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Section 1

Stability Notions
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Stability Notions

Consider

&= f(z), (with f(z) =0) (1)

Definition (Stability)

The origin is (Lyapunov) stable for system (1) if, for any
€ > 0 there exists § = d(¢) > 0 such that if |z(0)| < § then,
forallt > 0,

lz(®)| < e. ()
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Stability Notions

Consider

&= f(z),  (with f(z) =0) (1)

Definition (Stability)

The origin is (Lyapunov) stable for system (1) if, for any
€ > 0 there exists § = d(¢) > 0 such that if |z(0)| < § then,
forallt > 0,

lz(t)] <e. ()
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Note that:
@ Stability is a property of an equilibrium
@ Solutions need to be forward complete
Simple example:

=0, z(0) =20 €R ~ z(t)=xo
For any € > 0, we can choose ¢ = ¢ so that

|zg] <0 implies |z(t)] =|zo| <6 =€ ~» stability
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forallt > 0,
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Introduction to Nonlinear Control

Note that:
@ Stability is a property of an equilibrium
@ Solutions need to be forward complete
Simple example:
=0, z(0) =20 €R ~ z(t)=xo
For any € > 0, we can choose ¢ = ¢ so that
|zg] <0 implies |z(t)] =|zo| <6 =€ ~» stability

Equivalent Definition:
The origin is stable if there exists « € K and an open
neighborhood around the origin D C R", such that

o(®) < a(le(O)), V>0, VageD.  (3)
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Note that:
@ Stability is a property of an equilibrium
@ Solutions need to be forward complete
Simple example:

=0, z(0) =20 €R ~ z(t)=xo
For any € > 0, we can choose ¢ = ¢ so that
|zo| <6 implies |z(t)| =|zo] < d =€ ~ stability

Equivalent Definition:
The origin is stable if there exists « € K and an open
neighborhood around the origin D C R", such that

o(®) < a(le(O)), V>0, VageD.  (3)

Definition (Instability) J

The origin is unstable for system (1) if it is not stable.

Simple Example:

T =z, z(0) =20 ER  ~ 2(t) = 2pe
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Stability Notions (Stability/Instability Examples)

Stability Example: (Oscillator)

R ERE e
Solution:
zi(t) | _ [ 22(0)sin(t) 4 21(0) cos(t)
[ z2(t) } { —x1(0) sin(t) + 22(0) cos(t) ]

0
0
[ e ][ 28]

In polar coordinates (r, 6):
r(t) = \/z1(t)? + 22(t)?
= y/1(0)? + 22(0)* = |=(0)| = r(0)
o(t) =t

For any € > 0 choose § = ¢.
Then for any |z(0)| = r(0) < § we have that

lz()| =r(t) =r(0) <d=¢
and so the origin is stable.
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Stability Notions (Stability/Instability Examples)

Stability Example: (Oscillator) Instability Example: (uncoupled dynamics)
T1 | 0 1 1 | T2 T | |1 0 Ty | T
To | -1 0 ) | -2 To 10 -1 X9 T —xo
Solution: Solution:
z1(t) | _ x2(0) sin(¢) + z1(0) cos(t) z1(t) | _ [ z1(0)et
z2(t) | — | —x1(0)sin(¢t) + x2(0) cos(t) z2(t) |~ | x2(0)e”?
. cos(t) sin(¢) z1(0) o .
T | —sin(t) cos(t) x2(0) @ For initial conditions
; . z1(0) | _ 0
In polar coordinates (r, 0): [ 22(0) ] = [ 2.0 ] ) z2,0 €ER
r(t) = \/21(t)? + 22(¢)? it holds that (t) — 0 for t — oo.
= \/21(0)2 + 22(0)2 = |2(0)| = r(0) @ However, for initial conditions
_ z1(0) | 19
o(t)=t |:x2(0) :|_|:332,0j|7 0#0, z20€R
For any € > 0 choose § = ¢. )
Then for any |z(0)| = r(0) < & we have that it holds that |z(¢)] — oo for ¢ — oc.
le(t) = r(t) = r(0) < 6 = & @ Thus, the system is unstable

and so the origin is stable.
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Stability Notions (Attractivity)

Definition (Attractivity)

The origin is attractive for & = f(x) if there exists § > 0 such
that if |z(0)| < 6 then

lim z(t) = 0. (4)

t—oo
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Stability Notions (Attractivity)

Definition (Attractivity)

The origin is attractive for & = f(x) if there exists § > 0 such 1
that if |z(0)| < 6 then i
tl_l)ngo z(t) = 0. (4) 0.6
0.4
Note that: o2f
@ Stability » attractivity o
The origin of = 0 (with solution z(t) = zo) is stable 02
but not attractive. 04 |- -
@ Attractivity = stability 06
Consider 08
= 22 (w2 — 1) + 23 At M
(2% +23) (1+ (21 +23)?)
2
—2
o x2(ac2 71)

T (@2 +a2) (1+ @2 +22)?)
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Stability Notions (Asymptotic stability & exponential stability

Definition (Asymptotic stability)

The origin is asymptotically stable for z = f(z) if it is both
stable and attractive.

Definition (KL-stability)
System z = f(x) is said to be KL-stable if there exists
6 > 0and 8 € KL such that if |#(0)| < & then for all £ > 0,

lz(t)] < B(lz(0)], 1) (5)

4

Proposition

The origin is asymptotically stable if and only if it is
K L-stable.
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Stability Notions (Asymptotic stability & exponential stability

Definition (Asymptotic stability)

The origin is asymptotically stable for z = f(z) if it is both
stable and attractive.

