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Frequency Domain Analysis

0 Fundamental Results in the Frequency Domain
@ The Laplace Transform
@ The Transfer Functions
@ The L2-, Loo- and Hoo-nOrm

e Stability Analysis in the Frequency Domain
@ Bounded-Input, Bounded-Output Stability
@ System Interconnections in the Frequency Domain
@ The Bode Plot
@ The Nyquist Criterion
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Section 1

Fundamental Results in the Frequency Domain
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Fundamental Results in the Frequency Domain, 1

Consider single-input single-output (SISO) linear systems:
z(t) = Ax(t) + bu(t), y(t) = cx(t) + du(t),
Frequency domain representation:
i(s) = G(s)a(s)
Notation and assumptions:
@ Transfer function G : C — C.

@ (G is arational function, i.e., there exist polynomial
functions P, Q € R[s] (with coefficients in R) such that

_ P(s)
Q)

@ P, are of minimal degree (i.e., they don’t have
common zeros)

@ We assume z(0) =0

G(s)
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Fundamental Results in the Frequency Domain, 1

Consider single-input single-output (SISO) linear systems:

i(t) = Az(t) + bu(t), y(t) = ca(t) + du(t), Definition (Laplace transform)
Frequency domain representation: Consider (I RZO — R™. Fors € C C Cfor Wfllch the
LN N integral is well-defined, the Laplace transform ¢y : C — C™
9(s) = G(s)i(s) of + is defined as

Notation and assumptions:

@ Transfer function G : C — C. P(s) = (

29)(s) = /0  p(t)et dt.

@ (G is arational function, i.e., there exist polynomial
functions P, Q € R[s] (with coefficients in R) such that

_ P(s)

Q)

@ P, are of minimal degree (i.e., they don’t have
common zeros)

@ We assume z(0) =0

@ Consider ¢ : R>g — R™, m € N, and the integral
Jo = w(t)e™st dt for s € C for which the integral is
well-defined
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G(s)
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Fundamental Results in the Frequency Domain, 1

Consider single-input single-output (SISO) linear systems:
z(t) = Ax(t) + bu(t), y(t) = cx(t) + du(t),
Frequency domain representation:
i(s) = G(s)a(s)
Notation and assumptions:
@ Transfer function G : C — C.

@ (G is arational function, i.e., there exist polynomial
functions P, Q € R[s] (with coefficients in R) such that

_ P(s)
Q)

@ P, are of minimal degree (i.e., they don’t have
common zeros)

G(s)

@ We assume z(0) =0

@ Consider ¢ : R>g — R™, m € N, and the integral
Jo = w(t)e™st dt for s € C for which the integral is
well-defined

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control

Definition (Laplace transform)

Consider 4 : R>o — R™. For s € C C C for which the

integral is well-defined, the Laplace transform ¢ : ¢ — C™
of 1 is defined as

B(s) = (L)(s) = /0  p(t)et dt.

Example: Consider +(t) = 1. For fixed s € C compute

o0 1 i 1
/ e stdt = ——e7 ==
0 S 0 S
1
i.e., ¥(s) = (LY)(s) = ¢
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Fundamental Results in the Frequency Domain, 2

Consider single-input single-output (SISO) linear systems:
() = Az(t) +bu(t),  y(t) = ca(t) + du(t),
Frequency domain representation:
9(s) = G(s)a(s)
Notation and assumptions:
@ Transfer function G : C — C.
@ @ is arational function, i.e., there exist polynomial
functions P, @ € R[s] (with coefficients in R) such that
P
G(s) = (S)
Q(s)
@ P, Q are of minimal degree (i.e., they don’t have
common zeros)
@ We assume z(0) =0

@ Consider ¢ : R>o — R™, m € N, and the integral
J5Z b(t)e=st dt for s € C for which the integral is
well-defined
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Definition (Laplace transform)

Consider ¥ : R>o — R™. For s € C C C for which the

integral is well-defined, the Laplace transform ¢ : C — C™
of ¢ is defined as

B(s) = (L) (s) = /O ~ p()et dt.

