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Fundamental Results in the Frequency Domain, 1

Consider single-input single-output (SISO) linear systems:

ẋ(t) = Ax(t) + bu(t), y(t) = cx(t) + du(t),

Frequency domain representation:

ŷ(s) = G(s)û(s)

Notation and assumptions:
Transfer function G : C → C.

G is a rational function, i.e., there exist polynomial
functions P,Q ∈ R[s] (with coefficients in R) such that

G(s) =
P (s)

Q(s)
.

P,Q are of minimal degree (i.e., they don’t have
common zeros)

We assume x(0) = 0

Consider ψ : R≥0 → Rm, m ∈ N, and the integral∫∞
0 ψ(t)e−st dt for s ∈ C for which the integral is

well-defined

Definition (Laplace transform)
Consider ψ : R≥0 → Rm. For s ∈ C ⊂ C for which the
integral is well-defined, the Laplace transform ψ̂ : C → Cm

of ψ is defined as

ψ̂(s)
.
= (Lψ)(s)

.
=

∫ ∞

0
ψ(t)e−st dt.

Example: Consider ψ(t) = 1. For fixed s ∈ C compute∫ ∞

0
e−st dt = −

1

s
e−st

∣∣∣∣∞
0

=
1

s

i.e., ψ̂(s) = (Lψ)(s) = 1
s

.
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= (Lψ)(s)

.
=

∫ ∞

0
ψ(t)e−st dt.

Definition (Inverse Laplace transform)
Consider φ̂ : C → Cm and let α ∈ R such that
α+ jβ ∈ C ⊂ C for all β ∈ R. Then the inverse Laplace
transform φ : R≥0 → Rm of φ̂ is defined as

φ(t)
.
= (L −1φ̂)(t)

.
=

1

2πj

∫ α+j∞

α−j∞
estφ̂(s) ds

=
eαt

2πj

∫ ∞

−∞
ejwtφ̂(α+ jw) dw.
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Fundamental Results in the Frequency Domain, 3
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ŷ(s) = G(s)û(s)
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domain and constants a ∈ R>0, a1, a2 ∈ R. Then the
Laplace transform and its inverse satisfy the following
properties:

L −1Lφ(t) = φ(t),

L (a1φ+ a2φ2)(s) = a1φ̂1(s) + a2φ̂2(s),

L (φ(a·))(s) = 1
a
φ̂
(
s
a

)
,

L (φ(· − a))(s) = e−saφ̂ (s) ,

L ( dk

dtk
φ)(s) = skφ̂(s)−

∑k−1
j=1 s

j−1 dk−1−j

dtk−1−j φ(0),

L
(∫ ·

0 φ(τ) dτ
)
(s) = 1

s
φ̂(s).
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The Transfer Function

Consider single-input single-output (SISO) linear systems:

ẋ(t) = Ax(t) + bu(t), y(t) = cx(t) + du(t),

Application of the Laplace transform:

sx̂(s)− x(0) = Ax̂(s) + bû(s), ŷ(s) = cx̂(s) + dû(s)

Rearrange the terms (x(0) = 0):

ŷ(s) =
(
c(sI −A)−1b+ d

)
û(s)

Identify input output relationship:

G(s) =
ŷ(s)

û(s)
= c(sI −A)−1b+ d (1)

Definition (Realization)
Consider a transfer function G(s) and assume that (1) is
satisfied for (A, b, c, d). Then G(s) is called realizable and
the quadruple (A, b, c, d) is called a realization of G(s).

Theorem (Realizable transfer functions)

Consider a transfer function G(s) =
P (s)
Q(s)

, P,Q ∈ R[s].
The transfer function G(s) is realizable if and only if it is
proper, i.e., deg(P ) ≤ deg(Q).

Theorem (Minimal realization)
The quadruple (A, b, c, d) is a minimal realization of
G(s) = c(sI −A)−1b+ d if and only if (A, b) is controllable
and (A, c) is observable.

Theorem (Uncontrollable & unobs. modes)

Let (A, b, c, d) be a realization of G(s) =
P (s)
Q(s)

. If λ ∈ C is a
pole of G, i.e., Q(λ) = 0, then λ is an eigenvalue of A.
Conversely, let λ be an eigenvalue of A such that
G(λ) ̸= 0, then λ is an uncontrollable mode of (A, b) or an
unobservable mode of (A, c).
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û(s)
= c(sI −A)−1b+ d (1)

Definition (Realization)
Consider a transfer function G(s) and assume that (1) is
satisfied for (A, b, c, d). Then G(s) is called realizable and
the quadruple (A, b, c, d) is called a realization of G(s).