Definition (KL-stability)

System z = f(x) is said to be KL-stable if there exists
8 > 0and 8 € KL such that if |2(0)| < & then for all t > 0,

lz(t)] < B(lz(0)], 1) (5)

v

Proposition

The origin is asymptotically stable if and only if it is
KCL-stable.
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Definition (Exponential stability)

The origin is exponentially stable for & = f(x) if there exist
4, A, M > 0 such that if |z(0)| < ¢ then for all ¢t > 0,

|z(t)] < Mlz(0)]e". (6)

Note that:
@ Exponential stability 2 Asymptotic stability

@ Exponential stability corresponds to K.L-stability
where 8 € KL is of the form

B(s,t) = Mse™*, s,t>0.
Exercise:
@ Show that the origin for ¢ = —z is exponentially
stable.
@ Show that the origin for & = —a3 is asymptotically

stable but not exponentially stable.
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Stability Notions (Local versus global results)
Definition (Stability)

The origin is Lyapunov stable (or simply stable) for system @ = f(x) if, for any e > 0 there exists 6 > 0 (possibly dependent
on ¢) such that if [(0)| < é then, forall ¢ > 0, |z(t)| < e.

Definition (Global attractivity) Definition (Local attractivity)
The origin is globally attractive for & = f(z) if V 2(0) € R™, | The origin is locally attractive for & = f(x) if there exists
lim 2(t) = 0. v > 0, so that V z(0) € B,(0), lim 2(t) = 0.
t—o0 t—o0
V. <
Definition (Global K £-stability) Definition (Local K £-stability)
System = = f(x) is globally KL-stable if System & = f(z) is locally KL-stable if
lz(t)| < B(|z(0)],¢) holds V z(0) € R™ and V ¢ > 0. ) |z(¢)] < B(]z(0)],t) holds V z(0) € B+(0),y > 0and V¢ >0
v
Definition (Global exponential stability) Definition (Local exponential stability)
The origin is globally exponentially stable for & = f(z) if The origin is locally exponentially stable for z = f(z) if there
there exist M, A > 0 such that exist M, A > 0 and v > 0 such that
lz(t)] < M|z(0)|e*t  Vz(0) € R, Vt>0 lz(t)] < M|z(0)|eX  Vz(0) € B,(0), Vt>0
< v
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Stability Notions (Time-Varying Systems®)

Sofar: z = f(z), zo € R, t > to > 0.
Exponential stability (depends on elapsed time):

lz(t)] < Mlaz(to)|le 1) ¢ > 1.
(without loss of generality tg = 0.)
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Stability Notions (Time-Varying Systems®)

Sofar: z = f(z), zo € R, t > to > 0.
Exponential stability (depends on elapsed time):

lz(t)] < Mlaz(to)|le 1) ¢ > 1.

(without loss of generality tg = 0.)
Now consider:

@)

z = f(t,z), z(to) €R™, t > to > 0.
Example:
xX
&=———, xz(to) €ER, t >ty > 0.
P71 (to) >to >
with solution to + 1
0
x(t) = x(t .
() =a(to) 3
1 1
—z(0) =1
08 —z(10) =1 08
AOG ’?06
10,4 \;04
0.2 0.2
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Stability Notions (Time-Varying Systems®)

Sofar: z = f(z), zo € R, t > to > 0.
Exponential stability (depends on elapsed time):

lz(6)] < Mla(to)le™ (=10,

(without loss of generality tg = 0.)
Now consider:

t > top.

@)

= f(t,x), z(to) €R™, t >ty > 0.
Example:
gb:—Hil, z(to) ER, t > to > 0.

with solution to 4 1

z(t) = z(to) P
1 1
0.8 0.8
AOS /?06
%M %04
0.2 0.2
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Definition (Stability)

The origin is stable for system (7) if, for any € > 0 there
exists d(to) > 0 such that if |z(to)| < (o) then, for all

t 2> to, |z(t)| < e.

If 5(t0) can be chosen independent of ¢o, then the origin is
uniformly stable for system (7).

For the example: Suppose we are given € > 0. Then if
to)] < = §(t
j2(t0)] < 1 = 6(t0)

t 1 t 1
then [2(1)] = |a(to)| &L < ;= ]

<eVt2>tp.
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Stability Notions (Time-Varying Systems®)

Sofar: z = f(z), zo € R, t > to > 0.
Exponential stability (depends on elapsed time):

l2(8)] < Mlz(to)|e™ (710,

(without loss of generality to = 0.)
Now consider:

t > to.

@)

z = f(t,z), z(to) € R™, t > top > 0.
Example:
xX
r=—-——-" z(tg) E R, t > tg > 0.
Tl (to) ER, t > tg >
with solution to + 1
z(t) = z(to) ~——.
t+1
1 1
0.8 0.8
AOS AOS
¥ =
04 04
0.2 0.2
00 20 40 60 80 100 0O 20 40 60 80 100
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Definition (Stability)

The origin is stable for system (7) if, for any € > 0 there
exists d(to) > 0 such that if |z(to)| < (o) then, for all

t 2> to, |z(t)| < e.

If 5(t0) can be chosen independent of ¢o, then the origin is
uniformly stable for system (7).