Definition (Inverse Laplace transform)

Consider ¢ : C — C™ and let « € R such that
a+ jB € C C Cforall g € R. Then the inverse Laplace
transform ¢ : R>o — R™ of ¢ is defined as
1 a+joo
p(t) = (L7 = 5 e p(s) ds
) Ja—joo
eat oo
= — ¥ G (a + jw) dw.
215 J -0
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Fundamental Results in the Frequency Domain, 3

Consider single-input single-output (SISO) linear systems:
z(t) = Ax(t) + bu(t), y(t) = cx(t) + du(t),
Frequency domain representation:
i(s) = G(s)a(s)
Notation and assumptions:
@ Transfer function G : C — C.

@ (G is arational function, i.e., there exist polynomial
functions P, Q € R[s] (with coefficients in R) such that

P(s)

Q(s)

@ P, are of minimal degree (i.e., they don’t have
common zeros)

@ We assume z(0) =0

@ Consider ¢ : R>g — R™, m € N, and the integral
Jo = w(t)e==t dt for s € C for which the integral is
well-defined

G(s) =

Proposition (Laplace transform properties)

Consider the signals ¢, o1, p2 : R>o — R™ in the time
domain and constants a € R~o, a1, a2 € R. Then the
Laplace transform and its inverse satisfy the following
properties:

L7120(1) = (1),
Z(arp +az2p2)(s) = a1¢1(s) + azpa(s),
L(p(@))(s) = 24 (2),
L(p(- — a))(s) = €@ (s),
L(Lep)(s) = sFp(s) — hoL -1 T (),
2 (Jy(r) dr) (s) = Lp(s).
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The Transfer Function

Consider single-input single-output (SISO) linear systems:
d(t) = Az(t) + bu(t),  y(t) = ca(t) + du(t),
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The Transfer Function

Consider single-input single-output (SISO) linear systems:
(1) = Az(t) +bu(t),  y(t) = cx(t) + du(t),
Application of the Laplace transform:
s&(s) — z(0) = Az(s) + ba(s), 4(s) = c&(s) + di(s)
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The Transfer Function

Consider single-input single-output (SISO) linear systems:
(1) = Ax(t) + bu(t),  y(t) = ca(t) + du(t),
Application of the Laplace transform:
s&(s) — z(0) = Az(s) + ba(s), 4(s) = c&(s) + di(s)
Rearrange the terms (z(0) = 0):
9(s) = (c(sI — A)7'b + d) a(s)
Identify input output relationship:

G(s) = Ziz; =c(sI — A)"'b+d (1)
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The Transfer Function

Consider single-input single-output (SISO) linear systems:
z(t) = Az (t) + bu(t), y(t) = cx(t) + du(t),
Application of the Laplace transform:
s&(s) — z(0) = Az(s) + ba(s), 4(s) = c&(s) + di(s)
Rearrange the terms (z(0) = 0):
9(s) = (c(sI — A)7'b + d) a(s)
Identify input output relationship:

G(s) = ZEZ =c(sI — A)"'b+d (1)

Definition (Realization)

Consider a transfer function G(s) and assume that (1) is
satisfied for (A, b, ¢, d). Then G(s) is called realizable and
the quadruple (A, b, ¢, d) is called a realization of G(s).
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The Transfer Function

Consider single-input single-output (SISO) linear systems: Theorem (Realizable transfer functions)
&(t) = Az(t) + bu(t),  y(t) = cx(t) + du(?), Consider a transfer function G(s) = % P,Q € R[s].
Application of the Laplace transform: The transfer function G(s) is realizable if and only if it is

s3(s) — 2(0) = AB(s) + bi(s),  G(s) = ci(s) + da(s)  PrOPEn e, deg(P) < deg(Q).