Theorem (Realizable transfer functions)

Consider a transfer function G(s) =
P (s)
Q(s)

, P,Q ∈ R[s].
The transfer function G(s) is realizable if and only if it is
proper, i.e., deg(P ) ≤ deg(Q).

Theorem (Minimal realization)
The quadruple (A, b, c, d) is a minimal realization of
G(s) = c(sI −A)−1b+ d if and only if (A, b) is controllable
and (A, c) is observable.

Theorem (Uncontrollable & unobs. modes)

Let (A, b, c, d) be a realization of G(s) =
P (s)
Q(s)

. If λ ∈ C is a
pole of G, i.e., Q(λ) = 0, then λ is an eigenvalue of A.
Conversely, let λ be an eigenvalue of A such that
G(λ) ̸= 0, then λ is an uncontrollable mode of (A, b) or an
unobservable mode of (A, c).

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 4: Frequency Domain Analysis 7 / 17



The Transfer Function

Consider single-input single-output (SISO) linear systems:
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û(s)

Identify input output relationship:

G(s) =
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û(s)

Identify input output relationship:

G(s) =
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The L2-, L∞- and H∞-norm

Consider ψ : [0, t) → Rn, n ∈ N, for t ∈ R≥0 ∪ {∞}.

L2-norm: For ψ with (
∫ t
0 |ψ(τ)|2 dτ)

1
2 <∞, define

the norm

∥ψ∥L2[0,t)
.
=

(∫ t

0
|ψ(τ)|2 dτ

) 1
2

L∞-norm: For essentially bounded functions ψ,
define the norm

∥ψ∥L∞[0,t)
.
= ess sup

τ∈[0,t)
|ψ(τ)|

.
= inf{η ∈ R≥0 : |ψ(t)| ≤ η for almost all τ ∈ [0, t)}

Note that:
Two norms are combined in the definitions: ∥ · ∥L2 ,
∥ · ∥L∞ define norms of a function ψ(·) : R≥0 → Rn

and | · | denotes a vector norm ψ(t) ∈ Rn for a fixed
t ∈ R≥0. For x ∈ C, |x| =

√
xT x.

Consider ψ̂ : C → Cn

H∞-norm:

∥ψ̂∥∞ = sup
ω∈R

|ψ̂(jω)|.

Proposition (Parseval’s theorem)

Consider a signal ψ : R≥0 → Rn in the time domain
satisfying ∥ψ∥L2[0,∞) <∞ and its Laplace transform
ψ̂ : C → Cn. Then Parseval’s relation∫ ∞

0
|ψ(τ)|2 dτ =

1

2π

∫ ∞

−∞
|ψ̂(jω)|2 dω

is satisfied.

(Relation between L2-norm and Laplace transform)
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ψ̂ : C → Cn. Then Parseval’s relation∫ ∞

0
|ψ(τ)|2 dτ =

1

2π

∫ ∞

−∞
|ψ̂(jω)|2 dω

is satisfied.

(Relation between L2-norm and Laplace transform)
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Section 2

Stability Analysis in the Frequency Domain
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Stability Analysis in the Frequency Domain (Bounded-Input, Bounded-Output Stability)

Consider

ẋ(t) = Ax(t) + bu(t), y(t) = cx(t) + du(t),

ŷ(s) = G(s)û(s)

Definition (BIBO stability)
The linear system is called bounded-input, bounded-output
(BIBO) stable if ∥u∥L∞ <∞ implies ∥y∥L∞ <∞.

It holds that:
The linear system is BIBO stable if and only if there
exists η ∈ R>0 such that

∥y∥L∞ ≤ η∥u∥L∞ , ∀ u : R≥0 → Rm

The linear system is BIBO stable if and only if∫ ∞

0
|ceAτ b| dτ <∞.

Corollary
Assume that the origin of the linear system with zero-input
is exponentially/asymptotically stable. Then the system is
BIBO stable.

Note that:
The converse is not true. Example: Let c = 0 (and
d = 0). Then y(t) .= 0 for all inputs u(·) i.e., the
system is BIBO stable (independent of A and b).

Lemma

Consider the transfer function G(s) and an arbitrary
realization (A, b, c, d). Then the system in the frequency
domain and the corresponding system in the time domain
are BIBO stable if and only if all poles of G(s) are in C−.
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Definition (BIBO stability)
The linear system is called bounded-input, bounded-output
(BIBO) stable if ∥u∥L∞ <∞ implies ∥y∥L∞ <∞.

It holds that:
The linear system is BIBO stable if and only if there
exists η ∈ R>0 such that

∥y∥L∞ ≤ η∥u∥L∞ , ∀ u : R≥0 → Rm

The linear system is BIBO stable if and only if∫ ∞

0
|ceAτ b| dτ <∞.