For the example: Suppose we are given € > 0. Then if
to)| < = (¢
j2(t0)] < 1 = 6(t0)

t 1 t 1
then [2(1)] = |a(to)| &L < ;= ]

Definition (KL£-stability)

System (7) is said to be (globally) K L-stable if for each
to > 0 there exists 3;, € KL such that for all z(¢¢) € R™
andt > to, |z(t)| < Bty (|z(to)l, t — to).

If B, € KL can be chosen independent of tg, then (7) is
said to be uniformly globally KL-stable.

<eVt2>tp.

to+1
T+to+1
Ch. 2: Nonlinear Systems - Stability Notions
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Section 2

Comparison Principle
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Comparison Principle

Lemma

For any p € P there exists 8 € KL such that if y(-) is any
locally absolutely continuous function defined on some
interval [0, T'] with y(¢t) > 0 for allt € [0,T1], and if y(-)
satisfies the differential inequality

y(t) < —p(y(t))
for almost all t € [0, T'] with y(0) = yo > 0 then

y(t) < Byo,t), Vte[0,T).

Lemma

Consider the scalar differential equation ) = g(1)),

$(0) = 1o € R. Let [0, T) be the maximal interval of
existence of the solution ¢ (t). Let ¢(t) be a continuously
differentiable function that satisfies

o(t) < g(8(2),  ¢(0) < (0).

Then ¢(t) < 4(t) forallt € [0,T).
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Comparison Principle

Lemma

For any p € P there exists 8 € KL such that if y(-) is any
locally absolutely continuous function defined on some
interval [0, T'] with y(¢t) > 0 for allt € [0,T1], and if y(-)
satisfies the differential inequality

y(t) < —p(y(t))
for almost all t € [0, T'] with y(0) = yo > 0 then

y(t) < Byo,t), Vte[0,T).

Lemma

Consider the scalar differential equation ) = g(1)),

$(0) = 1o € R. Let [0, T) be the maximal interval of
existence of the solution (t). Let ¢(t) be a continuously
differentiable function that satisfies

o(t) < g(o(1),  #(0) < (0).
Then ¢(t) < 4(t) forallt € [0,T).

Example
Consider:

a'v:—(1+x2)m, z(0)=a €R
Let

v(t) = z(t)2.

Then:

0(t) = 22(t)i(t) = —2x(t)? — 2x(t)*

< —2z(t)? = —20(2).

@)

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 2: Nonlinear Systems - Stability Notions

11/29



Comparison Principle

Lemma Example
For any p € P there exists 3 € KL such that ify(-) is any Consider:
locally absolutely continuous function defined on some . 2 -
interval [0, T) with y(t) > 0 for allt € [0, T], and if y(-) ==l efe, ()= aeR (8)
satisfies the differential inequality Let
9(t) < —p(y(t)) v(t) = x(t)>.
for almost all t € [0, T] with y(0) = yo > 0 then Then:
y(t) < B(yo,t), Vte|[0,T] o(t) = 2z (t)i(t) = —2x(t)? — 2x(t)*
< —2z(t)? = —20(2).
Lemma Define:
Consider the scalar differential equation ) = g(1)), b=-2y, P(0)=d’ )
1(0) = 1o € R. Let[0,T) be the maximal interval of with solution
existence of the solution (t). Let ¢(t) be a continuously p(t) = a?e 2.
differentiable function that satisfies h
. en:
B(t) < g(é(t), ¢(0) < (0). lz(t)| = Vo(t) < Vab(t) = |ale™?.
Then ¢(t) < 4(t) forallt € [0,T).
v
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Comparison Principle

Lemma

For any p € P there exists 8 € KL such that if y(-) is any
locally absolutely continuous function defined on some
interval [0, T'] with y(¢t) > 0 for allt € [0,T1], and if y(-)
satisfies the differential inequality

y(t) < —p(y(t))
for almost all t € [0, T'] with y(0) = yo > 0 then

y(t) < Byo,t), Vte[0,T).

Lemma

Consider the scalar differential equation v = g(1)),
1¥(0) = ¢o € R. Let[0,T) be the maximal interval of
existence of the solution (t). Let ¢(t) be a continuously

differentiable function that satisfies
B(t) < g(8(t), $(0) < (0).

Then ¢(t) < 4(t) forallt € [0,T).

Example
Consider:
i=—-(1+z%)z, 20)=acR (8)
Let
v(t) = z(t)2.
Then:
0(t) = 22(t)i(t) = —2x(t)? — 2x(t)*
< —2z(t)? = —20(2).
Define:
b=-2y, P(0)=d’ )
with solution
p(t) = a?e 2.
|z(t)] = Vo(t) < V(&) = |ale™
~> origin of (9) asymp. stable = origin of (8) is asymp. stable)
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Section 3

Stability by Lyapunov’s Second Method
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Stability by Lypunov’s Second Method

Theorem (Lyapunov stability theorem)

Given & = f(z) with f(0) = 0, and a domain D C R",
suppose there exists a continuously differentiable function
V:D = Rx¢ and ai,az € K such that, for all = € D,

o1 (lz]) < V(e) S ao(lz]) and  (VV(z), f(x))< 0.

Then the origin is stable. If, additionally, D = R™ and
a1, a2 € Koo, then the origin is globally stable.