Rearrange the terms (z(0) = 0):
9(s) = (c(sI — A)7'b + d) a(s)
Identify input output relationship:

G(s) = Zi; =c(sI — A)"'b+d (1)

Definition (Realization)

Consider a transfer function G(s) and assume that (1) is
satisfied for (A, b, ¢, d). Then G(s) is called realizable and
the quadruple (A, b, ¢, d) is called a realization of G(s).
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The Transfer Function

Consider single-input single-output (SISO) linear systems:
z(t) = Az (t) + bu(t), y(t) = cx(t) + du(t),
Application of the Laplace transform:
s&(s) — x(0) = Az(s) + bu(s),
Rearrange the terms (z(0) = 0):
9(s) = (c(sI — A)7'b + d) a(s)
Identify input output relationship:

9(s) = ci(s) + di(s)

G(s) = ZEZ =c(sI — A)"'b+d (1)

Definition (Realization)

Consider a transfer function G(s) and assume that (1) is
satisfied for (A, b, ¢, d). Then G(s) is called realizable and
the quadruple (A, b, ¢, d) is called a realization of G(s).

P. Braun & C.M. Kellett (ANU)
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Theorem (Realizable transfer functions)

Consider a transfer function G(s) = %, P,Q € R[s].

The transfer function G(s) is realizable if and only if it is
proper, i.e., deg(P) < deg(Q).

Theorem (Minimal realization)

The quadruple (A, b, ¢, d) is a minimal realization of
G(s) = c(sI — A)~tb+d ifand only if (A, b) is controllable
and (A, c) is observable.

V.
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The Transfer Function

Consider single-input single-output (SISO) linear systems:
z(t) = Az (t) + bu(t), y(t) = cx(t) + du(t),
Application of the Laplace transform:
s&(s) — x(0) = Az(s) + bu(s),
Rearrange the terms (z(0) = 0):
9(s) = (c(sI — A)7'b + d) a(s)
Identify input output relationship:

9(s) = ci(s) + di(s)

Gls) = 98 _ o1 — ) b4 d (1)
i(s)

Definition (Realization)

Consider a transfer function G(s) and assume that (1) is
satisfied for (A, b, ¢, d). Then G(s) is called realizable and
the quadruple (A, b, ¢, d) is called a realization of G(s).
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Theorem (Realizable transfer functions)

Consider a transfer function G(s) = %, P,Q € R[s].
The transfer function G(s) is realizable if and only if it is

proper, i.e., deg(P) < deg(Q).

Theorem (Minimal realization)

The quadruple (A, b, ¢, d) is a minimal realization of
G(s) = c(sI — A)~tb+d ifand only if (A, b) is controllable
and (A, c) is observable.

V.

Theorem (Uncontrollable & unobs. modes)

Let (A, b, c,d) be a realization of G(s) = ggg .IfxecCisa

pole of G, i.e., Q(\) = 0, then X is an eigenvalue of A.
Conversely, let X be an eigenvalue of A such that

G(X) # 0, then X is an uncontrollable mode of (A, b) or an
unobservable mode of (A, c).
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The L3-, Loo- and Ho-NOrm

Consider ¢ : [0,t) = R™, n € N, fort € R>q U {oco}.

@ Ly-norm: For ¢ with ([ [1(r)|2 dr)? < oo, define
the norm
1

¢ 3
ey 0.0 = ( [ e dr)

@ L-norm: For essentially bounded functions v,
define the norm

[l £ f0,2) = esssup|(7)]
T€[0,t)

=inf{n € R>o : [¢(t)] < nforalmostall = € [0,t)}

Note that:

@ Two norms are combined in the definitions: || - || z,,
Il - |z define norms of a function (-) : R»g — R™
and | - | denotes a vector norm ¥ (t) € R™ for a fixed

t€Rxg. Forz € C, |z| = VzTly.
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The L3-, Loo- and Ho-NOrm

Consider ¢ : [0,t) — R™, n € N, for t € R U {oo}. Consider ¢ : C — C»
@ Ly-norm: For ¢ with ([ [1(r)|2 dr)? < oo, define @ Hoo-norm: ) )
the norm ll]loo = Suillb(jw)l-
we

t 3
ey 0.0 = ( [ e dr)
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The L3-, Loo- and Ho-NOrm

Consider ¢ : [0,t) = R™, n € N, fort € R>q U {oco}.
@ Ly-norm: For v with ([ |4(7)? dr)% < oo, define

the norm
t ) 3
19ll a0 = ( [ el df)

@ L-norm: For essentially bounded functions v,
define the norm

[l £ f0,2) = esssup|(7)]
T€[0,t)

=inf{n € R>o : [¢(t)] < nforalmostall = € [0,t)}

Note that:

@ Two norms are combined in the definitions: || - || z,,
Il - |z define norms of a function (-) : R»g — R™
and | - | denotes a vector norm ¥ (t) € R™ for a fixed

t€Rxg. Forz € C, |z| = VzTly.

