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Linear Systems and Linearization

0 Linear Systems Review
@ Stability Properties for Linear Systems
@ Quadratic Lyapunov Functions

e Linearization
e Time-Varying Systems

0 Numerical Calculation of Lyapunov Function
@ Linear Matrix Inequalities and Semidefinite Programming
@ Global Lyapunov Functions for Polynomial Systems
@ Local Lyapunov Functions for Polynomial Systems
@ Estimation of the Region of Attraction

e Systems with Inputs
@ Controllability and Observability
@ Stabilizability and Detectability
@ Pole Placement
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Linear Systems Review

Simplest example (a € R):

T = ax, z(0) =z9 €R
In this case, solution is given by

z(t) = e**2(0), t>0
(since %m(t) = az(0)e?t = ax(t))
Exponential function:

e* =210 %ak-

The origin is:

@ (uniformly) globally exponentially stable if and only if
a < 0;

@ globally stable if and only if a = 0; and
@ unstable if and only if a > 0.
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Linear Systems Review

Simplest example (a € R): Linear systems (defined through A € R**"):
T = az, z(0) =z9 €R z = Az, z(0) = z9 € R™
In this case, solution is given by The solution is given by:
z(t) = e™z(0), >0 2(t) = eAtz(0).
(since %x(t) = az(0)e?t = ax(t)) . .
Exponential function: Matrix exponential:
et =320 mak e =302 pAt,  t>0.
The origin is:
@ (uniformly) globally exponentially stable if and only if
a < 0;

@ globally stable if and only if a = 0; and
@ unstable if and only if a > 0.
Consider V' (x) = z2. If @ < 0, it holds that

(VV (x), ) = (22, az) = 20z < 2aV(z) Ve €R

~+ V' is a Lyapunov function from which global exponential
stability can be concluded
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Linear Systems Review (Stability Properties for Linear Systems)

The matrix exponential:
@ Consider A € R™"*™ diagonalizable

@ Then there exists T' € C"*™ so that
A =T-1AT € C**" diagonal

@ (A contains the eigenvalues of A)
@ Observe that
AP = (TATYY(TAT™Y) . (TAT™Y) = TAFT !

@ Therefore,

At =t — " 1
=Y At =T (S AT
k=0 k=0
eMt 0 0
0 eret 0
=T . 71
0 0 etnt

@ It holds that |z(t)] = |TeMT—12(0)| “=5° 0
va(0) € R™ if Re(\;) <OVi=1,...,n.
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Linear Systems Review (Stability Properties for Linear Systems)

The matrix exponential: The matrix exponential (A not diagonalizable):
@ Consider A € R™*" diagonalizable @ Consider Jordan normal form (example, 2 x 2-block)
@ Then there exists T € C™*™ so that Jo[ A1 JE_ e k=1
A = T—1AT € C™*" diagonal =10 A e | o AF

@ (A ins the ei | fA
(A contains the eigenvalues of 4) @ Therefore, the diagonal elements satisfy e* and the

@ Observe that (1, 2)-entry satisfies
AP = (TATYY(TAT™Y) . (TAT™Y) = TAFT ! oo ik o k-1 o 40
PDEP U S L o
@ Therefore, = k! = (k—1)! = il
At — i fAk — <§: tkAk> 71 @ Finally, we can conclude
k! k!
k=0 k=0 Jt _ x| 12
M0 .0 C T 1o
0 Aot L, 0
—7 € 7—1 @ A 3 x 3-block: ,
: oo A1o0 1t 5
0 0 ... At J=]10 X 1 ~ eft=eM| g 1 %
0 0 A 0 0 1
@ Itholds that |z(t)| = [TeMT~1z(0)| “=5° 0 @ It holds that |z(t)| = [Tt T—1z(0)] "=5° 0
vz(0) € R™if Re(A;) <OVi=1,...,n. vz(0) € R™ if Re(\) < 0.
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Linear Systems Review (Stability Properties for Linear Systems, 2)

Theorem (Stability of linear systems)

For the linear system & = Az, the origin is

@ stable if and only if the eigenvalues of A have
negative or zero real parts and all the Jordan blocks
corresponding to eigenvalues with zero real parts are
1x1;

@ unstable if and only if at least one eigenvalue of A has
a positive real part or zero real part with the
corresponding Jordan block larger than 1 x 1;

© exponentially stable if and only if all the eigenvalues of
A have strictly negative real parts.

v
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Linear Systems Review (Stability Properties for Linear Systems, 2)

Theorem (Stability of linear systems)

For the linear system & = Az, the origin is

@ stable if and only if the eigenvalues of A have
negative or zero real parts and all the Jordan blocks
corresponding to eigenvalues with zero real parts are
1x1;

@ unstable if and only if at least one eigenvalue of A has
a positive real part or zero real part with the
corresponding Jordan block larger than 1 x 1;

@ exponentially stable if and only if all the eigenvalues of
A have strictly negative real parts.

V.

Note that for linear systems:

@ |t is common to say ‘the linear system is
asymptotically stable’ (linear systems can only have 1
isolated equilibrium, i.e., the origin)

@ If all eigenvalues of A have strictly negative real parts,
A is said to be Hurwitz

@ Local stability results imply global stability results

@ asymptotic stability implies exponential stability
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Linear Systems Review (Stability Properties for Linear Systems, 2)

Theorem (Stability of linear systems) A diagonalizable:
For the linear system & = Az, the origin is @ Therefore,

@ stable if and only if the eigenvalues of A have et 0 e 0
negative or zero real parts and all the Jordan blocks 0 er2t ... 0
corresponding to eigenvalues with zero real parts are eAt =T i . _ . 7!
1x1; : : ' :

An

@ unstable if and only if at least one eigenvalue of A has 0 0 et
a positive real part or zero real part with the oo
corresponding Jordan block larger than 1 x 1; @ It holds that |z(t)| = |TeM T 1z (0)] =70

© exponentially stable if and only if all the eigenvalues of vz(0) € R if Re(Ai) <OVi=1,...,n.
A have strictly negative real parts.

A not diagonalizable (A = TJT—1):

Note that for linear systems: @ Matrix exponential

@ |t is common to say ‘the linear system is

asymptotically stable’ (linear systems can only have 1 A1 0 1 ¢t 2—2,
isolated equilibrium, i.e., the origin) J=]0 x 1 ~oedt=eMl g 1 ¥
@ If all eigenvalues of A have strictly negative real parts, 0 0 A 0 0 1
A is said to be Hurwitz @ It holds that |z(t)| = |Te’*T—1z(0)] "= 0
@ Local stability results imply global stability results vz(0) € R™ if Re(X) < 0.

@ asymptotic stability implies exponential stability



Linear Systems Review (Quadratic Lyapunov Functions)

Notation:
@ Symmetric matrices

S*={pPer™"| P=pT}
@ Positive (semi)definite matrices:
Sy ={PecS"aTPz>0Vz#0}
82y ={P eS| z"Pz>0Va}
@ Quadratic candidate Lyapunov functions: y
V(z) = zT Px

@ If P € 8%, then
0 < Aminz’z < 2T Pz < Amaxzl®, VYV #0 (1)

(symmetric matrices have real eigenvalues)

@ Recall the condition:
o1 (|z]?) < V(z) < az(|z]?), o1,02 €K
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Linear Systems Review (Quadratic Lyapunov Functions)

Notation: Lemma
@ Symmetric matrices The following are equivalent:
S*={pPer™"| P=pT} Q Pesy,;
@ Positive (semi)definite matrices: @ All the eigenvalues of P are positive;
Sty ={P e8| «TPz >0V # 0} @ The determinants of all the upper left submatrices (the

so-called leading principal minors) of P are positive;

n o __ n T
SZo={P€S"|a" Pr20Va} © There exists a nonsingular matrix H € R™*™ such

_gT
@ Quadratic candidate Lyapunov functions: that P = H- H. y

V(z) = zT Px

@ If P € 8%, then
0 < AminzTz < 2T Pz < AmaxzTz, Yo #£0 (1)
(symmetric matrices have real eigenvalues)
@ Recall the condition:
ai(|z]?) < V(z) < az(lz]?), aiaz ek
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Linear Systems Review (Quadratic Lyapunov Functions)

Notation: Lemma
@ Symmetric matrices The following are equivalent:
S*={pPer™"| P=pT} Q Pesy,;
@ Positive (semi)definite matrices: @ All the eigenvalues of P are positive;
Sty ={P e8| TPz >0V x#0} @ The determinants of all the upper left submatrices (the

so-called leading principal minors) of P are positive;

n o __ n T
SZo={P€S"|a" Pr20Va} © There exists a nonsingular matrix H € R™*™ such

thatP = HTH.