P. Braun & C.M. Kellett (ANU)
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Stability by Lypunov’s Second Method

Theorem (Lyapunov stability theorem)

Given & = f(x) with f(0) = 0, and a domain D C R™,
suppose there exists a continuously differentiable function
V:D = Rx¢ and ai,az € K such that, for all = € D,

ai(lz]) S V(z) <az(jz]) and  (VV(z), f(2))< 0.

Then the origin is stable. If, additionally, D = R™ and
a1, a2 € Koo, then the origin is globally stable.

Theorem (Asymptotic stability theorem)

Given & = f(x) with f(0) = 0, and a domain D C R",
suppose there exists a continuously differentiable function
ViD= Ryp, a1,a2 € K, and p € P such that, for all

z €D,

a1(lz]) < V(z) < ex(lz]) and (VV(z), f(2))< —p(|z]).

Then the origin is asymptotically stable. If, additionally,
D =R" and a1, a2 € Koo, then the origin is globally
asymptotically stable.
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Stability by Lypunov’s Second Method

Theorem (Lyapunov stability theorem)

Given & = f(x) with f(0) = 0, and a domain D C R™,
suppose there exists a continuously differentiable function
V:D = Rxg andai,az € K such that, for all z € D,

o1 (lz]) < V(e) S ao(lz]) and  (VV(z), f(x))< 0.

Then the origin is stable. If, additionally, D = R™ and
a1, a2 € Koo, then the origin is globally stable.

Theorem (Asymptotic stability theorem)

Given & = f(x) with f(0) = 0, and a domain D C R",
suppose there exists a continuously differentiable function
ViD= Ryp, a1,a2 € K, and p € P such that, for all

z €D,

a1(lz]) < V(z) < ex(lz]) and (VV(z), f(2))< —p(|z]).

Then the origin is asymptotically stable. If, additionally,
D =R" and a1, a2 € Koo, then the origin is globally
asymptotically stable.
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Theorem (Exponential stability theorem)

Given ¢ = f(x) with f(0) = 0, and a domain D C R",
suppose there exist a continuously differentiable function
V : D — Rsq and constants \1,\2,c > 0 and p > 1 such
that, for all x € D

AMzlP < V(z) < X2lz|? and (VV (), f(z))< —cV (z).

Then the origin is exponentially stable. If, additionally,
D = R", then the origin is globally exponentially stable.
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Stability by Lypunov’s Second Method

Theorem (Lyapunov stability theorem)

Given & = f(x) with f(0) = 0, and a domain D C R™,
suppose there exists a continuously differentiable function
V:D = Rxg andai,az € K such that, for all z € D,

o (|z]) < V(z) < aa(|z]) (VV(2), f(z))< 0.

Then the origin is stable. If, additionally, D = R™ and
a1, a2 € Koo, then the origin is globally stable.

and

Theorem (Asymptotic stability theorem)

Given & = f(x) with f(0) = 0, and a domain D C R",
suppose there exists a continuously differentiable function
ViD= Ryp, a1,a2 € K, and p € P such that, for all

z €D,

a1(lz]) < V(z) < ex(lz]) (VV(z), f(@)< —p(lz)-

Then the origin is asymptotically stable. If, additionally,
D =R" and a1, a2 € Koo, then the origin is globally
asymptotically stable.

and

V.
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Theorem (Exponential stability theorem)

Given ¢ = f(x) with f(0) = 0, and a domain D C R",
suppose there exist a continuously differentiable function
V : D — Rsq and constants \1,\2,c > 0 and p > 1 such
that, for all x € D

AMzlP < V(z) < X2lz|? and (VV (), f(z))< —cV (z).

Then the origin is exponentially stable. If, additionally,
D = R", then the origin is globally exponentially stable.

Interpretation:

@ The time derivative of the “generalized energy
function” V' does not increase over time

FV(@(t) = (VV(2), f(z))
@ Stability of the origin can be concluded without
knowledge of the solution.

@ The theorems represent a sufficient condition
(i.e., if ... then ...)
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Stability by Lyapunov’s Second Method (Example)

Pendulum dynamics:
T1 = X2
To = —% sinzy — %xg,
Total energy: V : D — Ry, (D = (-5, 5) X R)
V(z) = mgl(l — cosz1) + %mézm%

Time derivative of candidate Lyapunov function (for k& = 0):

(TVE), £ = [mgtsines mier] | g, |

= mglzrosinz] — mglzrosinz; =0<0 Vx €D
(Show that a1, o € K with
a1(jz)) < V() < an(jz])
for all z in a neighborhood around the origin exist.)

~- Stability of the origin follows.
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Stability by Lyapunov’s Second Method (Example)

Pendulum dynamics (focus on downward equilibrium):

1 = x2
@y =—9sinz — %mg,

For k£ > 0 consider the function:

V(z) = (aa:l + brixo + m2) + %(1 —cosx1),

for a, b > 0 to be determined.
We compute the inner product

b g T,
ar1 + 52 + Zsinzy x2
VV(z T 2 ¢
UCES R A EPIR,
=azxixo + %x% + Jxasinzy

_bg i _Qﬁ _ 9 _ k2
5 ¢T1sinay - T1T2 [3:2 sin z1 gl

b . k bk
= —5%xisinzy — (E - 7) 2—1—( - 7—) zT1T2.
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Stability by Lyapunov’s Second Method (Example)