Consider ¢ : C — C»
@ Hoo-norm:

[lloc = sup [$(jw)|-
wER

Proposition (Parseval’s theorem)

Consider a signal ) : R>o — R™ in the time domain
satisfying ||¥|| 2, 0,00) < oo and its Laplace transform

1 : C — C™. Then Parseval’s relation
o 2 1= 2 2
[T ar= o [ e d
0 T J—c0

is satisfied.

(Relation between L2-norm and Laplace transform)
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Section 2

Stability Analysis in the Frequency Domain
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Stability Analysis in the Frequency Domain (Bounded-Input, Bounded-Output Stability)

Consider
z(t) = Az(t) + bu(t), y(t) = cz(t) + du(t),

9(s) = G(s)i(s)

Definition (BIBO stability)

The linear system is called bounded-input, bounded-output
(BIBO) stable if ||u|| 2., < oo implies |ly|lz. < oo.

It holds that:

@ The linear system is BIBO stable if and only if there
exists n € R~ such that

lWllcoe <mllullee, — Vu:Rzo—R™

@ The linear system is BIBO stable if and only if

o0
/ lceATb| dr < .
0
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Stability Analysis in the Frequency Domain (Bounded-Input, Bounded-Output Stability)

Consider
z(t) = Az(t) + bu(t), y(t) = cx(t) + du(t), Corollary
9(s) = G(s)u(s) Assume that the origin of the linear system with zero-input
is exponentially/asymptotically stable. Then the system is
BIBO stable.

Definition (BIBO stability)

The linear system is called bounded-input, bounded-output
(BIBO) stable if ||u|| 2., < oo implies |ly|lz. < oo.

It holds that:
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o0
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Stability Analysis in the Frequency Domain (Bounded-Input, Bounded-Output Stability)

Consider

z(t) = Az(t) + bu(t), y(t) = cz(t) + du(t),

9(s) = G(s)i(s)

Definition (BIBO stability)

The linear system is called bounded-input, bounded-output
(BIBO) stable if ||u|| 2., < oo implies |ly|lz. < oo.

It holds that:

@ The linear system is BIBO stable if and only if there
exists n € R~ such that
lllcoe <mllullze,,  Vu:Rzo—R™

@ The linear system is BIBO stable if and only if

o0
/ lceATb| dr < .
0
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Corollary

Assume that the origin of the linear system with zero-input
is exponentially/asymptotically stable. Then the system is
BIBO stable.

Note that:

@ The converse is not true. Example: Let ¢ = 0 (and
d =0). Then y(t) = 0 for all inputs u(-) i.e., the
system is BIBO stable (independent of A and b).

Lemma

Consider the transfer function G(s) and an arbitrary
realization (A, b, ¢, d). Then the system in the frequency
domain and the corresponding system in the time domain
are BIBO stable if and only if all poles of G(s) are in C_.
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System Interconnections in the Frequency Domain

Cascade interconnection @2 (s) = g1 (s)
Consider two systems:

91(s) = G(s)h1(s)
2(s) = G(s)tz2(s)
Cascade interconnection N

a1 (s) G2(s)
92(s) = G2(s)G1(s)u1(s) —»{ G2(s)G1(s) [———»

—» Gi(s) ———— P Ga(s) ———»
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System Interconnections in the Frequency Domain

Consider:
4(s) = G(s)u(s)
a(s) = 0(s) — kg(s)
Feedback interconnection:

B(s) »@ a(s) >l Gs)

Bs) [+ G(s)k]~1G(s)

P. Braun & C.M. Kellett (ANU)
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System Interconnections in the Frequency Domain

Consider:
4(s) = G(s)u(s)
a(s) = 0(s) — kg(s)
Feedback interconnection:

(s) >@ a(s) >l Gs) 9(s) >
—k |
it con-tae —2
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Rewrite the input: (new input v : R>g — R)
u(t) = v(t) — ky(t),k € R
The Laplace transform
a(s) = 0(s) — ky(s).