@ Quadratic candidate Lyapunov functions: y
Viw) =a"Pa Theorem
@ If P € 8%, then For the linear system & = Ax, the following are equivalent:
0 < Amint Tz < TPz < Amaxzl@, Yz #0 (1) @ The origin is exponentially stable;
(symmetric matrices have real eigenvalues) @ All eigenvalues of A have strictly negative real parts;
@ Recall the condition: @ Forevery Q € 82, there exists a unique P € SZ,

satisfying the Lyapunov equation
ATP 4+ PA=—Q.

ai(2]?) < V(e) < az(lzf?), a1,02 €K
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Linear Systems Review (Quadratic Lyapunov Functions)

Proof: Q € SZ, P € SZ such that ATP + PA = —Q — exponential stability:

@ For simplicity take Q = I.
@ Then
Aminz! z < 2T Pr < Amaxzlae = —zlao<— )\n}a zT Pz
@ Application of the chain rule,
%V(z) =iTPz+a2TPi=2TATPe + 2T PAz = 2T (ATP + PA)z = —2T2 < — )\n}ax 2T Pe = — AHLX V(z)

@ Comparison principle:

V(@) < V(@(0) exp (- 52t)

Amax

@ Then

Aminle(t)2 < V(@(t) < V(@(0) exp (—52=t) < Amax|2(0) 2 exp (— 5

1t)

>\max
= |z(t)] < |z(0)| exp (—zxi,ax t)

Amin

= |z(t)] < M|z(0)|exp(—At), M,X >0 ~» exponential stability
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Linear Systems Review (Quadratic Lyapunov Functions)

Proof: Exponential stability = For every Q € SZ, there exists a unique P € SZ,, satisfying ATP 4+ PA=—-Q:

@ Given Q € SZ, let
T
P = / e TQe dr.
0

@ (Note that [eA” tQeAt|| “= 0 exponentially fast, i.e.,
the integral is well defined)

@ [t holds that
% (eATthAt> :ATeATthAt +€ATthAtA.
@ With this equation
oo
ATP+PA :/ (ATeATTQeAT +6ATTQ€ATA> dr
0
4 (AT AT ATt At
= I (e Qe )d‘l‘ =e Qe ‘
0 0

T T
_ (tgn; eA thAt) _eA OQeAO =-Q.

oo}
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>0
@ P is symmetric since (Q = QT)
e T
PT = / (eATTQeAT) dr
0
oo
= / eATTQeATdT =P.
0
@ P e S, Letz € R™ and consider

T 1 AT A
z Pz:/ zte® TQe T zdr.
0

> If z # 0 then z(1) = eA7 2 # 0 and, since
Q € ST, implies
2TPz= / ()T Qa(r)dr >0
0

> Ifz=0thenz(r) =0
@ (Uniqueness of P can be shown by contradiction)

Ch. 3: Linear Systems and Linearization

8/39



Linearization (Local exponential stability)

Consider:
z = f(x), f(0) =0, f cont. differentiable
Define (Jacobian evaluated at the origin):

A= {af (x)} (and define f1(z) = f(z) — Az)
Oz =0
Note that
o @@ = Ael
|z|—0 |z |z|—0 |z|

(which can be concluded from L'Hépital’s rule or the Taylor
approximation)
Linearization of & = f(z) atz = 0:

() = Az(t)
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Linearization (Local exponential stability)

Consider:
z = f(x), f(0) =0, f cont. differentiable
Define (Jacobian evaluated at the origin):

A= {af (”)} (and define f1(z) = f(z) — Az)
Oz |,—o
Note that
p S@] @) sl
|z|—0 |z |z|—0 ||

(which can be concluded from L'Hépital’s rule or the Taylor
approximation)
Linearization of & = f(z) atz = 0:

() = Az(t)

Theorem

Consider z = f(x) (f cont. differentiable) and its
linearization z = Az. If the origin z¢ = 0 of 2 = Az is
globally exponentially stable then the origin ¢ = 0 of
¢ = f(x) is locally exponentially stable.
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Linearization (Local exponential stability)

Consider: Proof:
& = f(a), F(0) =0, f cont. differentiable @ Let the origin of 2 = Az be exp. stable

Define (Jacobian evaluated at the origin): © Define Q = I. Then there exists P> € 52, so that

ATP 4+ PA=—1I
A= {af (”)} (and define f1(z) = f(z) — Az)
9z Jo—o @ Take V(z) = 27 Pz. Then
Note that
(VV(2), f(z)) = (2Pz, Az — fi(2)) = —a" @ + 22" Pf1(2)

o @I _ @) = Al

|z|—0 |z |z|—0 || ’ @ Chooser >0andp < % such that
(which can be concluded from L'Hépital’s rule or the Taylor 1f1(2)] < x2— |z Yz <r
approximation) max
Linearization of # = f(z) atz = 0: @ Then, for all |z| <,

(1) = Az(t) 1227 Pf1(z)| < 2|Pz||f1(z)|

S— <2 (maxlel) (52=lal) = 2027
Consider & = f(z) (f cont. differentiable) and its @ Therefore, for |z| < r, (and ¢ = =22 > 0, p < )
linearization z = Az. If the origin z¢ = 0 of 2 = Az is T T T
globally exponentially stable then the origin z¢ = 0 of (VV(z), f(2)) < —z" z+2pz" v = —(1 —2p)z’

¢ = f(x) is locally exponentially stable. <_ 1\721) V(z) = —cV(z)
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Linearization (Stability, Instability & Limitations)

Theorem (Local Exponential Stability)

Consider z = f(x) (f cont. differentiable) and its
linearization z = Az. If the origin z¢ = 0 of 2 = Az is
globally exponentially stable then the origin ¢ = 0 of
& = f(x) is locally exponentially stable.

Theorem (Instability)

Consider the nonlinear system @ = f(x) (f cont.
differentiable) and its linearization z = Az. The equilibrium
0 is unstable for & = f(x) if A has at least one eigenvalue
with positive real part.
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Linearization (Stability, Instability & Limitations)

Theorem (Local Exponential Stability)

Consider z = f(x) (f cont. differentiable) and its
linearization z = Az. If the origin z¢ = 0 of 2 = Az is
globally exponentially stable then the origin ¢ = 0 of
& = f(x) is locally exponentially stable.

Theorem (Instability)

Consider the nonlinear system @ = f(x) (f cont.
differentiable) and its linearization z = Az. The equilibrium
0 is unstable for & = f(x) if A has at least one eigenvalue
with positive real part.

Note that

@ if all eigenvalues of A have non-positive real part but
A has any eigenvalues with zero real part, then the
linearization is inconclusive.

» & =ax3 (the origin is unstable)
» & = —z3 (the origin is asymptotically stable)
» 2=0-z (linearization)

@ f needs to be continuously differentiable
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Linearization (Stability, Instability & Limitations)

Theorem (Local Exponential Stability)

Consider z = f(x) (f cont. differentiable) and its
linearization z = Az. If the origin z¢ = 0 of 2 = Az is
globally exponentially stable then the origin ¢ = 0 of
& = f(x) is locally exponentially stable.

Theorem (Instability)

Consider the nonlinear system @ = f(x) (f cont.
differentiable) and its linearization z = Az. The equilibrium
0 is unstable for & = f(x) if A has at least one eigenvalue
with positive real part.

Note that

@ if all eigenvalues of A have non-positive real part but
A has any eigenvalues with zero real part, then the
linearization is inconclusive.

» & =ax3 (the origin is unstable)
» & = —z3 (the origin is asymptotically stable)
» 2=0-z (linearization)

@ f needs to be continuously differentiable
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The role of the Lyapunov equation: AT P + PA = —Q
Candidate Lyapunov functions: V(z) = 2T Pz
Time derivative with respect to © = Ax:

LV () = (V2V (x(t)),2(t)) = (V2Px, Az) = 22T PAx
=2TPAz + (2T PAz)T = 2T PAx + 2T AT Px

2T (ATP + PA)z = 2T (-Q)z = —2TQz

LV(x) = L (2" Pz) = 3" Pz + 2" Pi = 2" (ATP + PA)z
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Linearization (Local Lyapunov functions)

Corollary

Consider z = f(x) (f cont. differentiable) and its
linearization z = Az with a locally/globally exponentially
stable origin of the linear/nonlinear dynamics. Let P € SZ,
be the unique solution of the Lyapunov Equation

ATP+PA=—Q, (Q € 82 arbitrary).

Then V (x) = T Pz is a local Lyapunov function of the
nonlinear system & = f(x).

Thus:

@ If the origin is locally exponentially stable, it is
straightforward to define a local Lyapunov function.

However:
@ ltis not trivial to obtain a (good) estimate of the region
of attraction
@ While Q € SZ, can be selected arbitrarily, P (and

thus V' (z)) depends on Q. Thus a possible estimate
of the region of attraction depends on P (and Q)

The role of the Lyapunov equation: ATP 4+ PA = —Q
Candidate Lyapunov functions: V (z) = 27 Pz
Time derivative with respect to © = Ax:

LV () = (V2V(x(t)),2(t)) = (V2Px, Az) = 227 PAx
=2TPAz + (2T PAx)T = 2T PAz + 2T AT Pz
=2T(ATP + PA)x = 2T (—Q)z = —zT Qu

Ly(z) = L (2" Pr) =" Px+ 2" Pi = 2T (ATP 4+ PA)x
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Linearization (Example 1: The linearization is inconclusive)

@ Consider the nonlinear system
T = cm3, ceR
@ Consider candidate Lyapunov function
V(z) = %wz
@ which satisfies
V(z) = (VV(z),cz?) = cz?.
Thus,

» for ¢ < 0, the origin of & = cx? is asymptotically
stable
» for ¢ > 0 the origin of & = cz3 is unstable

However,

> independent of ¢, the linearization around the
originis givenby 2 = Az =0- z.