Corollary
Assume that the origin of the linear system with zero-input
is exponentially/asymptotically stable. Then the system is
BIBO stable.

Note that:
The converse is not true. Example: Let c = 0 (and
d = 0). Then y(t) .= 0 for all inputs u(·) i.e., the
system is BIBO stable (independent of A and b).

Lemma

Consider the transfer function G(s) and an arbitrary
realization (A, b, c, d). Then the system in the frequency
domain and the corresponding system in the time domain
are BIBO stable if and only if all poles of G(s) are in C−.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 4: Frequency Domain Analysis 10 / 17



Stability Analysis in the Frequency Domain (Bounded-Input, Bounded-Output Stability)

Consider
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System Interconnections in the Frequency Domain

Consider two systems:

ŷ1(s) = G(s)û1(s)

ŷ2(s) = G(s)û2(s)

Cascade interconnection

ŷ2(s) = G2(s)G1(s)û1(s)

Cascade interconnection û2(s) = ŷ1(s)

G1(s) G2(s)
û1(s) ŷ1(s) = û2(s) ŷ2(s)

G2(s)G1(s)
û1(s) ŷ2(s)
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System Interconnections in the Frequency Domain

Consider:

ŷ(s) = G(s)û(s)

û(s) = v̂(s)− kŷ(s)

Feedback interconnection:

+ G(s)

−k

v̂(s) û(s) ŷ(s)

[1 +G(s)k]−1G(s)
v̂(s) ŷ(s)
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System Interconnections in the Frequency Domain

Consider:

ŷ(s) = G(s)û(s)

û(s) = v̂(s)− kŷ(s)

Feedback interconnection:

+ G(s)

−k

v̂(s) û(s) ŷ(s)

[1 +G(s)k]−1G(s)
v̂(s) ŷ(s)

Rewrite the input: (new input v : R≥0 → R)

u(t) = v(t)− ky(t), k ∈ R

The Laplace transform

û(s) = v̂(s)− kŷ(s).

Thus

ŷ(s) = G(s)(v̂(s)− kŷ(s))

ŷ(s) =
G(s)

1 +G(s)k
v̂(s)

BIBO stability can be guaranteed by selecting
the feedback gain k such that the closed loop
transfer function only has poles in the open left
halfplane C−.
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System Interconnections in the Frequency Domain

Consider:

ŷ(s) = G(s)û(s)

û(s) = v̂(s)− kŷ(s)

Feedback interconnection:

+ G(s)

−k

v̂(s) û(s) ŷ(s)

[1 +G(s)k]−1G(s)
v̂(s) ŷ(s)

Example

Consider:

G(s) =
1

s2 + 0.1s− 9.81

Poles: λ1 = −3.1825 and λ2 = 3.0825.
Feedback interconnection for k ∈ R:

[1 +G(s)k]−1G(s) =

1
s2+0.1s−9.81

1 + k
s2+0.1s−9.81

=
1

s2 + 0.1s− 9.81 + k
.

Poles for k = 10: −0.05± 0.433j ∈ C−
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The Bode Plot

Consider a BIBO stable system:

ŷ(s) = G(s)û(s).

⇝ Investigate correlation between u(t) and y(t)

Let (ω ∈ R)

u(t) = sin(ωt), t ≥ 0

then y(t) converges to the steady-state solution (for
t→ ∞)

yss(t) =M sin(ωt+ φ)

▶ The Gain M = |G(jω)| captures the
amplification of the input signal at the output

▶ Phase φ = φ(ω) captures a phase shift or
delay φ = arctan2(Im(G(jω)),Re(G(jω)))

▶ (Recall that H∞-norm captures the maximal
amplification of a signal)

The Bode Plot visualizes |G(jω)| and φ(ω) over
ω ∈ R on a log10/log10-scale and a
log10/linear-scale

Example: Linearization of the inverted pendulum around the
stable equilibrium [x1, x2]T = [θ, θ̇]T = [π, 0]T .[

ẋ1
ẋ2

]
=

[
0 1

− mgℓ
J+mℓ2

− γ
J+mℓ2

] [
x1
x2

]
+

[
0
ℓ

J+mℓ2

]
u,

y =
[

1 0
]
x.

Transfer function with m = ℓ = 1, J = 0, g = 9.81, γ = 0.1:

G(s) =
P (s)

Q(s)
=

1

s2 + 0.1s+ 9.81
.

