Introduction to Nonlinear Control

Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett School of Engineering, Australian National University, Canberra, Australia

Part I:

Chapter 4: Frequency Domain Analysis 4.1 Fundamental Results in the Frequency Domain 4.2 The Transfer Function

Frequency Domain Analysis

Frequency Domain Analysis

- [The Laplace Transform](#page-4-0)
- **[The Transfer Functions](#page-4-0)**
- The \mathcal{L}_2 -, \mathcal{L}_{∞} and \mathcal{H}_{∞} [-norm](#page-4-0)

[Stability Analysis in the Frequency Domain](#page-19-0)

- [Bounded-Input, Bounded-Output Stability](#page-20-0)
- [System Interconnections in the Frequency Domain](#page-20-0)
- [The Bode Plot](#page-20-0)
- **[The Nyquist Criterion](#page-20-0)**

Section 1

[Fundamental Results in the Frequency Domain](#page-3-0)

 $\dot{x}(t) = Ax(t) + bu(t), \qquad y(t) = cx(t) + du(t),$

Frequency domain representation:

$$
\hat{y}(s) = G(s)\hat{u}(s)
$$

Notation and assumptions:

- **Transfer function** $G : \mathbb{C} \to \mathbb{C}$.
- \bullet G is a rational function, i.e., there exist polynomial functions $P, Q \in \mathbb{R}[s]$ (with coefficients in \mathbb{R}) such that

$$
G(s) = \frac{P(s)}{Q(s)}.
$$

- \bullet P, Q are of minimal degree (i.e., they don't have common zeros)
- We assume $x(0) = 0$

 $\dot{x}(t) = Ax(t) + bu(t), \qquad y(t) = cx(t) + du(t),$

Frequency domain representation:

$$
\hat{y}(s) = G(s)\hat{u}(s)
$$

Notation and assumptions:

- **O** Transfer function $G: \mathbb{C} \to \mathbb{C}$.
- \bullet G is a rational function, i.e., there exist polynomial functions $P, Q \in \mathbb{R}[s]$ (with coefficients in \mathbb{R}) such that

$$
G(s) = \frac{P(s)}{Q(s)}.
$$

- \bullet P, Q are of minimal degree (i.e., they don't have common zeros)
- We assume $x(0) = 0$
- Consider $\psi : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$, $m \in \mathbb{N}$, and the integral $\int_0^\infty \psi(t)e^{-st}\;d\overline{t}$ for $s\in\mathbb{C}$ for which the integral is well-defined

Definition (Laplace transform)

Consider $\psi : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$. For $s \in \mathcal{C} \subset \mathbb{C}$ for which the integral is well-defined, the Laplace transform $\hat{\psi}: \mathcal{C} \to \mathbb{C}^m$ of ψ is defined as

$$
\hat{\psi}(s) \doteq (\mathscr{L}\psi)(s) \doteq \int_0^\infty \psi(t)e^{-st} dt.
$$

$$
\dot{x}(t) = Ax(t) + bu(t), \qquad y(t) = cx(t) + du(t),
$$

Frequency domain representation:

$$
\hat{y}(s) = G(s)\hat{u}(s)
$$

Notation and assumptions:

- **O** Transfer function $G: \mathbb{C} \to \mathbb{C}$.
- \bullet G is a rational function, i.e., there exist polynomial functions $P, Q \in \mathbb{R}[s]$ (with coefficients in \mathbb{R}) such that

$$
G(s) = \frac{P(s)}{Q(s)}.
$$

- \bullet P, Q are of minimal degree (i.e., they don't have common zeros)
- We assume $x(0) = 0$
- Consider $\psi : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$, $m \in \mathbb{N}$, and the integral $\int_0^\infty \psi(t)e^{-st}\;d\overline{t}$ for $s\in\mathbb{C}$ for which the integral is well-defined

Definition (Laplace transform)

Consider $\psi : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$. For $s \in \mathcal{C} \subset \mathbb{C}$ for which the integral is well-defined, the Laplace transform $\hat{\psi}: \mathcal{C} \to \mathbb{C}^m$ of ψ is defined as

$$
\hat{\psi}(s) \doteq (\mathscr{L}\psi)(s) \doteq \int_0^\infty \psi(t)e^{-st} dt.
$$

Example: Consider $\psi(t) = 1$. For fixed $s \in \mathbb{C}$ compute

$$
\int_0^{\infty} e^{-st} dt = -\frac{1}{s} e^{-st} \Big|_0^{\infty} = \frac{1}{s}
$$

i.e.,
$$
\hat{\psi}(s) = (\mathscr{L}\psi)(s) = \frac{1}{s}
$$
.