Hence,

> (since the real part of the eigenvalue of A is
zero) the linearization is inconclusive.
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Linearization (Example 2: Mass-Spring System with Hardening String)

® Hardening spring: @ Identify three cases:

2
Fop = koy + k1y® = koz1 + kia?, with ko, k1 >0 > ko= %2 ~  Re(A12) <0
> ko < & Re(A <0
@ Dynamics in state space form (¢, m > 0): 0 4 - (A1.2)

. > ko > CI ~  Re(A1,2) <0

T1 = T2
@ Therefore,
dg = L (—koz1 — k12 — cx2) . . .
m » the origin is globally exponentially stable for

2= Az

@ Linearization at z¢ = 0:
> the origin is locally exponentially stable for

of(z 0 1 .
a= 29 [ s ] i = f(x)
Ox =0 m m L1 m dz=0
0 1 .
= [ ke e ] Fr=cy
m m
@ Eigenvalues of A: Fep
F=0
0=detQ —A) =AM+ =)+ 20 =)\2 4 e ko m
. 2
e M2 = —35 £ /55 — 52, .
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Linearization (Example 3: Inverted Pendulum)

@ Consider the pendulum:
1 = X2
To = —% sin(z1 + ) — %1‘2.
(with origin shifted to the upright position)
@ Matrix describing the linearized system:

A= {ai;(;)L:O: [ —Zcos?m-l-ﬂ) _lﬁ L:O

0 1
:{g_ﬁ}
£ m

@ The eigenvalues are defined through:

O:det(AI—A):)\<>\+%)_%
¥k g

so that

2
M=/ (a) +#

P. Braun & C. M. Kellett (ANU)
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@ One eigenvalue has

> positive real part and
> negative real part

@ Thus,

> the origin (upright position) of 2 = Az is unstable
> the origin (upright position) of & = f(z) is
unstable
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Linearization (Example 3: Mass-Spring-Damper System)

@ Consider the mass-spring damper system: ) . ) i o
@ Since the eigenvalues are simple (i.e., multiplicity 1) A

&1 = x2 is diagonalizable. Since all the eigenvalues have zero
2 = L (—kow1 — k1a} — baa|zal) . real parts the origin of 2 = Az is stable
m 1

@ Since the eigenvalues of A have zero real parts, the

@ The linearized system is described by linearization tells us nothing about stability of the

9f(x) 0 1 origin for & = f(x)
A= = ko _ gk1,2 9b
Oz |,—p =3t 20w |
0 1
= kg |-
@ The eigenvalues are defined through
0 =det(A\ — A) = \? 4 %0 L A
which implies B .
Bl
A= %jvko/m Y
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Linear Time-Varying Systems

Linear time-invariant systems:
z(t) = Az(t)

Theorem (Stability of linear systems)

For the linear system & = Az, the origin is

@ stable if and only if the eigenvalues of A have
negative or zero real parts and all the Jordan blocks
corresponding to eigenvalues with zero real parts are
1x1;

@ unstable if and only if at least one eigenvalue of A has
a positive real part or zero real part with the
corresponding Jordan block larger than 1 x 1;

© exponentially stable if and only if all the eigenvalues of
A have strictly negative real parts.

v

~ This result is not applicable to time-varying systems!
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Linear Time-Varying Systems

Linear time-invariant systems:
z(t) = Az(t)

Theorem (Stability of linear systems)

For the linear system & = Az, the origin is

@ stable if and only if the eigenvalues of A have
negative or zero real parts and all the Jordan blocks
corresponding to eigenvalues with zero real parts are
1x1;

@ unstable if and only if at least one eigenvalue of A has
a positive real part or zero real part with the
corresponding Jordan block larger than 1 x 1;

@ exponentially stable if and only if all the eigenvalues of

A have strictly negative real parts.

V.

~ This result is not applicable to time-varying systems!
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Linear time-varying systems:
z(t) = A(t)z(t)

Example
The matrix
A(t) = —1+ 1.5cos2(t) 1 — 1.5sin(¢) cos(t)
| —1—1.5sin(t) cos(t) —1+ 1.5sin2(t)

has eigenvalues at
A2 = —0.25 + j0.25v/7
However, the solution of ©(t) = A(t)x(t) is given by

a(t) = [ < e ] 2(0)

—e0-5 sin(t)

which clearly has a component that exponentially diverges
from zero.

VtGRZO

e~ tsin(t)
e~ tcos(t)
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Linear Time-Varying Systems, 2

@ Time-invariant results relied on
o (@) = Aa| _

lz|—0 ||

0

@ However,

0= %57

does not (necessarily) imply
L o) —Awa| _

lim su 0.
|z|=0¢>0 |z
[——Nonlinear system
018 \*L"—Y‘m} 0.5
= 01 -

:
o
=
@

X y
/
/ ——Nonlinear system
ol  Linear system
015 02 025 0 005 01 015 02 025
ay(t) @ (t)
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Linear Time-Varying Systems, 2

@ Time-invariant results relied on
— A
o @) = Azl

|| —0 ||
@ However,
sz[wmm} 7
Ox z=0

does not (necessarily) imply

t — A(t
i sup M :0) =A@l _
|z|—0 t>0 |:C|

——Nonlinear system
0.15 - Linear system 015

a(
o
g

/ -
/ —— Nonlinear system|
/  Linear system

x1(t)

t € [10,14]

P. Braun & C. M. Kellett (ANU)

0 0.05 0.1 0.15 0.2 0.25

Introduction to Nonlinear Control

Example
Consider the time-varying system:
o __ | —x1+ tz%
Cb—f(t,w)—|: xr] — X2 j|
with
of(t,x) -1 0
{T . m= A(t)x = 1 -1 |=
We see that
— 2
i sup L2 =A@ e
|| —0 ¢>0 || lw2|—0¢>0 |T2]
i

~ 290 |12|

)
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Linear Time-Varying Systems, 3

Theorem

Consider z = f(t,x) (f cont. differentiable) and suppose
that f(¢,0) = 0 for allt > to.
Assume that

|F(t,2) — At)e] _

lim sup 0.
|z|—=0¢t>0 |z\
holds and that
ay - [
Oz x=0

is bounded.

Then, if the origin is an exponentially stable equilibrium for
2(t) = A(t)z(t) then it is also an exponentially stable
equilibrium of & = f(t,x).

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control Ch. 3: Linear Systems and Linearization 18/39



Numerical Calculation of Lyapunov Functions (Introduction)

Recall: Linear systems & Quadratic Lyapunov functions
= Az, V(z) = 2T Pz
Now, consider:

z = f(z), f: R™ — R"™ polynomial

A Lyapunov function

@ is positive definite, i.e., V(z) >0

@ decreases along solutions, i.e., (VV (), f(z)) <0
Consider W : R™ — R

@ How can we validate if W is positive definite?
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Numerical Calculation of Lyapunov Functions (Introduction)

Recall: Linear systems & Quadratic Lyapunov functions
= Az, V(z) = 2T Pz
Now, consider:

z = f(z), f: R™ — R"™ polynomial

A Lyapunov function

@ is positive definite, i.e., V(z) >0

@ decreases along solutions, i.e., (VV (), f(z)) <0
Consider W : R™ — R

@ How can we validate if W is positive definite?

@ IfW(z2) = |Hz|? = 2THT Hz, then W(z) > 0.

@ For P € ST there exists H € R™*™, P = HTH
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Numerical Calculation of Lyapunov Functions (Introduction)

Recall: Linear systems & Quadratic Lyapunov functions For example:

i=Az, V(z)=2TPz @ Monomials of degree less than 3; z : R? — R5,

Now, consider: z(x) = [ 1, w2,22, 23, 109 ]T
P = : R™ — R™ polynomial .
i=f), f — & polynomia @ Monomials of degree less than 4; i : R2 — R?,
A Lyapunov function

- 2 .2 3 .3 .2 2 1T
o is positive definite, i.e., V(z) > 0 y(@) = [ @1,22,2%, 23, o102, o, 3, wiwn, 2123 ]

@ decreases along solutions, i.e., (VV (), f(z)) <0
Consider W : R™ — R

@ How can we validate if W is positive definite?

@ IfW(z2) = |Hz|? = 2THT Hz, then W(z) > 0.