Thus
9(s) = G(s)(0(s) — kii(s))
. G(s)
9(s) = mv(s)

BIBO stability can be guaranteed by selecting
the feedback gain k such that the closed loop
transfer function only has poles in the open left
halfplane C_.
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System Interconnections in the Frequency Domain

Consider:
4(s) = G(s)u(s)
a(s) = 0(s) — kg(s)
Feedback interconnection:

OB SLCIN P (s)
—k |
it con-tae —2
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Example

Consider:
1
52 4+0.1s — 9.81
Poles: A1 = —3.1825 and Ao = 3.0825.
Feedback interconnection for k& € R:
1
[1 +G(S)k}_1G(S) _ 32+O.1s;9481
L+ 5240.15s—9.81
. 1
T s2401s—9.81+k'
Poles for K = 10: —0.05 +0.4335 € C_

G(s) =
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The Bode Plot

Consider a BIBO stable system:
9(s) = G(s)i(s).

~ Investigate correlation between u(t) and y(t)
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The Bode Plot

Consider a BIBO stable system:
9(s) = G(s)i(s).
~ Investigate correlation between u(t) and y(t)
@ Let(weR)
u(t) = sin(wt), t>0

then y(t) converges to the steady-state solution (for
t — 00)

yss(t) = M sin(wt + )
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The Bode Plot

Consider a BIBO stable system:
9(s) = G(s)i(s).
~ Investigate correlation between u(t) and y(t)
@ Let(weR)
u(t) = sin(wt), >0

then y(t) converges to the steady-state solution (for
t — 00)
yss(t) = M sin(wt + )
» The Gain M = |G(jw)| captures the
amplification of the input signal at the output
» Phase ¢ = ¢(w) captures a phase shift or
delay ¢ = arctans (Im(G(jw)), Re(G(jw)))
> (Recall that H.-norm captures the maximal
amplification of a signal)

@ The Bode Plot visualizes |G (jw)| and ¢(w) over
w € Ron alogip/logio-scale and a
logio/linear-scale
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The Bode Plot

Consider a BIBO stable system:
9(s) = G(s)i(s).
~ Investigate correlation between u(t) and y(t)
@ Let (w e R)
u(t) = sin(wt), t>0
then y(t) converges to the steady-state solution (for
t — 00)
yss(t) = M sin(wt + »)

» The Gain M = |G(jw)| captures the
amplification of the input signal at the output

» Phase ¢ = ¢(w) captures a phase shift or
delay ¢ = arctans (Im(G(jw)), Re(G(jw)))

> (Recall that Hoo-norm captures the maximal
amplification of a signal)

@ The Bode Plot visualizes |G (jw)| and ¢(w) over
w € Ron alogip/logio-scale and a
logio/linear-scale

Example: Linearization of the inverted pendulum around the
stable equilibrium [z1, z2]T = [0, 0] = [r,0]T.

; 0 1 T
R e
y=[1 0 ]a
Transfer function withm =¢=1,J =0, g9 = 9.81,v = 0.1:
P(s) _ 1
Q(s) s2+0.1s+9.81"

0
¢ u,
J+mie?

G(s) =

The Bode Plot:

T 0
10° I A
A |
= T \ A ‘
2, 3
3 10 5
- -2
|
1074 3 L
107! 10° 10" 102 107! 10° 10’ 102
w w
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The Bode Plot (Example Continued)

0
10°
Input-output behavior for — -1
u(t) = sin(wt) %10_2 g
- 2
Q w=2
: -3
10140'1 10° 10" 102 107! 10° 10" 102
1 I wn 1 7 “
\ A —
‘ | M ‘H i \ f \ / \\ ,/ \ 73%
e AR il os i |1
n‘ | \‘ \‘ | ‘ \‘ \‘\
o Il J \/ \/ \/ \
T AR
os 1IN ll 05| \ F
\ / | | |
0 50 100 80 85 90
t
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The Bode Plot (Example Continued)