Pendulum dynamics (focus on downward equilibrium): Then

1 = x2 (VV(z), f(z)) = 2em1:1 sinz, —

@y =—9sinz — %mg,

For k > 0 consider the function:
V(z) = (aa:l + brixo + m2) + %(1 —cosx1),

for a, b > 0 to be determined.
We compute the inner product

b g T,
ar1 + 5x2 + 5 sinzy xr2
OV S g el -
21 + xo E sinxy; — o x2
2 .
=azxixo + %xQ + Jxasinzy
— g%xl sinz] — Qﬁxlxz — ng sinzy — ﬁx%
=29z sinz; — (% - 7) x5 + (a - Qﬁ) T1%2.
Define a=2%2%E and b=2L
(to eliminate the cross term and ensure that the coefficient of

32 is negative)

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control
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Stability by Lyapunov’s Second Method (Example)

Pendulum dynamics (focus on downward equilibrium): Then
T1 =22 (VV(2), f(z)) = — 2 21 sinzy — 23 <0 Vo € D\{0}
@y =—9sinz — %mg,

Check that V' is positive definite:
For k > 0 consider the function:

V(z) = (a:cl +briz + 23) + 2(1 —cosx1),

for a, b > 0 to be determined. p_| @ ib _
We compute the inner product 1p 1

V(z) = %CETPLL‘ + %(1 — cos(x1))

1 1k
2 5 1
T,
axry + 562 +4 7 sinzi T2 The matrix P is positive definite since
(VV (@), f@)= “ T2 9 man k P
1+ xz 7sinTy — ~-x2 2 9 2
1(k 1(k 1(k
e g TORRTORIOR
= ar1x2 + 325 + Jxasinz m m m
_bg b9 sina — Qﬁxlxz — Saysina — ﬁxg (leading principal minors are all positive)
:—g%xlsinx1—<%—7> 2—|—(a—b£) 172
Define a=2%% and b=1L
m m

(to eliminate the cross term and ensure that the coefficient of
32 is negative)
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Stability by Lyapunov’s Second Method (Example)

Pendulum dynamics (focus on downward equilibrium): Then
T1 =22 (VV(2), f(z)) = — 2 21 sinzy — 23 <0 Vo € D\{0}
@y =—9sinz — %mg,

Check that V' is positive definite:
For k > 0 consider the function:

V(z) = (a:cl +briz + 23) + 2(1 —cosx1),

for a, b > 0 to be determined. p_| @ ib _
We compute the inner product 1y 1

V(z) = %CCTPLL‘ + %(1 — cos(x1))

1k
. 2 5 1
ary + xz + & sinay T2 The matrix P is positive definite since
(Ve fa] | |osamr 2] P
331 + 332 7 sinxp m:ﬂg 2 2 5
3(m) >0 () iG>0
= az172 + 223 + Sy sina 2\m ’ 2\m 4 \m
_bg 5061 sinzy — Qﬁxlxz _ Zm sinz; — ﬁxg (leading principal minors are all positive)
= 295 sinay — (% _ ,> 22+ (a — bﬁ) T1To. ~~ V is a Lyapunov function and asymptotic stability follows
. - . Advantages and disadvantages:
Define a=37 and b=y - @ No solution of & = f(z) necessary. v
(to eliminate the cross term and ensure that the coefficient of . .
2 is negative) @ How to find Lyapunov function V'?
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Stability by Lyapunov’s Second Method (Proof: Lyapunov function = asymptotic stability)

For simplicity, assume that D = R" (i.e., we show global Then

asyrplatic stabiliy). ar(a(®)) < V((t) < BV (@(0)),) < Blaz(|=(0)]), 1)

ai(z]) < V(z) < az(|z|). and with the KL function B(s,t) = afl(ﬂ(ag(s),t)) for all
. B - s,t € R>q, global K L-stability of the system follows.
For p € P, there exist & € K, o € L so that =

p(lzl) > a(lz)o(|z]).
The decrease condition of the Lyapunov function implies:
(VV(2), f(2)) < —p(lz]) < —a(lz])o(|z|)
< —a(ay ' (V(@)o(ar ' (V(2)

< —p(V(x)
where
p(s) = a(ay ' (s))o(ar ' (s)), Vs€Rso,  pEP.
Hence

£V (1) = (VV(2(®)), fx(t)) < =p(V(2(t)))
Then there exists 3 € KL (see Comparison Principle) so that

V((t)) < B(V(2(0)),), Vt>0.
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Stability by Lyapunov’s Second Method (Proof: Lyapunov function = asymptotic stability)

Let a = min|,|—. V/(x) and take c € (0, a). Define
Qc={zeD:V(z) <c}

and observe that Q. C B-.

For = on the boundary of Q., VV(z) is the outward-facing

normal vector.
The decrease condition implies

(VV(2), f(z)) = [VV(2)]|f ()] cos(d) < O,

ie, 0] >3

Thus Q. is invariant; i.e., solutions starting in Q. will always
remain in Qc.

e-6 game: We choose § > 0 so that

Bs={zxeD:|z| <5} CQ

) ) Therefore, if |z(0)] < ¢ then z(0) € Bs C Q. and, forward
Given e > 0, define invariance implies z(t) € Q. C Be

Be = {x e R": || < e}. Thus |z(t)| < e forallt > 0 (i.e., stability).
To prove asymptotic stability we use

(VV (@), (@) = [VV(@)[|f(2)|cos(®) <0 ifa#0

Without loss of generality, B. C D
(otherwise shrink )
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Stability by Lyapunov’s Second Method (Additional results)

Theorem (Rescaling of Lyapunov functions)

Let o € Koo be continuously differentiable on R~y and
a/(s)>0foralls > 0. IfV : R™ — Rx Is a Lyapunov
function for & = f(x), then W : R™ — R defined by

W(z) = a(V(z)), VxecR"
is also a Lyapunov function for & = f(z).

