics)

Definition (Region of attraction)
Consider ẋ = f(x) with an asymptotically stable eq.
f(xe) = 0, xe ∈ Rn. The region of attraction of xe:

Rf (x
e) = {x ∈ Rn| x(t) → xe as t→ ∞, x(0) = x} .

Properties:
The region of attraction is an open, connected,
invariant set

The calculation is far from trivial
Example: Consider the system

ẋ1 = −x2, ẋ2 = x1 + (x21 − 1)x2

with locally asymptotically stable equilibrium xe = 0.

Lemma (Young’s inequality)

Let p, q ∈ R>0 such that 1
p
+ 1

q
= 1. Then for any

x, y ∈ Rn the inequality xT y ≤ 1
p
|x|p + 1

q
|y|q is satisfied.

Example
Rather than considering t→ ∞, consider simulating
backwards in time; i.e., take t→ −∞. To see the effect of
this, let τ = −t which implies dτ = −dt and

d
dτ
x(τ) = − d

dt
x(−t) = −f(x(−t)) = −f(x(τ)).

In other words, simulating the system backwards in time
merely requires changing the sign of the vector field.
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Section 5

Converse Theorems
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Converse Lyapunov Theorems

Theorem (Converse theorem; asymp. stability)
If the origin is uniformly globally asymptotically stable for
ẋ = f(t, x) then there exist a (smooth) function
V : R≥0 × Rn → R≥0, functions α1, α2 ∈ K∞, and a
function ρ ∈ P such that, for all x ∈ Rn and all t ≥ t0 ≥ 0,

α1(|x|) ≤ V (t, x) ≤ α2(|x|) and
∇tV (t, x) + ⟨∇xV (t, x), f(t, x)⟩ ≤ −ρ(|x|).

If f(t, x) is periodic in t, then there exists V (t, x)
periodic in t.

If f(t, x) = f(x) is time-invariant, then there exists
V (t, x) = V (x) independent of t.

⇝ Based on this result, is it easy to find Lyapunov
functions?

Unfortunately not! Converse results for exponential stability
rely on

V (x) =

∫ ∞

0
|x(τ)|eτdτ, x = x(0) ∈ Rn
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Section 6

Invariance Theorems
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Invariance Theorems (Krasovskii-LaSalle Invariance Theorem; Example 1)

Theorem (Krasovskii-LaSalle Invariance Thm.)
Suppose there exists a positive definite and continuously
differentiable function V : Rn → R≥0 such that, for all
x ∈ Rn,

⟨∇V (x), f(x)⟩≤ 0.

Let S = {x ∈ Rn|⟨∇V (x), f(x)⟩ = 0} and suppose no
solution other than the origin can stay identically in S. Then
the origin is globally asymptotically stable.

Recall:
Pendulum dynamics

ẋ1 = x2

ẋ2 = − g
ℓ
sinx1 − k

m
x2

Total energy

V (x) = mgℓ(1− cosx1) +
1
2
mℓ2x22

Application of the Theorem:
Time derivative of total energy:

⟨∇V (x), f(x)⟩ = −kℓ2x22.

It holds that

⟨∇V (x), f(x)⟩ = 0 whenever
[
x1
x2

]
∈ R× {0}.

⇝ (Thus, asymptotic stability cannot be concluded from
the Lyapunov Theorem)

(Let D define a neighborhood around the origin)
Define

S = {x ∈ D : x2 = 0}.

Note that
▶ for x2 = 0 to remain at zero, ẋ2 = 0 needs to be

satisfied.
▶ with the dynamics, this implies x1 = 0 and
ẋ1 = 0

Hence, the only solution that can remain in S is
x1(t) = 0, x2(t) = 0.
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Invariance Theorems (Krasovskii-LaSalle Invariance Theorem; Example 2)

Theorem (Krasovskii-LaSalle Invariance Thm.)
Suppose there exists a positive definite and continuously
differentiable function V : Rn → R≥0 such that, for all
x ∈ Rn,

⟨∇V (x), f(x)⟩≤ 0.

Let S = {x ∈ Rn|⟨∇V (x), f(x)⟩ = 0} and suppose no
solution other than the origin can stay identically in S. Then
the origin is globally asymptotically stable.

m

y

Recall: mÿ + bẏ|ẏ|+ k0y + k1y3 = 0.

State space model (x1 = y and x2 = ẏ):

ẋ1 = x2

ẋ2 = 1
m

(
−k0x1 − k1x

3
1 − bx2|x2|

)
.

Consider the candidate Lyapunov function

V (x) = k0
2m

x21 + k1
4m

x41 + 1
2
x22.

Then

⟨∇V (x), f(x)⟩

= k0
m
x1x2 + k1

m
x31x2 − k0

m
x1x2 − k1

m
x31x2 − b

m
x22|x2|

= − b
m
x22|x2| ≤ 0.

and ⟨∇V (x), f(x)⟩ = 0 for all x1 ∈ R, x2 = 0

Define S = {x ∈ R2| x2 = 0}.

In S, x2 = 0 and ẋ2 = 0 to stay in S.

Thus ẋ1 = 0 and

0 = − 1
m
(k0x1 + k1x

3
1) ⇒ x1 = 0 or x1 = ±j

√
k0
k1
.

Therefore, x = 0 is asymptotically stable.
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