Input-output behavior for
u(t) = sin(wt)

@ w=3.13
Q@ w=4

10°
3
T 1072
1074
107" 10° 10" 102
4 w
—y(t)
5 —ult)
—=£|G(jw)

/
\

158

160

162

164
t

166

168

10" 102

It

IR0
\ —u(t)

0.5 .
| e
A Y Y T N YA
/A NAAY 17N | ‘\\1\\/

0 “‘/\\\/‘\ 0 7\ 7 B 2 AV

T = T T
IRIRIRIRERIRIE
\ { | |

OS5
Voo Y

1 VAV | Y R VR
80 85 90

t
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The Bode Plot (Example Continued)

Input-output behavior for
u(t) = sin(wt)

@ w=3.13
Q@ w=4
Note that

@ the Bode plot is used to
experimentally derive the
transfer function

@ the magnitude is usually shown
in dB (decibel):

|G(jw)| <= logyg |G(jw)|dB

3
S
S

4
158

10°

1072

160 162 164 166 168

t

0.5

-0.5
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The Bode Plot (Example: Sketching the Bode Plot)

Example:
Consider
dp (s
P 1 [5G -1)
G(S) — (S) — % ~ G(S) _ C%
Q(s)  s*+101s + IJESNE Y
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The Bode Plot (Example: Sketching the Bode Plot)

Example:
Consider
d}’ s
P 1 [GLG--1)
G(s) = (S) = ﬁ o G(S) = C%
Q(S) %+ 101s + I—Ij:1(i - 1)

435

In terms of the logarithm:

dp , do ]
logy [G(jw)| = logyp(lel) + > logyo (|22 1)) =3 logyo (|22 - 1)
i=1

=1

Approximation of the individual terms:

wsmall = logq, (‘% — ID ~log;o(1) =0 4

wlarge = logyg (|22 — 1) & logo(w) — logo (k) 22
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The Bode Plot (Example: Sketching the Bode Plot)

Example:
Consider
d}’ s
P 1 [GLG--1)
G(S) _ (5) _ ﬁ ~ G(S) — C%
Q(s)  s2+101s+ M52, (2 —1)

435

In terms of the logarithm:

dp , do ]
logy [G(jw)| = logyp(lel) + > logyo (|22 1)) =3 logyo (|22 - 1)
i=1

=1

Approximation of the individual terms: :
wsmall = logq, (‘% — ID ~log;o(1) =0 4
wlarge = logy (|2 ~1]) ~ logyq(w) — losyo(Ix]) 2o

Similar, decomposition of the phase: 0

¢ = arctanz (0, c) + 2?51 arctans (i, —1) — ngl arctans (i’ _1) -2
-4
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The Nyquist Criterion

Consider: SISO feedback interconnection

§(s) = Gal(s)i(s) =

Goi(s) a(s)
14+ kGoi(s)
where
@ G,; open loop transfer function
@ G closed loop transfer function
Recall that:
@ The system is BIBO stable <= G; does not have any poles in C+
@ The zeros of 1 + kG, (s) are the poles of G;(s)
Thus, for BIBO stability of G; we require
® 1+ kGy(jw) #00r Gy (jw) # —1/k
@ 1+ kG, (s) has no zeros in the closed right-half complex plane.
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The Nyquist Criterion
Consider: SISO feedback interconnection
Gol (S)

9(s) = Ga(s)u(s) = mﬁ(s)

where
@ G open loop transfer function
@ G closed loop transfer function
Recall that:
@ The system is BIBO stable <= G; does not have any poles in C+
@ The zeros of 1 + kG, (s) are the poles of G;(s)
Thus, for BIBO stability of G; we require
® 1+ kGy(jw) #00r Gy (jw) # —1/k
@ 1+ kG, (s) has no zeros in the closed right-half complex plane.