The Bode Plot:
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The Bode Plot (Example Continued)

Input-output behavior for

u(t) = sin(ωt)

ω = 2

ω = 3.13

ω = 4

Note that
the Bode plot is used to
experimentally derive the
transfer function

the magnitude is usually shown
in dB (decibel):

|G(jw)| ⇐⇒ log10 |G(jw)|dB
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The Bode Plot (Example: Sketching the Bode Plot)

Example:

Consider

G(s) =
P (s)

Q(s)
=

s+ 10

s2 + 101s+ 100
⇝ G(s) = c

∏dP
i=1(

s
pi

− 1)∏dQ
j=1(

s
qj

− 1)

In terms of the logarithm:

log10 |G(jω)| = log10(|c|) +
dP∑
i=1

log10

(∣∣∣ jωpi − 1
∣∣∣)−

dQ∑
i=1

log10

(∣∣∣ jωqi − 1
∣∣∣)

Approximation of the individual terms:

ω small ⇒ log10

(∣∣∣ jωκ − 1
∣∣∣) ≈ log10(1) = 0

ω large ⇒ log10

(∣∣∣ jωκ − 1
∣∣∣) ≈ log10(ω)− log10(|κ|)

Similar, decomposition of the phase:

φ = arctan2(0, c) +
∑dP

i=1 arctan2
(

ω
pi
,−1

)
−

∑dQ
i=1 arctan2

(
ω
qi
,−1

)
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The Nyquist Criterion
Consider: SISO feedback interconnection

ŷ(s) = Gcl(s)û(s) =
Gol(s)

1 + kGol(s)
û(s)

where
Gol open loop transfer function

Gcl closed loop transfer function
Recall that:

The system is BIBO stable ⇐⇒ Gcl does not have any poles in C+

The zeros of 1 + kGol(s) are the poles of Gcl(s)

Thus, for BIBO stability of Gcl we require
1 + kGol(jω) ̸= 0 or Gol(jω) ̸= −1/k

1 + kGol(s) has no zeros in the closed right-half complex plane.

Cauchy’s Argument Principle:

wn = −
1

2πj

∮
Γ

g′(s)

g(s)
ds = Z − P,

• wn winding number; • Z and P : zeros/poles of g(·) contained within Γ.

Now, BIBO stability requires Z = 0 so that P = 1
2πj

∮
Γ

kG′
ol(s)

1+kGol(s)
ds.

The Nyquist plot is a graphical representation of
the transfer function evaluated along a closed
contour Γ in C that traverses the imaginary axis
and a semicircle of infinite radius.

Im

Re

Γ
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The Nyquist Criterion (2)
Consider: SISO feedback interconnection

ŷ(s) = Gcl(s)û(s) =
Gol(s)

1 + kGol(s)
û(s)

where
Gol,Gcl: open loop and closed loop transfer function

Theorem (Nyquist Criterion)

Consider the SISO closed loop system. Let P ∈ N denote
the number of poles of Gol in C+. Moreover, assume that
Gol does not have any poles in jR. Then the system is
BIBO stable if and only if Gol(jw), w ∈ [−∞,∞], encircles
−1/k ∈ C exactly −P -times clockwise.

Example:
Linearization of the pendulum in the upright position
[x, ẋ]T = θ, θ̇]T = [0, 0]T :[
ẋ1
ẋ2

]
=

[
0 1

mgℓ
J+mℓ2

− γ
J+mℓ2

] [
x1
x2

]
+

[
0
ℓ

J+mℓ2

]
u

y =
[
1 0

]
x

Transfer fcn (m = ℓ = 1, J = 0, g = 9.81, γ = 0.1)

Gol(s) =
1

s2 + 0.1s− 9.81

Gcl(s) =
1

s2 + 0.1s− 9.81 + k

Roots of Gol: λ1 = −3.18 and λ2 = 3.08, i.e., P = 1

For k < 9.81 the graph of Gol(jω) encircles the point − 1
k

zero times and for k > 9.81 the graph encircles the point
− 1

k
exactly −1 time clockwise.
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ẋ2

]
=

[
0 1

mgℓ
J+mℓ2

− γ
J+mℓ2

] [
x1
x2

]
+

[
0
ℓ

J+mℓ2

]
u

y =
[
1 0

]
x

Transfer fcn (m = ℓ = 1, J = 0, g = 9.81, γ = 0.1)

Gol(s) =
1

s2 + 0.1s− 9.81

Gcl(s) =
1

s2 + 0.1s− 9.81 + k

Roots of Gol: λ1 = −3.18 and λ2 = 3.08, i.e., P = 1

For k < 9.81 the graph of Gol(jω) encircles the point − 1
k

zero times and for k > 9.81 the graph encircles the point
− 1

k
exactly −1 time clockwise.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 4: Frequency Domain Analysis 17 / 17



The Nyquist Criterion (2)
Consider: SISO feedback interconnection
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