 $\dot{x}(t) = Ax(t) + bu(t), \qquad y(t) = cx(t) + du(t),$

Frequency domain representation:

$$
\hat{y}(s) = G(s)\hat{u}(s)
$$

Notation and assumptions:

- **O** Transfer function $G: \mathbb{C} \to \mathbb{C}$.
- \bullet G is a rational function, i.e., there exist polynomial functions $P, Q \in \mathbb{R}[s]$ (with coefficients in \mathbb{R}) such that

$$
G(s) = \frac{P(s)}{Q(s)}.
$$

- \bullet P, Q are of minimal degree (i.e., they don't have common zeros)
- We assume $x(0) = 0$
- Consider $\psi : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$, $m \in \mathbb{N}$, and the integral $\int_0^\infty \psi(t)e^{-st} \, d\overline{t}$ for $s \in \mathbb{C}$ for which the integral is J_0 ψ _(θ) c
well-defined

Definition (Laplace transform)

Consider $\psi : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$. For $s \in \mathcal{C} \subset \mathbb{C}$ for which the integral is well-defined, the Laplace transform $\hat{\psi}: \mathcal{C} \to \mathbb{C}^m$ of ψ is defined as

$$
\hat{\psi}(s) \doteq (\mathscr{L}\psi)(s) \doteq \int_0^\infty \psi(t)e^{-st} dt.
$$

Definition (Inverse Laplace transform)

Consider $\hat{\varphi}: \mathcal{C} \to \mathbb{C}^m$ and let $\alpha \in \mathbb{R}$ such that $\alpha + j\beta \in \mathcal{C} \subset \mathbb{C}$ for all $\beta \in \mathbb{R}$. Then the inverse Laplace transform $\varphi : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$ of $\hat{\varphi}$ is defined as

$$
\varphi(t) \doteq (\mathscr{L}^{-1}\hat{\varphi})(t) \doteq \frac{1}{2\pi j} \int_{\alpha - j\infty}^{\alpha + j\infty} e^{st} \hat{\varphi}(s) ds
$$

$$
= \frac{e^{\alpha t}}{2\pi j} \int_{-\infty}^{\infty} e^{jwt} \hat{\varphi}(\alpha + jw) dw.
$$

 $\dot{x}(t) = Ax(t) + bu(t), \qquad y(t) = cx(t) + du(t),$

Frequency domain representation:

$$
\hat{y}(s) = G(s)\hat{u}(s)
$$

Notation and assumptions:

- **O** Transfer function $G: \mathbb{C} \to \mathbb{C}$.
- \bullet G is a rational function, i.e., there exist polynomial functions $P, Q \in \mathbb{R}[s]$ (with coefficients in \mathbb{R}) such that

$$
G(s) = \frac{P(s)}{Q(s)}.
$$

- \bullet P, Q are of minimal degree (i.e., they don't have common zeros)
- We assume $x(0) = 0$
- Consider $\psi : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$, $m \in \mathbb{N}$, and the integral $\int_0^\infty \psi(t)e^{-st}\;d\overline{t}$ for $s\in\mathbb{C}$ for which the integral is well-defined

Proposition (Laplace transform properties)

Consider the signals $\varphi, \varphi_1, \varphi_2 : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$ *in the time domain and constants* $a \in \mathbb{R}_{>0}$, $a_1, a_2 \in \mathbb{R}$. Then the *Laplace transform and its inverse satisfy the following properties:*

$$
\mathcal{L}^{-1}\mathcal{L}\varphi(t) = \varphi(t),
$$

\n
$$
\mathcal{L}(a_1\varphi + a_2\varphi_2)(s) = a_1\hat{\varphi}_1(s) + a_2\hat{\varphi}_2(s),
$$