Theorem (Exp. decreasing Lyapunov functions)

If there exists a Lyapunov function for system & = f(x)
satisfying

ai(lz]) S V() < az(|z]) and (VV(z), f(z)) < —p(|z]).

then there exist a continuously differentiable function
W :R™ — Rxq withW(0) = 0 and &1, &2 € Koo so that,
for all z € R™,

ail{|zl)is Wils)is ao([= i ardS V(@) (o)) = W)
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Stability by Lyapunov’s Second Method (Additional results)

Theorem (Rescaling of Lyapunov functions)

Let v € Koo be continuously differentiable on R~ and
a/(s)>0foralls > 0. IfV : R™ — Rx Is a Lyapunov
function for & = f(x), then W : R™ — R defined by

W(z) = a(V(z)), VxecR"
is also a Lyapunov function for & = f(z).

Theorem (Exp. decreasing Lyapunov functions)

If there exists a Lyapunov function for system & = f(x)
satisfying

a1(|z]) S V() < ax(lz]) and (VV(z), f(z)) < —p(|z)).
then there exist a continuously differentiable function

W :R™ — Rxq withW(0) = 0 and &1, &2 € Koo so that,
for all z € R™,

dn (|z]) < W(z) < éz(|=]) and

(VW (), f(z)) < ~W(2)

P. Braun & C.M. Kellett (ANU)
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These results imply that

@ If we know one Lyapunov function we can construct
infinitely many

@ If we know one Lyapunov function we can construct a
Lyapunov function which decreases exponentially.
(This follows from w < —w = w(t) < w(0)e?,
comparison principle)

@ This does not imply that |z(¢)| decreases exponentially
(i.e., it does not imply exponential stability)!
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Stability by Lyapunov’s Second Method (Time-Varying Systems)

Theorem (Lyapunov uniform asymptotic stab.)

Given the time-varying system i = f(t,z) with f(¢,0) =0
for allt > to > 0. If there exist a continuously differentiable
function V' : R>q x D — R>q, and functions a1, a2 € K
and p € P such that, for allz € D andt >ty > 0,

ar(lel) SV(t,) < ax(lel)  and
4V (t,a) = ViV (L, @) + (VaV(t,2), £(t,2)) < —p(le])

then the origin is uniformly asymptotically stable.
If additionally D = R™ and a1, a2 € Koo, then the origin is
uniformly globally asymptotically stable.

Compared to the time-invariant setting

@ time varying-Lyapunov functions need to be
considered

@ the bound V (¢, z) < aa(|z]|) is restrictive
(This property is called decrescent)
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Stability by Lyapunov’s Second Method (Instability)

Theorem (Lyapunov theorem for instability)

Given & = f(z) with f(0) = 0, suppose there exist a
continuously differentiable positive definite function
V:R™ — R>q and ane > 0 such that

(VV(2), f(z))>0

for all = € B:\{0}. Then the origin is unstable.
(In fact, the origin is completely unstable.)

V.

Cannot be used to show that the origin of 1 = 21 22 = —x2
is unstable. (Not uncommon that a system exhibits stable
behavior in some directions and unstable in others.)

Theorem (Chetaev’s theorem)

Given & = f(z) with f(0) =0, letV : R™ — R be a
continuously differentiable function with V (0) = 0 and

O ={z € B-(0)| V(z) > 0} # 0 for all r > 0. If for certain
r >0,

(VV(z), f(z))> 0, Ve,
then the origin is unstable.
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Stability by Lyapunov’s Second Method (Instability)

Theorem (Lyapunov theorem for instability)

Given & = f(z) with f(0) = 0, suppose there exist a
continuously differentiable positive definite function
V:R™ — R>q and ane > 0 such that

(VV(2), f(z))>0

for all = € B:\{0}. Then the origin is unstable.
(In fact, the origin is completely unstable.)

v

Cannot be used to show that the origin of 1 = 21 22 = —x2
is unstable. (Not uncommon that a system exhibits stable
behavior in some directions and unstable in others.)

Theorem (Chetaev’s theorem)

Given z = f(x) with f(0) =0, letV : R® - R be a
continuously differentiable function with V (0) = 0 and
O ={z € B-(0)| V(z) > 0} # 0 for all r > 0. If for certain
r >0,

(VV(2), f(=))> 0,

then the origin is unstable.

Vzeo,

P. Braun & C.M. Kellett (ANU)
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It holds that:
@ V(z) > 0forall|zi| > |z2|
@ O, ={zeB-(0)V(z) >0} #0forallr >0
@ Forall z € O, (in fact, for all z € R2\{0}):

x1
—T9

(VV (@), f(@)) = o1 m}[ }zx%+x%>0

Ch. 2: Nonlinear Systems - Stability Notions 20/29



Section 4

Region of Attraction
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The Region of Attraction (Estimates using Lyapunov Functions)

Definition (Region of attraction)

Consider & = f(z) with an asymptotically stable eq.
f(z€) =0, z¢ € R™. The region of attraction of z°¢:

Ry (%) = {z € R"| x(t) — 2° as t — 00, x(0) = z}.