@ For P € ST there exists H € R™*™, P = HTH
Goal: Construct Lyapunov functions of the form

V(z) = z(z)T Pz(x), P € ST, where
@ V(x) = W(z(x)), W(z) = 2T Pz
@ 2 :R™ —» R™, m € N, denotes monomial functions

zj(x) =TT, =)°

for j; € N, foralli € {1,...,n}forallj € {1,...,m}.
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Numerical Calculation of Lyapunov Functions (Introduction)

Recall: Linear systems & Quadratic Lyapunov functions For example:

i=Az, V(z)=2TPz @ Monomials of degree less than 3; z : R? — R5,

Now, consider: 2(z) = [ @1, 22,02, 22, @130 |
P = : R™ — R™ polynomial .
i=f), f — & polynomia @ Monomials of degree less than 4; i : R2 — R?,
A Lyapunov function

@ is positive definite, i.e., V(z) > 0 y(@) = [ w1,22,0%, 23, 2122, 23, wlwz, w103 |7
@ decreases along solutions, i.e., (VV (), f(z)) <0
Consider W : R™ — R Theorem
@ How can we validate if W is positive definite? Consider i = f(z) (f, polynomial, f(0) = 0), a domain
@ I W(z) =|Hz? = 2THT Hz, then W(z) > 0. D C R™ and a function k : R® — R such that
@ For P € ST, there exists H € R™*™, P = H"H k(z)<O0VzeD and k(z)> 0z e R"\D.
Goal: Construct Lyapunov functions of the form Suppose we have a cont. differentiable fcn. V : R™ — R,
V(z) = 2(z)" Pz(x), P € SZ, where a1, p € Koo, and 1,62 : R™ — R satisfying
@ V(x) = W(z(x)), W(z) = 2T Pz a1 (|z])—61(z)k(z)< V(z) Vo eR™
@ 2 :R" - R™, m € N, denotes monomial functions (VV(z), f(2))< —p(|z])+d2(2)k(z) Vz € R™
2(z) =1, xf Then the origin is locally asymptotically stable.

If D = R™, then the origin is globally asymptotically stable.
v

for j; € N, foralli € {1,...,n}forallj € {1,...,m}.
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Num. Calc. of Lyapunov fcns (Linear Matrix Inequalities and Semidefinite Programming)

Consider z = Ax:

T1 _ 0 1 z1
To - -1 -1 xro |
Consider the conditions:
a1 (|z]) — 01(z)k(x) < V()
(VV(2), f(z)) < —p(|z]) + o2(z)r(z)
Define: (known functions/parameters)
@ x(z) =0 (D = R", global results)
® ai(lz]) = p(jz]) = elz]?, e >0
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Num. Calc. of Lyapunov fcns (Linear Matrix Inequalities and Semidefinite Programming)

Consider z = Ax:

T1 _ 0 1 z1
To - -1 -1 xro |
Consider the conditions:
a1 (|z]) — 01(z)k(x) < V()
(VV(2), f(z)) < —p(|z]) + o2(z)r(z)
Define: (known functions/parameters)
@ x(z) =0 (D = R", global results)
® ai(lz]) = p(jz]) = elz]?, e >0
Candidate functions: (unknown functions/parameters)
@ V(z) = 2" Pa, Pes?
® (VV(z), f(z)) = —2"Qz, Qe€S&?
P:[Pu plz} Q:{QH II12]

P12 p22 q12  g22
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Num. Calc. of Lyapunov fcns (Linear Matrix Inequalities and Semidefinite Programming)

Consider & = Aa: Missing condition:
[ & } _ [ 0 1 ] [ x1 ] _ —aTQx = (VV(2), f(2)) = 2T (AT P + PA)z
x2 -1 -1 To

Consider the conditions:
a1 (|z]) — 01(z)k(x) < V()
(VV (=), f(z)) < —p(|2]) + d2(z)k(x)

Define: (known functions/parameters)

@ x(z) =0 (D = R", global results)

® ai(lz]) = p(jz]) = elz]?, e >0
Candidate functions: (unknown functions/parameters)

@ V(z) = 2" Pa, Pes?

® (VV(z), f(z)) = —2"Qz, Qe€S&?

P:[Pu plz}’ Q:{QH II12]

P12 P22 Q12 q22

Simplification:
—aT Pz +exTa <0, —2T Qe +exTa <0
= —P+4+eI <0, —-Q+el<0
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Num. Calc. of Lyapunov fcns (Linear Matrix Inequalities and Semidefinite Programming)

Consider z = Ax:

2]l R
o | | -1 -1 T2 |
Consider the conditions:
a1 (|z]) — 01(z)k(x) < V()
(VV (=), f(z)) < —p(|2]) + d2(z)k(x)

Define: (known functions/parameters)

@ x(z) =0 (D = R", global results)

® ai(lz]) = p(jz]) = elz]?, e >0
Candidate functions: (unknown functions/parameters)

@ V(z) = 2" Pa, Pes?

@ (VV(z),f(z)) = —a"Qz, Qe€S?
P:[Pu plz}’ Q:{QH II12]
P12 p22 q12  q22

Simplification:
—aT Pz +exTa <0, —2T Qe +exTa <0
= —P+4+eI <0, —-Q+el<0

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control

Missing condition:

—2TQz = (VV(z), f(z)) = 2T (ATP + PA)x

This implies

2 2
— q11T] — q22T5 — 2q12T1T2 =

— 2p12a? + (2p12 — 2p22)x3 + (2p11 — 2p12 — 2p22)T1T2

and thus the linear equations

qi1 —2p12 =0
q22 + 2p12 — 2p22 =0
2q12 + 2p11 — 2p12 — 2p22 =0

Ch. 3: Linear Systems and Linearization
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Num. Calc. of Lyapunov fcns (Linear Matrix Inequalities and Semidefinite Programming)

Consider z = Ax:

T1 o 0 1 z1
o | | -1 -1 T2 |
Consider the conditions:
a1 (|z]) — 01(z)k(x) < V()
(VV(2), f(z)) < —p(|z]) + o2(z)r(z)
Define: (known functions/parameters)
@ x(z) =0 (D = R", global results)
® ai(lz]) = p(jz]) = elz]?, e >0
Candidate functions: (unknown functions/parameters)

@ V(z) =27 Pz, Pes?
@ (VV(z),f(z)) = —2TQx, Qe&?
pP= P11 pi12 Q= qi1  q12
pi2 p22 |’ q12  q22

Simplification:
—aTPr+exTa <0, fxTQ:r +exla <0
— —P+4+eI <0, —Q+el<0

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control

Missing condition:
—2"Qz = (VV(2), f(z)) =27 (ATP+ PA)x
This implies

2 2
—q11%] — q22%5 — 2q12T1T2 =

— 2p12x% + (2p12 — 2p22)m% + (2p11 — 2p12 — 2p22)z122

and thus the linear equations
q11 —2p12 =0
q22 + 2p12 — 2p22 =0
2q12 + 2p11 — 2p12 — 2p22 =0
Corresponding semidefinite program:

min 1
P,QeS?
subjectto 0> — P+e¢l
0> —Q+el

0 =q11 — 2p12
0 = qa22 + 2p12 — 2p22
0 =2q12 + 2p11 — 2p12 — 2p22.

Ch. 3: Linear Systems and Linearization
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Num. Calc. of Lyapunov fcns (Linear Matrix Inequalities and Semidefinite Programming)

Corresponding semidefinite program:

min 1
P,Qes?
subjectto 0> — P+el
0> —Q+el

0=q1 —2p12

0 = q22 + 2p12 — 2p22

0=2q2 + 2p11 — 2p12 — 2p22.
Conclusions:

@ If the semidefinite program has a solution, then the
origin of the linear system is globally exponentially
stable

@ Moreover, V(z) = =T Px is a Lyapunov function
@ For the given example

-1 -1 1.95 4.76

o[ ] - el ]

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control

The optimization problem
@ is convex
@ can be solved efficiently
In Matlab (external toolboxes)
@ CVX
@ SOSTOOLS
@ YALMIP

Note that, the unknown @ is not necessary:

min 1
Pes?

subjectto 0 > — P+ ¢l
0> (ATP 4+ PA) +eI

Ch. 3: Linear Systems and Linearization
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Global Lyapunov functions for polynomial systems (1)

Consider the nonlinear system:

1 = x9

IS

@y = —x1 — @2 + cxl, c
Candidate Lyapunov function:
V(z) = W(z(z)) = z(x) Pz(z)
z(z) = [ 1, 2,22, 2%, 122 ]T

P11 P12 P13 P14 P15
P12 P22 P23 P24 P25
P=| pi3 p23 P33 P34 P35
P14 P24 P34 P44 P45
P15 P25 P35 P45 P55

Define: (¢ > 0)

w(@) =0, ai(lz]) = p(lz)) = ez”e,

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control
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Global Lyapunov functions for polynomial systems (1)

Consider the nonlinear system:

1 = x9

IS

@y = —x1 — @2 + cxl, c
Candidate Lyapunov function:
V(z) = W(z(z)) = z(x) Pz(z)
z(z) = [ 1, 2,22, 2%, 122 ]T

P11 P12 P13 P14 P15
P12 P22 P23 P24 P25
P=| pi3 p23 P33 P34 P35
P14 P24 P34 P44 P45
P15 P25 P35 P45 P55

Define: (¢ > 0)

w(@) =0, ai(lz]) = p(lz)) = ez”e,

Condition 1: (a1 (Jz]) < V(=)

e[ 8]

Condition 2: ((VV (), f(z)) = 27Qz < —exTx)

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control
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Global Lyapunov functions for polynomial systems (Tedious Calculations 1)