\n
$$
\mathcal{L}(\varphi(a\cdot))(s) = \frac{1}{a}\hat{\varphi}\left(\frac{s}{a}\right),
$$

\n
$$
\mathcal{L}(\varphi(\cdot - a))(s) = e^{-sa}\hat{\varphi}(s),
$$

\n
$$
\mathcal{L}\left(\frac{d^k}{dt^k}\varphi\right)(s) = s^k\hat{\varphi}(s) - \sum_{j=1}^{k-1} s^{j-1} \frac{d^{k-1-j}}{dt^{k-1-j}}\varphi(0),
$$

\n
$$
\mathcal{L}\left(\int_0^s \varphi(\tau) d\tau\right)(s) = \frac{1}{s}\hat{\varphi}(s).
$$

Consider single-input single-output (SISO) linear systems:

 $\dot{x}(t) = Ax(t) + bu(t), \qquad y(t) = cx(t) + du(t),$

Consider single-input single-output (SISO) linear systems:

$$
\dot{x}(t) = Ax(t) + bu(t), \qquad y(t) = cx(t) + du(t),
$$

Application of the Laplace transform:

 $s\hat{x}(s) - x(0) = A\hat{x}(s) + b\hat{u}(s), \quad \hat{y}(s) = c\hat{x}(s) + d\hat{u}(s)$

Consider single-input single-output (SISO) linear systems:

$$
\dot{x}(t) = Ax(t) + bu(t), \qquad y(t) = cx(t) + du(t),
$$

Application of the Laplace transform:

 $s\hat{x}(s) - x(0) = A\hat{x}(s) + b\hat{u}(s), \quad \hat{y}(s) = c\hat{x}(s) + d\hat{u}(s)$

Rearrange the terms $(x(0) = 0)$:

$$
\hat{y}(s) = (c(sI - A)^{-1}b + d)\hat{u}(s)
$$

Identify input output relationship:

$$
G(s) = \frac{\hat{y}(s)}{\hat{u}(s)} = c(sI - A)^{-1}b + d \tag{1}
$$

Consider single-input single-output (SISO) linear systems:

$$
\dot{x}(t) = Ax(t) + bu(t), \qquad y(t) = cx(t) + du(t),
$$

Application of the Laplace transform:

 $s\hat{x}(s) - x(0) = A\hat{x}(s) + b\hat{u}(s), \quad \hat{y}(s) = c\hat{x}(s) + d\hat{u}(s)$

Rearrange the terms $(x(0) = 0)$:

$$
\hat{y}(s) = (c(sI - A)^{-1}b + d)\hat{u}(s)
$$

Identify input output relationship:

$$
G(s) = \frac{\hat{y}(s)}{\hat{u}(s)} = c(sI - A)^{-1}b + d \tag{1}
$$

Definition (Realization)

Consider a transfer function $G(s)$ and assume that [\(1\)](#page-9-0) is satisfied for (A, b, c, d) . Then $G(s)$ is called realizable and the quadruple (A, b, c, d) is called a realization of $G(s)$.

Consider single-input single-output (SISO) linear systems:

$$
\dot{x}(t) = Ax(t) + bu(t), \qquad y(t) = cx(t) + du(t),
$$

Application of the Laplace transform:

 $s\hat{x}(s) - x(0) = A\hat{x}(s) + b\hat{u}(s), \quad \hat{y}(s) = c\hat{x}(s) + d\hat{u}(s)$

Rearrange the terms $(x(0) = 0)$:

$$
\hat{y}(s) = (c(sI - A)^{-1}b + d)\hat{u}(s)
$$

Identify input output relationship:

$$
G(s) = \frac{\hat{y}(s)}{\hat{u}(s)} = c(sI - A)^{-1}b + d \tag{1}
$$

Definition (Realization)

Consider a transfer function $G(s)$ and assume that [\(1\)](#page-9-0) is satisfied for (A, b, c, d) . Then $G(s)$ is called realizable and the quadruple (A, b, c, d) is called a realization of $G(s)$.