Cauchy’s Argument Principle:
!
wn = f IS g7 p
2nj Jr g(s)

e wy, winding number; ¢ Z and P: zeros/poles of g( ) contained within T".

kGol(s)

Now, BIBO stability requires Z = 0 so that P = 27ry e l(s)

The Nyquist plot is a graphical representation of
the transfer function evaluated along a closed
contour I in C that traverses the imaginary axis
and a semicircle of infinite radius.
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The Nyquist Criterion (2)
Consider: SISO feedback interconnection
Gol(s)

9(s) = Ga(s)a(s) = mﬂ(f’)

where
@ G,;,G;: open loop and closed loop transfer function

Theorem (Nyquist Criterion)

Consider the SISO closed loop system. Let P € N denote
the number of poles of G,; in CT. Moreover, assume that
G does not have any poles in jR. Then the system is
BIBO stable if and only if G, (jw), w € [—o0, 00|, encircles
—1/k € C exactly — P-times clockwise.
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The Nyquist Criterion (2)

Consider: SISO feedback interconnection @ Transferfcn (m =£=1,J=0,g9=9.81,v=0.1)
~ N C"vol (5) - 1
=G, = Jo % G P
() 1(s)i(s) = 7 kG () a(s) o) = — 015 —93l
where Gals) = 1
@ G,;,G;: open loop and closed loop transfer function s°+0.1s— 981 +k

Theorem (Nyquist Criterion)

Consider the SISO closed loop system. Let P € N denote
the number of poles of G,; in CT. Moreover, assume that
G does not have any poles in jR. Then the system is
BIBO stable if and only if G, (jw), w € [—o0, 00|, encircles
—1/k € C exactly — P-times clockwise.

Example:

@ Linearization of the pendulum in the upright position
[z, 2] =0,0]T =[0,0]T:

i 0 1 0
T X1
J+me J+me J+me

y:[l 0]:13
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The Nyquist Criterion (2)
Consider: SISO feedback interconnection
C"vol(s)

9(s) = Ga(s)a(s) = mﬂ(f’)

where
@ G,;,G;: open loop and closed loop transfer function

Theorem (Nyquist Criterion)

Consider the SISO closed loop system. Let P € N denote
the number of poles of G,; in CT. Moreover, assume that
G does not have any poles in jR. Then the system is
BIBO stable if and only if G, (jw), w € [—o0, 00|, encircles
—1/k € C exactly — P-times clockwise.

Example:

@ Linearization of the pendulum in the upright position
[z, 2] =0,0]T =[0,0]T:

. y 1 } [ } [ . ]

X1 1

| = I + 2 u
[zz} [ i el (72 J+me2

y:[l 0]:13

@ Transferfecn(m=¢=1,J=0,¢9=9.81,v=0.1)
1

52 +0.1s — 9.81
1

s2+0.1s— 981+ k

Goi(s) =

Gcl (S) =

@ Roots of G,;: A1 = —3.18 and Ay = 3.08,i.e., P=1
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The Nyquist Criterion (2)

Consider: SISO feedback interconnection

9(s) = Gals)(s) =

where

@ G,;,G;: open loop and closed loop transfer function

Theorem (Nyquist Criterion)

Consider the SISO closed loop system. Let P € N denote
the number of poles of G,; in CT. Moreover, assume that
G does not have any poles in jR. Then the system is
BIBO stable if and only if G (jw), w € [—o0, o], encircles
—1/k € C exactly — P-times clockwise.

- 1+ kG (S)

Example:

@ Linearization of the pendulum in the upright position

[z,4]" = 6,6 = [0,0]":

% = mgl _ o’
2 T+mie? T+mie?

@ Transferfecn(m=¢=1,J=0,¢9=9.81,v=0.1)

1
Gy(s) = ———"-——
o(8) = 37015 — o8l
1
G =
9 = T 01s 98l Tk
@ Roots of G,;: A1 = —3.18 and A2 = 3.08,i.e., P=1
15 x10°7
1 =
N\
AN
— 05 /
hr-4 S
S N U U U B
= 8 110 20 50
L -0.5 \ //
,//
-1 S
-1.5
-0.15 -0.1 -0.05 0

Re(Go(jw))

y=[1 0]z —1L exactly —1 time clockwise.
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For k < 9.81 the graph of G, (jw) encircles the point — 4
zero times and for &k > 9.81 the graph encircles the point
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