V(z) = Puxf + 2171356? + pzzﬂcg + 2p24mg + 1)3393‘1L + p44m3
+ (2p14 + 21725)931932 + (2p15 + 21023)1'%1'2 + 2173530?362
+ 2pasz17y + (2psa + pss)Tias + 2p127122,
Va, V(z) = 2p11x1 + 2p1aze + 6p1375 + (2p14 + 2p25) x5 + Apszas + 2pasah
+ 6;035&0?&02 + (4p3s4 + 21755)961963 + (4p15 + 4p23)zix2,
Vg V(x) = 2p12w1 + 2p2222 + (2p15 + 2po3)a} + 6paazs + 2pasay

+ dpaaxy + (4paa + 2pss)ai e + 6paszizs + (4p1a + 4pas)aiza,

(VV (@), f(x)) = (2p12 — 2pa2)x5 — 2p12@; + (2cp12 — 2pas)7]
+ (=2p15 — 2p23)xs + (2ep1s + 2cp23)zi + (2p1a — 6p2a + 2pas)zs
+ 2ep353$ + (—4pas + 2pas)xs + (6p13 — 4p1a — 2p15 — 2p23 — 4pas)TiT2
+ (—4p1a + 4p15 + 4p2s — 6p2s — 4pas)zia: + (depra + depas)aize
+ (2cpa22 + 4pss — 4p3a — 2p35 — 2pss)Tiaa + (depaa + 2epss )i T
+ (4psa — 4pas — 6pas + 2pss)x175 + 6cpaaxial
+ (—4pss + 6pss — 6pas — 2ps5) T3 w3 + 4dcpasTiTs + 6cpasTias
+ (2p11 — 2p12 — 2p22)T 172
~» NOTE THAT (VV (z), f(x)) has terms up to order 6.



Global Lyapunov functions for polynomial systems (2)

Consider the nonlinear system:
T1 = X2

i:gz—zl—xg—kcx?, c

W=

Candidate Lyapunov function:
V(z) = W(z(z)) = z(z) Pz(z)
2(2) = [ 21,202,202, 03, 21202 |
P11 P12 P13 P14 P15
P12 P22 P23 P24 P25
P=| p13 p23 p33 P34 P35

P14 P24 P34 P44 P45
P15 P25 P35 P45 P55

Define: (¢ > 0)
w(@) =0, ai(jz]) = p(|z]) = ezTz,
Condition 1: (a1 (|z|) < V(x))

el 0
e8]

Condition 2: ((VV (), f(z)) = 2T7Qz < —exTx)

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control

(VV(z), f(z)) contains terms of degree 6 and thus can be written as
(VV(2), f(2)) = —y(2)" Qy(x)
y(z) = [ xl,mg,x%,xg,xlxg,x?,xg,x%xg,xlxg ]T
qi1r -0 Q19
Q=] : . 1 |es
qi9 -0 g9
Condition 2 is of the form

el 0
PHEEIPT
Expand y” Qy:
a1173 + 241375 + (2a16 + a33)@] + 42273 + 242473 + (2027 + a44)73
+ 2a36e] + 2a4723 + age@$ + arr=§ + (2a14 + 2a25)712F + (2a15 + 2a23)wT ey
+ (2417 + 2429 + 2a45)7123 + (2q18 + 2026 + 2a35) T w2 + (2438 + 2a56) 7T 22
+ (2449 + 2a57)w105 + 2a68 23 w2 + 2a79w1 28 + (2010 + 2a28 + 2934 + a55)T w3

+ (2439 + 2a46 + 2a58)@5 23 + (2a37 + 2a48 + 2a50) 272}

+ (2a67 + 2ag9)xF 3 + (2a9 + azz)zfe3 + (2a7s + a99)zTwd + 2q1221 22
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Global Lyapunov functions for polynomial systems (Tedious Calculations 2)

8 8 8 8 8 8 8

8
O TS 1S TIND W= O = = Lo 1

5
T1T2

—2pi12

—2p15 — 2pas3
2cp12 — 2p3s

2¢p1s + 2¢pa3
2cpss

2p12 — 2p22

2p14 — 6p24 + 2p2s
—4paa + 2pas

0

0

2p11 — 2p12 — 2p22

—4p1a + 4p15 + 4p23 — 6p2a — 4pas
4p3a — 4paa — 6pas + 2pss

0

0

6p13 — 4p14 — 2p15 — 2p23 — 4p2s
—4p34 + 6p3s — 6pas — 2pss

0

0

2cp22 + 4p33 — 4psa — 2p3s — 2pss
6cpaa

dcpay

4cpia + 4epas

6cpas

4cpaqa + 2¢pss

—q11

—2q13

—(2q16 + g33)
—2q36

—dge66

—q22

—2q24

—(2q27 + qa4)
—2qa7

—qr7

—2q12

—(2q14 + 2q25)

—(2q17 + 2g29 + 2qas)

—(2q49 + 2g57)
—2q79
—(2q15 + 2q23)

—(2q19 + 228 + 2q34 + gs55)
—(2g37 + 2948 + 2g59)

—(2q7s + q99)

—(2q18 + 2926 + 2935)
—(2q39 + 2946 + 2g58)

—(2g67 + 2gs9)
—(2g3s + 2gs6)
—(2g69 + gss)
—24ges

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control
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Global Lyapunov functions for polynomial systems (Summary)

1

Here (e = 0.1, c = —3):
Consider the nonlinear system: (e ¢ 4
= 7.87 3.27 0.00 0.00 0.00
L= 327 759 0.00 0.00 0.00
iy =—z1 — 32 ez}, c=-1% P= 000 000 097 000 0.00
T 0.00 0.00 0.00 0.00 0.00
Optlmlzat|on problem: 0.00 0.00 0.00 0.00 0.00
rglin . 1
Pe s? Qes V(z) = 7.87z% 4 7.5923 + 6.54x1x2 + 0.96a7.
subject to Linear Equality Constraints 10 10
el 0
02-P+ { 0 0 }
7 0 5 5
>
0>-0+ [ 0]
Summary: =0 0
@ If the semidefinite program is feasible, then
the origin is globally asymptotically stable. 5 5
@ Moreover, V(z) = z(z)T Pz(z) is a
Lyapunov function.
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Local Lyapunov functions for polynomial systems, 1

Consider the nonlinear system:

T1 = X2, T2 = —T1 — T2+ Cxy, c=7

Three equilibria z1 € {0, £2}, z2 = 0 (i.e., the origin can't
be globally asym. stable.)

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control
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Local Lyapunov functions for polynomial systems, 1

Consider the nonlinear system:

. . 3 1
T1 = X2, T2 = —T1 — T2+ Cxy, c=73

Three equilibria z1 € {0, £2}, z2 = 0 (i.e., the origin can't
be globally asym. stable.)

Theorem
Consider z = f(x) (f, polynomial, f(0) = 0), a domain
D C R™ and a function  : R™ — R such that

k(z) <0OVzeD and k(z) >0z e R™\D.

Suppose we have a cont. differentiable fcn. V : R™ — R,
a1,p € Ko, and 61,92 : R™ — R satisfying

o1 (|z])=61(z)r(x)< V(z) Vz €R"
(VV (@), f())< —p(|z])+o2(x)r(z) Vo €R™
Then the origin is locally asymptotically stable.

If D = R™, then the origin is globally asymptotically stable.

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control
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Local Lyapunov functions for polynomial systems, 1

Consider the nonlinear system:

i‘z:—ajl—l‘2+C$§7 c=1

T1 = T2, 1

Three equilibria z1 € {0, £2}, z2 = 0 (i.e., the origin can't
be globally asym. stable.)

Theorem
Consider z = f(x) (f, polynomial, f(0) = 0), a domain
D C R™ and a function  : R™ — R such that

k(z) <0OVzeD and k(z) >0z e R™\D.

Suppose we have a cont. differentiable fcn. V : R™ — R,
a1,p € Ko, and 61,92 : R™ — R satisfying

o1 (|z])=61(z)r(x)< V(z) Vz €R"
(VV (@), f(2))< —p(lz])+02(x)r(2)
Then the origin is locally asymptotically stable.

Vz € R™

If D = R™, then the origin is globally asymptotically stable.

Consider D = B1(0) = {z € R™ : |z| < 1} and define

T

kx)y=z"z—1

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control

Unknown functions 61, d:
61(2) = 2(2) T Dsmz(z) and d2(z) = z(z)T Esmz(z)

where

Dsm:|:

di1

dis

d1s €11 €15
: , Esm = : B :
dss el5 - es55
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Local Lyapunov functions for polynomial systems, 1

Consider the nonlinear system:

1

. . 3
T1 = X2, T2 = —T1 — T2+ Cxy, c=73

Three equilibria z1 € {0, £2}, z2 = 0 (i.e., the origin can't
be globally asym. stable.)

Theorem

Consider z = f(x) (f, polynomial, f(0) = 0), a domain
D C R™ and a function  : R™ — R such that

k(z) <0OVzeD and k(z) >0z e R™\D.

Suppose we have a cont. differentiable fcn. V : R™ — R,
a1,p € Ko, and 61,92 : R™ — R satisfying

o1 (|z])=61(z)r(x)< V(z) Vz €R"
(VV (), f(x))< —p(|z])+2 () ()
Then the origin is locally asymptotically stable.