Theorem (Realizable transfer functions)

Consider a transfer function $G(s) = \frac{P(s)}{Q(s)}$, $P, Q \in \mathbb{R}[s]$. *The transfer function* G(s) *is realizable if and only if it is proper, i.e.,* $deg(P) < deg(Q)$ *.*

Consider single-input single-output (SISO) linear systems:

$$
\dot{x}(t) = Ax(t) + bu(t), \qquad y(t) = cx(t) + du(t),
$$

Application of the Laplace transform:

 $s\hat{x}(s) - x(0) = A\hat{x}(s) + b\hat{u}(s), \quad \hat{y}(s) = c\hat{x}(s) + d\hat{u}(s)$

Rearrange the terms $(x(0) = 0)$:

$$
\hat{y}(s) = (c(sI - A)^{-1}b + d)\hat{u}(s)
$$

Identify input output relationship:

$$
G(s) = \frac{\hat{y}(s)}{\hat{u}(s)} = c(sI - A)^{-1}b + d \tag{1}
$$

Definition (Realization)

Consider a transfer function $G(s)$ and assume that [\(1\)](#page-9-0) is satisfied for (A, b, c, d) . Then $G(s)$ is called realizable and the quadruple (A, b, c, d) is called a realization of $G(s)$.

Theorem (Realizable transfer functions)

Consider a transfer function $G(s) = \frac{P(s)}{Q(s)}$, $P, Q \in \mathbb{R}[s]$. *The transfer function* G(s) *is realizable if and only if it is proper, i.e.,* $deg(P) < deg(Q)$ *.*

Theorem (Minimal realization)

The quadruple (A, b, c, d) *is a minimal realization of* $G(s) = c(sI - A)^{-1}b + d$ if and only if (A, b) is controllable *and* (A, c) *is observable.*

Consider single-input single-output (SISO) linear systems:

$$
\dot{x}(t) = Ax(t) + bu(t), \qquad y(t) = cx(t) + du(t),
$$

Application of the Laplace transform:

 $s\hat{x}(s) - x(0) = A\hat{x}(s) + b\hat{u}(s), \quad \hat{y}(s) = c\hat{x}(s) + d\hat{u}(s)$

Rearrange the terms $(x(0) = 0)$:

$$
\hat{y}(s) = (c(sI - A)^{-1}b + d)\hat{u}(s)
$$

Identify input output relationship:

$$
G(s) = \frac{\hat{y}(s)}{\hat{u}(s)} = c(sI - A)^{-1}b + d \tag{1}
$$

Definition (Realization)

Consider a transfer function $G(s)$ and assume that [\(1\)](#page-9-0) is satisfied for (A, b, c, d) . Then $G(s)$ is called realizable and the quadruple (A, b, c, d) is called a realization of $G(s)$.

Theorem (Realizable transfer functions)

Consider a transfer function $G(s) = \frac{P(s)}{Q(s)}$, $P, Q \in \mathbb{R}[s]$. *The transfer function* G(s) *is realizable if and only if it is proper, i.e.,* $deg(P) < deg(Q)$ *.*

Theorem (Minimal realization)

The quadruple (A, b, c, d) *is a minimal realization of* $G(s) = c(sI - A)^{-1}b + d$ if and only if (A, b) is controllable *and* (A, c) *is observable.*

Theorem (Uncontrollable & unobs. modes)

Let (A, b, c, d) be a realization of $G(s) = \frac{P(s)}{Q(s)}$. If $\lambda \in \mathbb{C}$ is a *pole of G, i.e.,* $Q(\lambda) = 0$, then λ *is an eigenvalue of A. Conversely, let* λ *be an eigenvalue of* A *such that* $G(\lambda) \neq 0$, then λ *is an uncontrollable mode of* (A, b) *or an unobservable mode of* (A, c)*.*

The \mathcal{L}_2 -, \mathcal{L}_{∞} - and \mathcal{H}_{∞} -norm

Consider $\psi : [0, t) \to \mathbb{R}^n$, $n \in \mathbb{N}$, for $t \in \mathbb{R}_{\geq 0} \cup \{\infty\}$.