P. Braun & C.M. Kellett (ANU)
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The Region of Attraction (Estimates using Lyapunov Functions)

Definition (Region of attraction)

Consider & = f(z) with an asymptotically stable eq.
f(z€) =0, z¢ € R™. The region of attraction of z°¢:

Ry (%) = {z € R"| x(t) — 2° as t — 00, x(0) = z}.

Properties:

@ The region of attraction is an open, connected,
invariant set

@ The calculation is far from trivial

P. Braun & C.M. Kellett (ANU)
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The Region of Attraction (Estimates using Lyapunov Functions)

Definition (Region of attraction)

Example (Lyapunov function based estimate)
Consider & = f(z) with an asymptotically stable eq.

f(z¢) = 0, z¢ € R™. The region of attraction of z: The function
3 _
Ry(x) = {x € R"| z(t) — z° as t — oo, z(0) = =} . V(z) = 2T Pz = 2T [ 2 21 ] x  satisfies
2
Properties: 0.69/2[* < Amin(P)[z[* < V(2) < Amax(P)|z|* < 1.81Jz[*

@ The region of attraction is an open, connected,
invariant set

d _ 2 _ 9 3 2 2
@ The calculation is far from trivial V(B = =8 = 5 — il < 2y
Example: Consider the system

Moreover,

T = —x2, To = x1 + (:C% —1)z2

with locally asymptotically stable equilibrium z¢ = 0.
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The Region of Attraction (Estimates using Lyapunov Functions)

Definition (Region of attraction)

Consider & = f(z) with an asymptotically stable eq.
f(z€) =0, z¢ € R™. The region of attraction of z°¢:

Ry (%) = {z € R"| x(t) — 2° as t — 00, x(0) = z}.

Properties:

@ The region of attraction is an open, connected,
invariant set
@ The calculation is far from trivial
Example: Consider the system
T = —x2, To = x1 + (:C% — l)wg

with locally asymptotically stable equilibrium z¢ = 0.

Lemma (Young'’s inequality)

Letp,q € Rsg such that% e % = 1. Then for any
z,y € R™ the inequality zTy < %|z|1’ + %Iqu is satisfied.

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

Example (Lyapunov function based estimate)

The function

V(z) = 2T Pz = 2T [

[SIEE NI

21 ] T satisfies

0.69|2]? < Amin(P)|z]? < V(2) < Amax(P)|z|? < 1.81|z|?
Moreover,

d __.2_,2_ .3 22
7 V(2) = —27 — 253 — 2722 + 22577

Ch. 2: Nonlinear Systems - Stability Notions 22/29



The Region of Attraction (Estimates using Lyapunov Functions)

Definition (Region of attraction)

Consider & = f(z) with an asymptotically stable eq.
f(z€) =0, z¢ € R™. The region of attraction of z°¢:

Ry(z) = {z € R*| z(t) — z° as t — 00, z(0) = z}.

Properties:

@ The region of attraction is an open, connected,
invariant set

@ The calculation is far from trivial

Example: Consider the system
T = —x2, To = x1 + (:C% —1)z2

with locally asymptotically stable equilibrium z¢ = 0.

Lemma (Young'’s inequality)

Letp,q € Rs such that% ue % = 1. Then for any

x,y € R the inequality «™y < < |z|P + L|y|? is satisfied.

P. Braun & C.M. Kellett (ANU)
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Example (Lyapunov function based estimate)

The function

V(z) = 2T Pz = 2T [

[SIEE NI

21 ] T satisfies

0.69|2]? < Amin(P)|z]? < V(2) < Amax(P)|z|? < 1.81|z|?
Moreover,

d __.2_,2_ .3 22
7 V(2) = —27 — 253 — 2722 + 22577

< xl —a:2+x1+ x2+a:1+x2
= —x7 (1—:0%—30‘11) —1:% (%—x%)
which implies that V() < 0 whenever

1—2?2—21>0 and %—x§>0.
The constraints can be translated into the constraints

C={z €R? —0.79 < z1 < 0.79, —0.89 < z2 < 0.89}
V.
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The Region of Attraction (Estimates using Lyapunov Functions), continued

1

23 423 =079

TN V(z) =043
0s | // g \\\\\ V() = 0.6
// // \
/ J
& //’
g 0 / /
\ [ /' /
\ Y,
05 | \L\ / //
\:,7: -
-1
- 05 0 05 1 1.5 2
kot
Properties:

@ The set C is not necessarily forward invariant

@ Thus, we need to define a forward invariant sublevel
set.

@ It holds that
{z € R?: 2T Pz < Amin} C {z € R?: 2Tz < 1},
{zeR?:2T2 <0792} CC
and thus {z € R?| 2T Pz < 0.79%Apin} C C

@ We conclude {z € R?| 2T Pz < 0.792A\pin} C Ry (0)
P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

Example (Lyapunov function based estimate)

The function

— ol

V(z) = 2T Pz = o7 [

[NIEENII

} T satisfies

0.69|2|? < Amin(P)|z)? < V(2) < Amax(P)|z|? < 1.81|z|2

Moreover,

2.2
%V(m) = —2? — 22 — 23xy + 20222
< —x%—z%-‘,—x?—l— %x%-{—z‘l}—&—x%

fm% (1 fm% = a:‘ll) = m% (% = x%)

which implies that V(z) < 0 whenever
1-27—21>0 and 3 -23>0.