Vz € R™

If D = R™, then the origin is globally asymptotically stable. )

Consider D = B1(0) = {x € R™ : |z| < 1} and define

kz)=aTz—1

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control

Unknown functions 61, d:

61(2) = 2(2) T Dsmz(z) and d2(z) = z(z)T Esmz(z)

where

Calculate product §1 (z)x(x):
81 (z)k(z) = 2(2)T Demz(z) - (@Tz — 1)

diq dis €11 €15

dis dss e1s es55

(z
()" D1y(z) + y(x)" Day(x) — y(z)" Day(x)
(x)TDlay(m)

Here D1, D, D3, Dy, € S°. For example:

0 0 0 0 0
0 0 0 0 0
diz d13 0di5 dia
0 0 0 O 0
da2 d23 0 das dog
da

0
da

Y
Y

.

w N
[=lelojololo)elole]

3 d3z 0 d3s d3a

0 0 O 0

5 d3s 0 dss das
d24 d34 0 d4s dag

[=lelolololo}elole]

S

I
coocoococococo
S Y-
S EOR R OR 00

E

Ch. 3: Linear Systems and Linearization
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Local Lyapunov functions for polynomial systems, 2

Consider the nonlinear system:

g'g2:—x1—x2+c:c:1", c=1

&1 = w2, 1

Three equilibria z1 € {0, £2}, z2 = 0 (i.e., the origin can't
be globally asym. stable.)

Theorem
Consider z = f(x) (f, polynomial, f(0) = 0), a domain
D C R™ and a function x : R™ — R such that

k(x) <O0VaxzeD and k(zx)>0xzeR™\D.

Suppose we have a cont. differentiable fcn. V : R™ — R,
a1,p € K, and 61,92 : R™ — R satisfying

a1 (|z])=d61(z)r(z)< V(z) Vz €R"
(VV (@), f())< —p(|z])+02(x)r(2)
Then the origin is locally asymptotically stable.

Vo € R™

If D = R™, then the origin is globally asymptotically stable. )

Consider D = B1(0) = {z € R™ : |z| < 1} and define

T

kKz)=az"z—1

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control

Dy, Eiq € S° defined through unknowns Dy, Esm € SP:

61(z) = 2(2)T Demz(z), d1(z)k(z) = y(x)T Digy(z)
d2(2) = 2(2) " Bsmz(z), 82(z)k(z) = y(z)T Biay(z)

Corresponding feasibility problem:

min 1
Pes®, Qes®
DsmvEsmESE)

D,Ees®

subject to Linear equality constraints

-P 0 el 0
oz T o ]+[9 6]
I N
027Q+{% 8}*E
0 Ei _'l)s7n
0 ;2 "l;s7n
0= D — Dy
0=F—E,
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Local Lyapunov functions for polynomial systems, 3

Consider the nonlinear system:

j:zzfmlf:vngcm?, c= 3

T1 = T2, i

Three equilibria z1 € {0, £2}, z2 = 0 (i.e., the origin can’t
be globally asym. stable.)

Theorem
Consider z = f(x) (f, polynomial, f(0) = 0), a domain
D C R™ and a function  : R™ — R such that

k(z) <0OVzeD and k(z) >0z e R™"\D.

Suppose we have a cont. differentiable fcn. V : R™ — R,
a1, p € Koo, and 61,2 : R™ — R satisfying

a1 (|z])=d1(x)k(z)< V(xz) Va €R"
(VV(2), f(2))< —p(|z])+02(x)k(z) Vo€ R™
Then the origin is locally asymptotically stable.

If D = R™, then the origin is globally asymptotically stable. )

Consider D = B1(0) = {« € R™ : |z| < 1} and define

kz)=aTe—1

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control

Here, V(z) = 2(2)T Pz(z):

8.69 3.50 0 0 0
3.50 7.63 0 0 0

P =

Remember:
@ Feasibility implies local asymptotic stability

@ Infeasibility does not imply that the origin is not
asymptotically stable
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Estimation of the region of attraction

Consider the nonlinear system:
To = —x1 — X2 + cz‘?,

N

T1 = x2, c=

Properties:
@ V(z) is positive definite and satisfies the decrease
condition on B1(0)
@ However, 1B1(0) is not necessarily forward invariant

Corresponding optimization problem:

max C
ceR
§3:R" >R>q
subjectto (V(z) — ¢)|z|?* — 83(x)k(z) >0
With & = 1 and unknown polynomial §3 of order < 4 optimal
value ¢* = 6.96 is returned

2 \\\\\\\\\\\\\\\\
15 \\\\\\\\\\\\\\\\‘
1 \\\\\\\\\\\\\\\)
0.5 ?j P \\\\ ’
& o0, tord !
ey [N RN
oAV NN S VA
NN <<\
15 NN AN <~ 3\
N S S
2 -1 0 1 2

zy
Final comment:
@ Estimate is quite conservative. The estimate can be
improved by changing ~ and by increasing k
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Estimation of the region of attraction

Consider the nonlinear system:

j:ngmlf:vngcz‘?, c=

N

1 = T2,
Properties:
@ V(z) is positive definite and satisfies the decrease
condition on B1(0)
@ However, B1(0) is not necessarily forward invariant

Theorem
Consider z = f(x) (f polynomial, f(0) = 0) a domain
D C R™ and a function x : R™ — R such that k(xz) < 0 for
allz € D and x(x) > 0 for all z € R™\D. Additionally, let
V : R™ — R be a Lyapunov function and let k € N,
03 : R™ — RZO andc € Rs.

If (V(z) — ¢)|z|?* — §3(x)r(z) >0 z € R",
then the sublevel set {x € R" : V(z) < ¢} C D is
contained in the region of attraction.

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control

Corresponding optimization problem:

max C

ceR
63:R" =R

subjectto (V(z) — ¢)|z|?* — 83(x)k(z) >0

With & = 1 and unknown polynomial §3 of order < 4 optimal
value ¢* = 6.96 is returned
2 \\\\\\\\\\\\\\\\
15 [ AUN N NN AR N
NS TTTNNNNNN LN T

VzeR".

1
0.5
g 0

-0.5

\

AR

AR

\\\‘\\\\\\\\

N\

1 0 1 2
T

Final comment:

@ Estimate is quite conservative. The estimate can be

improved by changing « and by increasing &
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Systems with Inputs

Consider: Note that

@ A linear system (with output) is unambiguously defined
through (A, B) (or (A, B, C, D))

@ (A, B) describes the system without output (or z = y)
@ (A, C) describes output behavior without input

& = f(x,u), (f,cont. differentiable w.r.t. z and u)
Recall:
@ An equilibrium pair (z€¢, u¢) satisfies f(z¢,u®) =0

@ Without loss of generality f(0,0) = 0 (due to
coordinate transformation z = ¢ — z¢, v = u — u®)

Linearization:
a=[Few] o p=[Few)
Ox (z,u)=0 Ou (z,u)=0
Linear system with input:
i = Az + Bu, AR "™ BeR"™™

The system is defined through the pair (A, B)
Solution (depending on z(0) and u):

@ The matrix D (direct feedthrough) is often not present

t
x(t; o, u) = x(t) = eA*z(0) +/ A=) Bu(r)dr
0

Output equation:

y=Cz+ Du

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control Ch. 3: Linear Systems and Linearization 31/39



Systems with Inputs

Consider:
z = f(z,u), (f,cont. differentiable w.r.t. z and u)
Recall:

@ An equilibrium pair (z¢, u©) satisfies f(z¢,u®) =0
@ Without loss of generality f(0,0) = 0 (due to
coordinate transformation z = ¢ — z¢, v = u — u®)
Linearization:
a=[Few] o p=[Few)
Ox (z,u)=0 Ou (z,u)=0

Linear system with input:

Note that

@ A linear system (with output) is unambiguously defined
through (A, B) (or (A, B, C, D))

@ (A, B) describes the system without output (or z = y)
@ (A, C) describes output behavior without input
@ The matrix D (direct feedthrough) is often not present

Example (Pendulum on cart; upright position)

z3

)

xz - - -

z; —Jexg—J sin(mz)wi—ﬁ/ cos(xg)xyg+g cos(xg)sin(xg)+Ju
EN M J—cos2(z3)

24 — M~z +Mgsin(zg)—ccos(zg)zg—cos(zg) sin(z2)zz+cos(12)u

&= Az + Bu, AcR™", BeR™™ T
The system is defined through the pair (A, B) 0 0 1
Solution (depending on z(0) and ): o 0 9 O e
0 P 9 ) A= {* (z u):| = 0 g —__Je S
B MJ—1 MJ—1 MJ—1
t (0,0) 0o _Mg z My
x(t; zo,u) = z(t) = eAtz(0) +/ A=) Bu(r)dr Y=L Lrd=i Y=L
0 0
0
ion: B=|—(z,u = J
Output equation L)u (= )} 0o e
y=Cz+ Du MJ—1 )



Systems with Inputs (Controllability and Observability, 1)

Definition (Controllability)

Consider the linear system defined through (A, B). The
linear system (or equivalently the pair (A, B)) is said to be
controllable, if for all 1, xz2 € R™ there exists T' € R> and
u : [0, T] — R™ such that

a7
o = e T2y +/ eA(T_T)Bu(T)dT.
0

v

Ability of a system to steer any initial state to a target state
through an appropriate input « : [0, 7] — R™.
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Systems with Inputs (Controllability and Observability, 1)

Definition (Controllability)

Consider the linear system defined through (A, B). The
linear system (or equivalently the pair (A, B)) is said to be
controllable, if for all 1, xz2 € R™ there exists T' € R> and
u : [0, T] — R™ such that

a7
o = e T2y +/ eA(T_")Bu(T)dT.
0
J

Ability of a system to steer any initial state to a target state
through an appropriate input « : [0, 7] — R™.