 \mathcal{L}_2 -norm: For ψ with $(\int_0^t |\psi(\tau)|^2\ d\tau)^{\frac{1}{2}}<\infty$, define the norm

$$
\|\psi\|_{\mathcal{L}_2[0,t)}\doteq \left(\int_0^t|\psi(\tau)|^2\;d\tau\right)^{\frac{1}{2}}
$$

 \circ \mathcal{L}_{∞} -norm: For essentially bounded functions ψ , define the norm

```
\|\psi\|_{\mathcal{L}_{\infty}[0,t)} \doteq \underset{\tau \in [0,t)}{\mathrm{ess \, sup}} |\psi(\tau)|= inf{\eta \in \mathbb{R}_{>0}: |\psi(t)| \leq \eta for almost all \tau \in [0, t)}
```
Note that:

Two norms are combined in the definitions: $\|\cdot\|_{\mathcal{L}_2},$ $\|\cdot\|_{\mathcal{L}_\infty}$ define norms of a function $\psi(\cdot):\mathbb{R}_{\geq 0}\to\mathbb{R}^n$ and $\widetilde{\otimes}$ denotes a vector norm $\psi(t) \in \mathbb{R}^n$ for a fixed and $|\cdot|$ denotes a vector norm $\psi(x)$
 $t \in \mathbb{R}_{\geq 0}$. For $x \in \mathbb{C}$, $|x| = \sqrt{\overline{x}^T x}$.

The \mathcal{L}_2 -, \mathcal{L}_{∞} - and \mathcal{H}_{∞} -norm

Consider $\psi : [0, t) \to \mathbb{R}^n$, $n \in \mathbb{N}$, for $t \in \mathbb{R}_{\geq 0} \cup \{\infty\}$.

 \mathcal{L}_2 -norm: For ψ with $(\int_0^t |\psi(\tau)|^2\ d\tau)^{\frac{1}{2}}<\infty$, define the norm

$$
\|\psi\|_{\mathcal{L}_2[0,t)}\doteq \left(\int_0^t|\psi(\tau)|^2\;d\tau\right)^{\frac{1}{2}}
$$

 \circ \mathcal{L}_{∞} -norm: For essentially bounded functions ψ , define the norm

 $\|\psi\|_{\mathcal{L}_{\infty}[0,t)} \doteq \underset{\tau \in [0,t)}{\mathrm{ess \, sup}} |\psi(\tau)|$ $=$ inf{ $\eta \in \mathbb{R}_{>0}$: $|\psi(t)| \leq \eta$ for almost all $\tau \in [0, t)$ }

Note that:

Two norms are combined in the definitions: $\|\cdot\|_{\mathcal{L}_2},$ $\|\cdot\|_{\mathcal{L}_\infty}$ define norms of a function $\psi(\cdot):\mathbb{R}_{\geq 0}\to\mathbb{R}^n$ and $\widetilde{\otimes}$ denotes a vector norm $\psi(t) \in \mathbb{R}^n$ for a fixed and $|\cdot|$ denotes a vector norm $\psi(x)$
 $t \in \mathbb{R}_{\geq 0}$. For $x \in \mathbb{C}$, $|x| = \sqrt{\overline{x}^T x}$.

Consider $\hat{\psi}: \mathbb{C} \to \mathbb{C}^n$ \bullet \mathcal{H}_{∞} -norm:

$$
\|\hat{\psi}\|_{\infty} = \sup_{\omega \in \mathbb{R}} |\hat{\psi}(j\omega)|.
$$

The \mathcal{L}_2 -, \mathcal{L}_{∞} - and \mathcal{H}_{∞} -norm

Consider $\psi : [0, t) \to \mathbb{R}^n$, $n \in \mathbb{N}$, for $t \in \mathbb{R}_{\geq 0} \cup \{\infty\}$.