The constraints can be translated into the constraints

C={zeR?: —0.79 < x; <0.79, —0.89 < z < 0.89}

v

Ch. 2: Nonlinear Systems - Stability Notions

23/29



The region of attraction (Estimates in R? using time reversal dynamics)

Definition (Region of attraction) Example
Consider & = f(z) with an asymptotically stable eq. Rather than considering ¢ — oo, consider simulating
f(z€) =0, z¢ € R™. The region of attraction of z°¢: backwards in time; i.e., take t — —oo. To see the effect of

this, let 7 = —¢ which implies dr = —dt and

ao(r) = — Za(-t) = —f(a(-1)) = —f(x(7)).

Properties: _ o In other words, simulating the system backwards in time
@ The region of attraction is an open, connected, merely requires changing the sign of the vector field.
invariant set

Ry (%) = {z € R"| x(t) — 2° as t — 00, x(0) = z}.

@ The calculation is far from trivial
Example: Consider the system

I] = —x2, x'g::cl—l—(:c%—l).TQ ! ( /,~)
with locally asymptotically stable equilibrium z¢ = 0. g0 g0 \ r/ Yy )
4 1 \ =
Lemma (Young'’s inequality) \ /
-2 -2 \
Letp,q € Rs such that% ue % = 1. Then for any . .
3
x,y € R™ the inequality Ty < %|z|1’ + %lqu is satisfied. o2 21 L A ;1 T2 3§

v
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Section 5

Converse Theorems
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Converse Lyapunov Theorems

Theorem (Converse theorem; asymp. stability)

If the origin is uniformly globally asymptotically stable for
z = f(t,x) then there exist a (smooth) function

V :R>q X R™ — R, functions a1, az € Koo, and a
function p € P such that, for all z € R™ and allt > to > 0,

ai(|z]) < V(t,2) <aolz])  and
ViV (t, @) + (Vo V(¢ 2), £t 2)) < —p(lz]).

@ If f(t,z) is periodic in t, then there exists V (t, )
periodic in t.

@ If f(t,z) = f(x) is time-invariant, then there exists
V(t,x) = V(x) independent of t.
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Converse Lyapunov Theorems

Theorem (Converse theorem; asymp. stability)

If the origin is uniformly globally asymptotically stable for
z = f(t,x) then there exist a (smooth) function

V :R>q X R™ — R, functions a1, az € Koo, and a
function p € P such that, for all z € R™ and allt > to > 0,

ai(|z]) < V(t,2) <aolz])  and
ViV (t, @) + (Vo V(¢ 2), £t 2)) < —p(lz]).

@ If f(t,z) is periodic in t, then there exists V (t, )
periodic in t.

@ If f(t,z) = f(x) is time-invariant, then there exists
V(t,x) = V(x) independent of t.

~~ Based on this result, is it easy to find Lyapunov
functions?
Unfortunately not! Converse results for exponential stability
rely on

Viz) = /Ooo o(r)leTdr, @ =a(0) € R"
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Section 6

Invariance Theorems
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Invariance Theorems (Krasovskii-LaSalle Invariance Theorem; Example 1)

Theorem (Krasovskii-LaSalle Invariance Thm.)

Suppose there exists a positive definite and continuously
differentiable function V' : R™ — R~ such that, for all
x € R™,

(VV(x), f(z))< 0.

Let S = {z € R"|(VV(x), f(z)) = 0} and suppose no
solution other than the origin can stay identically in S. Then
the origin is globally asymptotically stable.

Recall:
@ Pendulum dynamics
T1 = X2
iy =—9sinz; — Ly

@ Total energy

V(z) = mgl(l — cosz1) + %mzzax%

Application of the Theorem:
@ Time derivative of total energy:

(VV(2), f(z)) = —ke?z3.
@ It holds that

(VV(2), f(z)) =0 whenever [ z; } €R x {0}.

~ (Thus, asymptotic stability cannot be concluded from
the Lyapunov Theorem)

@ (Let D define a neighborhood around the origin)

Define
S={x €D:zy =0}
@ Note that
» for zo = 0 to remain at zero, 2 = 0 needs to be
satisfied.
» with the dynamics, this implies z; = 0 and
1 =0

@ Hence, the only solution that can remain in S is
z1(t) =0, z2(t) = 0.
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Invariance Theorems (Krasovskii-LaSalle Invariance Theorem; Example 2)

State space model (z1 = y and x5 = ):

Theorem (Krasovskii-LaSalle Invariance Thm.) 1 =2
, " - . o = L (7]60.21 - klm? - bac2|952|) .
Suppose there exists a positive definite and continuously m
differentiable function V' : R™ — R~ such that, for all Consider the candidate Lyapunov function
z € R",

_ ko, 2, k1 4, 1.2
V(z) = 5227 + gLx] + 525

(VV (=), f(2))< 0.

Then
LetS = {z € R"|(VV (z), f(z)) = 0} and suppose no
solution other than the origin can stay identically in S. Then (VV(z), f(2))
the origin is globally asymptotically stable.

) = %’xlxz —+ %x?xz — %’xlxg — %x?xz — %z%\zz\
= —2adjzs| <O.
and (VV(z), f(z)) =0forallz; € R, z2 =0
m Define S = {z € R?| z2 = 0}.
3 y InS, 22 =0and z2 = 0tostayin S.
Thus z; = 0 and
0= —%(koxl +kizd) = z1=0 or x1 =45 ’;—‘;.
Recall: mij + by|y| + koy + k1y>® = 0.

Therefore, x = 0 is asymptotically stable.
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