Definition (Observability)

Consider the linear system defined through (A, C). The
linear system with output (or equivalently the pair (A, C)) is
said to be observable, if for all 21, z2 € R™, 21 # x2 there
exists T' € R>q such that

CeATzqy =L CeAT gy,

Determines if z(0) can be uniquely determined by
measuring y(t) = Cuz(t) over a given time window ¢ €
[0, T7].
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Systems with Inputs (Controllability and Observability, 1)

Definition (Controllability)

Consider the linear system defined through (A, B). The
linear system (or equivalently the pair (A, B)) is said to be
controllable, if for all 1, xz2 € R™ there exists T' € R> and

w: [0,T] — R™ such that Note that:
- @ Controllability and observability are independent of D.
xy =e Tz + / eAT=7) Bu(r)dr. @ The triple (A, B, C) is called controllable and
g J observable, if the pair (A, B) is controllable and the

Ability of a system to steer any initial state to a target state pair (4, C) is observable.

through an appropriate input « : [0, 7] — R™. @ Controllability and observability are independent
A e concepts:
Definition (Observability) P .
Consider the linear system defined through (A, C). The Ce 'y + C’/ e =7) Bu(r)dr
0

linear system with output (or equivalently the pair (A, C)) is
said to be observable, if for all 21, z2 € R™, 21 # x2 there
exists T' € R>q such that

CeATzqy =L CeAT gy,

T
£ CeTzy + C/ eAT=7) Bu(7)dr
0

Determines if z(0) can be uniquely determined by
measuring y(t) = Cuz(t) over a given time window ¢ €
[0, T7].
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Systems with Inputs (Controllability and Observability, 2)

Definition (Controllability)

Consider the linear system defined through (A, B). The
linear system (or equivalently the pair (A, B)) is said to be
controllable, if for all 1, xz2 € R™ there exists T' € R> and
u : [0, T] — R™ such that

a7
o = e T2y +/ eA(T_")Bu(T)dT.
0

v

Ability of a system to steer any initial state to a target state
through an appropriate input « : [0, 7] — R™.

Definition (Observability)

Consider the linear system defined through (A, C). The
linear system with output (or equivalently the pair (A, C)) is
said to be observable, if for all 21, z2 € R™, 21 # x2 there
exists T' € R>q such that

CeATzqy =L CeAT gy,

Determines if z(0) can be uniquely determined by
measuring y(t) = Cuz(t) over a given time window ¢ €
[0, T7].

P. Braun & C. M. Kellett (ANU)

Introduction to Nonlinear Control

Theorem (Controllability, Kalman matrix)

Consider the linear system defined through the pair (A, B).
The linear system (or equivalently the pair (A, B)) is
controllable if and only if

rank ([B AB A’B --- A" 'B]) =n.
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Systems with Inputs (Controllability and Observability, 2)

Definition (Controllability)

Consider the linear system defined through (A, B). The
linear system (or equivalently the pair (A, B)) is said to be
controllable, if for all 1, xz2 € R™ there exists T' € R> and
u : [0, T] — R™ such that

T
zg = ey +/ eAT=7) Bu(7)dr.
0

v

Ability of a system to steer any initial state to a target state
through an appropriate input « : [0, 7] — R™.

Definition (Observability)

Theorem (Controllability, Kalman matrix)

Consider the linear system defined through the pair (A, B).
The linear system (or equivalently the pair (A, B)) is
controllable if and only if

rank ([B AB A’B --- A" 'B]) =n.

Theorem (Observability)

Consider the linear system defined through the pair (A, C).
The linear system with output (or equivalently the pair
(A, C)) is observable if and only if

Consider the linear system defined through (A, C). The C?A
linear system with output (or equivalently the pair (A, C)) is CA2
said to be observable, if for all 21, z2 € R™, 21 # x2 there rank =n.
exists T' € R>q such that :
—1il

CeATxy + CeTxy. CA"™ |
Determines if z(0) can be uniquely determined by
measuring y(t) = Cuz(t) over a given time window ¢ €
[0, 7).




Systems with Inputs (Controllability and Observability, 2)

Definition (Controllability)

Consider the linear system defined through (A, B). The
linear system (or equivalently the pair (A, B)) is said to be
controllable, if for all 1, xz2 € R™ there exists T' € R> and
u : [0, T] — R™ such that

T
zg = ey +/ eAT=7) Bu(7)dr.
0

v

Ability of a system to steer any initial state to a target state
through an appropriate input « : [0, 7] — R™.

Definition (Observability)

Consider the linear system defined through (A, C). The
linear system with output (or equivalently the pair (A, C)) is
said to be observable, if for all 21, z2 € R™, 21 # x2 there
exists T' € R>q such that

CeATzqy =L CeAT gy,

Determines if z(0) can be uniquely determined by
measuring y(t) = Cuz(t) over a given time window ¢ €
[0, T7].

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control

Theorem (Controllability, Kalman matrix)

Consider the linear system defined through the pair (A, B).
The linear system (or equivalently the pair (A, B)) is
controllable if and only if

rank ([B AB A’B --- A" 'B]) =n.

Theorem (Observability)

Consider the linear system defined through the pair (A, C).
The linear system with output (or equivalently the pair
(A, C)) is observable if and only if

c
CA

2
rank oA =n.

CA:I'L—I

@ (A, B) controllable if and only if (A7, BT) observable
@ (A, C) observable if and only if (AT, CT) controllable
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Systems with Inputs (Controllability and Observability, 3)

Definition (Controllability)

Consider the linear system defined through (A, B). The
linear system (or equivalently the pair (A, B)) is said to be
controllable, if for all 1, z2 € R™ there exists T' € R>( and
w : [0,T] — R™ such that

T
zy = e Ty +/ A=) Bu(7)dr.
0

y

Ability of a system to steer any initial state to a target state
through an appropriate input « : [0, 7] — R™.

Definition (Observability)

Consider the linear system defined through (A, C). The
linear system with output (or equivalently the pair (A, C)) is
said to be observable, if for all z1,z2 € R", x1 # x2 there
exists T' € R>( such that

Ce T, £ CeAT ;.

Determines if z(0) can be uniquely determined by
measuring y(t) = Cz(¢) over a given time window ¢ €
[0,7].

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control

Theorem (Popov-Belevitch-Hautus (PBH) test)

The linear system defined through (A, B) is controllable if
and only if

rank ([A— Al B])=n
Theorem (PBH test )

The linear system (or equivalently the pair (A, C)) is
observable if and only if
]) =n VA eC

rank ([ = _C,)J

vaeC
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Systems with Inputs (Controllability and Observability, 3)

Definition (Controllability)

Consider the linear system defined through (A, B). The
linear system (or equivalently the pair (A, B)) is said to be
controllable, if for all 1, z2 € R™ there exists T' € R>( and
w : [0,T] — R™ such that

T
zy = e Ty +/ A=) Bu(7)dr.
0

o

Ability of a system to steer any initial state to a target state
through an appropriate input « : [0, 7] — R™.

Definition (Observability)

Consider the linear system defined through (A, C). The
linear system with output (or equivalently the pair (A, C)) is
said to be observable, if for all z1,z2 € R", x1 # x2 there
exists T' € R>( such that

Ce T, £ CeAT ;.

Determines if z(0) can be uniquely determined by
measuring y(t) = Cz(¢) over a given time window ¢ €
[0,7].

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control

Theorem (Popov-Belevitch-Hautus (PBH) test)

The linear system defined through (A, B) is controllable if
and only if

rank ([A— Al B])=n
Theorem (PBH test )

The linear system (or equivalently the pair (A, C)) is
observable if and only if
]) =n VA eC

rank ({ A _C,)J
Note that:

@ The rank of a matrix needs to be considered with
caution. Example

vaeC

1 0
MS:{O 5

@ Controllability/Observability is independent of the time
interval [0, T']. In particular, T' can be chosen
arbitrarily small.

}, e#0
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Systems with Inputs (Stabilizability)

Definition (Stabilizability)

Consider the linear system defined through the pair (A, B).
The linear system (or equivalently the pair (A, B)) is said to
be stabilizable, if for all z € R™ there exists u : R~ — R™
such that B

lz(t;z,u)] =0  for t— oo.

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control

Theorem

Consider the pair (A, B) together with the coordinate
transformation (2) where (A11, B1) is controllable. Then
the pair (A, B) is stabilizable if and only if A2 is Hurwitz.