 \mathcal{L}_2 -norm: For ψ with $(\int_0^t |\psi(\tau)|^2\ d\tau)^{\frac{1}{2}}<\infty$, define the norm

$$
\|\psi\|_{\mathcal{L}_2[0,t)}\doteq \left(\int_0^t |\psi(\tau)|^2\;d\tau\right)^{\frac{1}{2}}
$$

 \circ \mathcal{L}_{∞} -norm: For essentially bounded functions ψ , define the norm

 $\|\psi\|_{\mathcal{L}_{\infty}[0,t)} \doteq \underset{\tau \in [0,t)}{\mathrm{ess \, sup}} |\psi(\tau)|$ $\dot{=} \inf \{ \eta \in \mathbb{R}_{\geq 0} : |\psi(t)| \leq \eta \}$ for almost all $\tau \in [0, t) \}$

Note that:

Two norms are combined in the definitions: $\|\cdot\|_{\mathcal{L}_2},$ $\|\cdot\|_{\mathcal{L}_\infty}$ define norms of a function $\psi(\cdot):\mathbb{R}_{\geq 0}\to\mathbb{R}^n$ and $\widetilde{\lbrack} \cdot \rbrack$ denotes a vector norm $\psi(t) \in \mathbb{R}^n$ for a fixed and $|\cdot|$ denotes a vector norm $\psi(x)$
 $t \in \mathbb{R}_{\geq 0}$. For $x \in \mathbb{C}$, $|x| = \sqrt{\overline{x}^T x}$.

Consider $\hat{\psi}: \mathbb{C} \to \mathbb{C}^n$ \bullet \mathcal{H}_{∞} -norm:

$$
\|\hat{\psi}\|_{\infty} = \sup_{\omega \in \mathbb{R}} |\hat{\psi}(j\omega)|.
$$

Proposition (Parseval's theorem)

Consider a signal ψ : $\mathbb{R}_{\geq 0} \to \mathbb{R}^n$ *in the time domain satisfying* $||\psi||_{\mathcal{L}_2[0,\infty)} \leq \infty$ *and its Laplace transform* $\hat{\psi}: \mathbb{C} \to \mathbb{C}^n$. Then Parseval's relation

$$
\int_0^\infty |\psi(\tau)|^2 d\tau = \frac{1}{2\pi} \int_{-\infty}^\infty |\hat{\psi}(j\omega)|^2 d\omega
$$

is satisfied.

(Relation between \mathcal{L}_2 -norm and Laplace transform)

Section 2

[Stability Analysis in the Frequency Domain](#page-19-0)

Consider

$$
\dot{x}(t) = Ax(t) + bu(t), \qquad y(t) = cx(t) + du(t),
$$

 $\hat{y}(s) = G(s)\hat{u}(s)$

Definition (BIBO stability)

The linear system is called bounded-input, bounded-output (BIBO) stable if $||u||_{C_{\infty}} < \infty$ implies $||u||_{C_{\infty}} < \infty$.

It holds that:

• The linear system is BIBO stable if and only if there exists $\eta \in \mathbb{R}_{>0}$ such that

 $||y||_{\mathcal{L}_{\infty}} \leq \eta ||u||_{\mathcal{L}_{\infty}}, \qquad \forall u : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$

The linear system is BIBO stable if and only if

$$
\int_0^\infty |c e^{A\tau}b|\ d\tau < \infty.
$$

Consider

$$
\dot{x}(t) = Ax(t) + bu(t), \qquad y(t) = cx(t) + du(t),
$$

 $\hat{y}(s) = G(s)\hat{u}(s)$

Definition (BIBO stability)

The linear system is called bounded-input, bounded-output (BIBO) stable if $||u||_{C_{\infty}} < \infty$ implies $||u||_{C_{\infty}} < \infty$.

It holds that:

• The linear system is BIBO stable if and only if there exists $\eta \in \mathbb{R}_{>0}$ such that

$$
||y||_{\mathcal{L}_{\infty}} \leq \eta ||u||_{\mathcal{L}_{\infty}}, \qquad \forall \ u : \mathbb{R}_{\geq 0} \to \mathbb{R}^m
$$

The linear system is BIBO stable if and only if \bullet

$$
\int_0^\infty |c e^{A\tau}b|\ d\tau < \infty.
$$

Corollary

Assume that the origin of the linear system with zero-input is exponentially/asymptotically stable. Then the system is BIBO stable.