Theorem (Modified PBH test)
The linear system (A, B) is stabilizable if and only if

rank ([A — X[ B]) =n, AeCy (3)

v

Lyapunov result: (A, B) is stabilizable < 3P € S, so that
AP+ PAT - BBT <.
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Systems with Inputs (Stabilizability)

Definition (Stabilizability)

Consider the linear system defined through the pair (A, B).
The linear system (or equivalently the pair (A, B)) is said to
be stabilizable, if for all z € R™ there exists u : R>g — R™
such that B

lz(t;z,u)] =0  for t— oo.

Intermediate step:
@ Coordinate transformation, T € R™*" invertible
& = Ax + Bu, y = Cx + Du.
Ti=TAT Tx +TBu, y=CT T+ Du.
@ With notation:
F=Tz, A=TAT ', B=TB,C =CT !
Z = A% + Bu, y:é’erDu

@ The coordinate transformation does not change the
convergence properties i.e., |z(t)| — 0 for t — oo if
and only if |Z(¢)| — 0 for ¢ — oco.

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control

Theorem

Consider the pair (A, B) together with the coordinate
transformation (2) where (A11, B1) is controllable. Then
the pair (A, B) is stabilizable if and only if A2 is Hurwitz.

Theorem (Modified PBH test)
The linear system (A, B) is stabilizable if and only if

rank ([A — X[ B]) =n, AeCy (3)

v

Lyapunov result: (A, B) is stabilizable < 3P € S, so that
AP+ PAT - BBT <.
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Systems with Inputs (Stabilizability)

Definition (Stabilizability)

Consider the linear system defined through the pair (A, B).
The linear system (or equivalently the pair (A, B)) is said to
be stabilizable, if for all z € R™ there exists u : R>g — R™
such that B

|z(t; z,u)] — 0 for t— oo.

Intermediate step:
@ Coordinate transformation, T € R™*" invertible
& = Ax + Bu, y = Cx + Du.
Ti=TAT Tx +TBu, y=CT T+ Du.
@ With notation:
F=Tz, A=TAT ', B=TB,C =CT !
Z = A% + Bu, y:é’erDu

@ The coordinate transformation does not change the
convergence properties i.e., |z(t)| — 0 for t — oo if
and only if |Z(¢)| — 0 for t — oo.

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control

Proposition

Consider the pair (A, B). There exists an invertible matrix
T € R™*™ such that

A1 Az
0 Aog

By

TAT*lz{ 0 } 2

] and TB:[

and the pair (A11, B1) is controllable.

Theorem

Consider the pair (A, B) together with the coordinate
transformation (2) where (A11, B1) is controllable. Then
the pair (A, B) is stabilizable if and only if A2 is Hurwitz.

Theorem (Modified PBH test)
The linear system (A, B) is stabilizable if and only if
rank ([A — X[ B]) =n, AeCy (3)

V.

v

Lyapunov result: (A, B) is stabilizable < 3P € S, so that
AP+ PAT - BBT <.
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Systems with Inputs (Detectability)

Observability of (A, C) implies that for each z¢ # 0 there
exists a t > 0 such that

Cx(t;z0,0) # Cx(¢;0,0) =0,

i.e., zo can be distinguished from 0.
If (A, C) is not observable define: (unobservable states)

N = {z0 € R" : Cx(t; z9,0) = 0 V¢t > 0} 4)  Theorem

Consider the pair (A, C') together with the coordinate
transformation (5) where (Aa2, C2) is observable. Then the
pair (A, C) is detectable if and only if A11 is Hurwitz.

Theorem
The pair (A, C) is detectable if and only if

rank({ AE,AI :|):n, AeCh

Lyapunov result: (A, C) is detectable < 3P € S so that
ATP+PA-CTC <.

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control
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Systems with Inputs (Detectability)

Observability of (A, C) implies that for each z¢ # 0 there
exists a t > 0 such that

Cx(t;z0,0) # Cx(¢;0,0) =0,

i.e., zo can be distinguished from 0.
If (A, C) is not observable define: (unobservable states)

N = {zg € R" : Cz(t;20,0) = 0Vt > 0} (4)

Definition (Detectability)

Consider the linear system defined through the pair (A4, C).
The linear system with output (or equivalently the pair

(A, 0)) is said to be detectable, if for all zo € A the
solution satisfies

Theorem

Consider the pair (A, C') together with the coordinate
transformation (5) where (Aa2, C2) is observable. Then the
pair (A, C) is detectable if and only if A11 is Hurwitz.

v

Theorem
The pair (A, C) is detectable if and only if

l2(t20,0)| = 0 for ¢ — oo. rank({AEMD:’“ AeTy
Lyapunov result: (4, C) is detectable < 3P € ST, so that
ATP4+PA-CTC <O.



Systems with Inputs (Detectability)

Observability of (A, C) implies that for each z¢ # 0 there
exists a t > 0 such that

Cx(t;z0,0) # Cx(¢;0,0) =0,

i.e., zo can be distinguished from 0.
If (A, C) is not observable define: (unobservable states)

N = {zg € R" : Cz(t;20,0) = 0Vt > 0} (4)

Definition (Detectability)

Consider the linear system defined through the pair (A4, C).
The linear system with output (or equivalently the pair

(A, 0)) is said to be detectable, if for all zo € A the
solution satisfies

|z(t; z0,0)] — 0 for t — oo.

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control

Proposition

Consider the pair (A, C). There exists an invertible matrix
T € R™*™ such that

A1n Aiz

-1 _
TAT _[ 0 Aoy

}, cTt=[0 C2] (5

and the pair (Az2, C2) is observable.

Theorem

Consider the pair (A, C') together with the coordinate
transformation (5) where (Aa2, C2) is observable. Then the
pair (A, C) is detectable if and only if A11 is Hurwitz.

v

Theorem
The pair (A, C) is detectable if and only if

rank({ AEAI :|):n, AeCyp

Lyapunov result: (4, C) is detectable < 3P € ST, so that
ATP+PA-CTC <.
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Systems with Inputs (Kalman decomposition)

Proposition (Kalman decomposition)

Consider the linear system defined through (A, B, C, D). There exists
an invertible matrix T € R™*"™ such that

A1l A Az A B:

-1 _ 0 Ay 0 A | B2
TAT " = 0 0 Ags  Asy s TB = 0 X

0 0 0 Agyq 0

CT'=[0 C; 0 C4]
and such that
(i nb)
0 A |’| B2
is controllable and

([ A Az },[ C: C ])

is observable.
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Systems with Inputs (Pole Placement, 1)

Consider Example (Pendulum on a cart)
&= Az + Bu Linearization in the upright position:
For u = 0, asymptotic stability of z¢ = 0 depends solely on 0 0 1.00 0 0
the eigenvalues of A. 0 0 : 0 1.00 0
If A is not Hurwitz can we define u = Kz A= 0 327 —007 _0’03 B = —0.67
&= Az + Bu=(A+ BK)x 0 654 —-0.03 —-0.07 0.33

such that A + BK is Hurwitz? The eigenvalues of A (obtained using eig.m in Matlab):
{0,2.5162, —2.5995, —0.05},

Theorem (Pole Placement)
i.e., Ais not Hurwitz. (Verify that (A, B) is controllable.)

Consider the linear system & = Az + Bu. Let With

My An €Cwith {1, ..., An} ={X1,..., An}. IF e T e A —G0E

(A, B) is controllable, then there exists a matrix | % ' ’ 9 |

K € R™*"™ such that {\1, ..., A\n} is the set of the closed loop matrix

eigenvalues of the closed loop matrix A+ BK. 0 0 1.00 0

0 0 0 1.00

In Matlab: A =A+BK = 189 _90.62 1024 —40.39
@ acker.m 2.45 —40.41 5.12 —20.24
® place.m has eigenvalues {—1,—2, —3, —4}; i.e., Ay is Hurwitz.

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control Ch. 3: Linear Systems and Linearization 38/39



Systems with Inputs (Pole Placement, 2)

Consider
T = Ax + Bu

For u = 0, asymptotic stability of z¢ = 0 depends solely on
the eigenvalues of A.
If A is not Hurwitz can we define u = Kz

& = Az + Bu=(A+ BK)x
such that A + BK is Hurwitz?

Theorem (Pole Placement)

Consider the linear system & = Az + Bu. Let
A,y An ECwith{A\1,..., n} = {Xl,...,Xn}. If
(A, B) is controllable, then there exists a matrix

K € R™*™ such that {\1, ..., \n} is the set of
eigenvalues of the closed loop matrix A+ BK.

In Matlab:
@ acker.m

@ place.m

P. Braun & C. M. Kellett (ANU) Introduction to Nonlinear Control

Pole placement for static output feedback:
& = Az + Bu,
y=Cx

u=Ky

Closed loop system:
&= (A+BKC)x

Theorem

Iftrace(A) > 0 and CB = 0 then there is no matrix gain
K € R™*P such that A+ BKC'is Hurwitz.

It holds that:
@ trace(A) = sum of the eigenvalues of A
@ trace(BKC) = trace(CBK) =0

@ trace(A + BKC) = trace(A) + trace(BKC) i.e.,
trace(A + BKC) = trace(A) > 0

@ A+ BKC has at least one eigenvalue in the right half
plane.
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