Consider

$$
\dot{x}(t) = Ax(t) + bu(t), \qquad y(t) = cx(t) + du(t),
$$

 $\hat{y}(s) = G(s)\hat{u}(s)$

Definition (BIBO stability)

The linear system is called bounded-input, bounded-output (BIBO) stable if $||u||_{C_{\infty}} < \infty$ implies $||u||_{C_{\infty}} < \infty$.

It holds that:

• The linear system is BIBO stable if and only if there exists $\eta \in \mathbb{R}_{>0}$ such that

$$
||y||_{\mathcal{L}_{\infty}} \leq \eta ||u||_{\mathcal{L}_{\infty}}, \qquad \forall \ u : \mathbb{R}_{\geq 0} \to \mathbb{R}^m
$$

The linear system is BIBO stable if and only if

$$
\int_0^\infty |c e^{A\tau}b|\ d\tau < \infty.
$$

Corollary

Assume that the origin of the linear system with zero-input is exponentially/asymptotically stable. Then the system is BIBO stable.

Note that:

• The converse is not true. Example: Let $c = 0$ (and d = 0). Then $y(t) = 0$ for all inputs $u(\cdot)$ i.e., the system is BIBO stable (independent of A and b).

Lemma

Consider the transfer function G(s) *and an arbitrary realization* (A, b, c, d)*. Then the system in the frequency domain and the corresponding system in the time domain are BIBO stable if and only if all poles of* G(s) *are in* C−*.*

Consider two systems:

 $\hat{y}_1(s) = G(s)\hat{u}_1(s)$ $\hat{y}_2(s) = G(s)\hat{u}_2(s)$

Cascade interconnection

$$
\hat{y}_2(s) = G_2(s)G_1(s)\hat{u}_1(s)
$$

Cascade interconnection $\hat{u}_2(s) = \hat{y}_1(s)$

System Interconnections in the Frequency Domain

Consider:

$$
\hat{y}(s) = G(s)\hat{u}(s)
$$

$$
\hat{u}(s) = \hat{v}(s) - k\hat{y}(s)
$$

Feedback interconnection:

System Interconnections in the Frequency Domain

Consider:

$$
\hat{y}(s) = G(s)\hat{u}(s)
$$

$$
\hat{u}(s) = \hat{v}(s) - k\hat{y}(s)
$$

Feedback interconnection:

Rewrite the input: (new input $v : \mathbb{R}_{\geq 0} \to \mathbb{R}$) $u(t) = v(t) - ky(t), k \in \mathbb{R}$

The Laplace transform

$$
\hat{u}(s) = \hat{v}(s) - k\hat{y}(s).
$$

Thus

$$
\hat{y}(s) = G(s)(\hat{v}(s) - k\hat{y}(s))
$$

$$
\hat{y}(s) = \frac{G(s)}{1 + G(s)k}\hat{v}(s)
$$

BIBO stability can be guaranteed by selecting the feedback gain k such that the closed loop transfer function only has poles in the open left halfplane \mathbb{C} _−.

System Interconnections in the Frequency Domain

Consider:

$$
\hat{y}(s) = G(s)\hat{u}(s)
$$

$$
\hat{u}(s) = \hat{v}(s) - k\hat{y}(s)
$$

Feedback interconnection:

Consider a BIBO stable system:

 $\hat{y}(s) = G(s)\hat{u}(s).$

 \rightarrow Investigate correlation between $u(t)$ and $y(t)$

Consider a BIBO stable system:

 $\hat{y}(s) = G(s)\hat{u}(s).$

- \rightarrow Investigate correlation between $u(t)$ and $u(t)$
- Let $(\omega \in \mathbb{R})$

 $u(t) = \sin(\omega t), \quad t > 0$

then $y(t)$ converges to the steady-state solution (for $t \to \infty$)

 $y_{ss}(t) = M \sin(\omega t + \varphi)$

Consider a BIBO stable system:

 $\hat{y}(s) = G(s)\hat{u}(s).$

- \rightarrow Investigate correlation between $u(t)$ and $u(t)$
- Let $(\omega \in \mathbb{R})$

 $u(t) = \sin(\omega t), \quad t > 0$

then $y(t)$ converges to the steady-state solution (for $t \to \infty$)

 $y_{ss}(t) = M \sin(\omega t + \varphi)$

- \blacktriangleright The Gain $M = |G(j\omega)|$ captures the amplification of the input signal at the output
- **► Phase** $\varphi = \varphi(\omega)$ captures a phase shift or delay $\varphi = \arctan_2(\text{Im}(G(j\omega)), \text{Re}(G(j\omega)))$
- ▶ (Recall that \mathcal{H}_{∞} -norm captures the maximal amplification of a signal)
- **•** The Bode Plot visualizes $|G(j\omega)|$ and $\varphi(\omega)$ over $\omega \in \mathbb{R}$ on a log_{10}/log_{10} -scale and a $log_{10}/$ linear-scale

Consider a BIBO stable system:

 $\hat{y}(s) = G(s)\hat{u}(s).$

Investigate correlation between $u(t)$ and $u(t)$

• Let $(\omega \in \mathbb{R})$

$$
u(t) = \sin(\omega t), \qquad t \ge 0
$$

then $y(t)$ converges to the steady-state solution (for $t \to \infty$)

$$
y_{\rm ss}(t) = M\sin(\omega t + \varphi)
$$

- \blacktriangleright The Gain $M = |G(j\omega)|$ captures the amplification of the input signal at the output
- **► Phase** $\varphi = \varphi(\omega)$ captures a phase shift or delay $\varphi = \arctan_2(\text{Im}(G(j\omega)), \text{Re}(G(j\omega)))$
- ▶ (Recall that \mathcal{H}_{∞} -norm captures the maximal amplification of a signal)
- **•** The Bode Plot visualizes $|G(j\omega)|$ and $\varphi(\omega)$ over $\omega \in \mathbb{R}$ on a log_{10}/log_{10} -scale and a $log_{10}/$ linear-scale

Example: Linearization of the inverted pendulum around the stable equilibrium $[x_1,x_2]^T=[\theta,\dot{\theta}]^T=[\pi,0]^T.$

$$
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{mg\ell}{J+m\ell^2} & -\frac{\gamma}{J+m\ell^2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{\ell}{J+m\ell^2} \end{bmatrix} u,
$$

$$
y = \begin{bmatrix} 1 & 0 \end{bmatrix} x.
$$

Transfer function with $m = \ell = 1$, $J = 0$, $q = 9.81$, $\gamma = 0.1$:

$$
G(s) = \frac{P(s)}{Q(s)} = \frac{1}{s^2 + 0.1s + 9.81}.
$$

The Bode Plot:

The Bode Plot (Example Continued)

Input-output behavior for

$$
u(t) = \sin(\omega t)
$$

$$
\bullet\ \omega=2
$$

The Bode Plot (Example Continued)

Input-output behavior for

$$
u(t) = \sin(\omega t)
$$

$$
\bullet \ \omega = 3.13
$$

$$
\bullet \ \omega = 4
$$

The Bode Plot (Example Continued)

Input-output behavior for

$$
u(t) = \sin(\omega t)
$$

$$
\bullet \ \omega = 3.13
$$

$$
\bullet \ \omega = 4
$$

Note that

- the Bode plot is used to experimentally derive the transfer function
- \bullet the magnitude is usually shown in dB (decibel):

 $|G(jw)| \Longleftrightarrow \log_{10} |G(jw)|dB$

The Bode Plot (Example: Sketching the Bode Plot)

Example:

Consider

$$
G(s) = \frac{P(s)}{Q(s)} = \frac{s+10}{s^2 + 101s + 100} \quad \leadsto \quad G(s) = c \frac{\prod_{i=1}^{d_P} (\frac{s}{p_i} - 1)}{\prod_{j=1}^{d_Q} (\frac{s}{q_j} - 1)}
$$

The Bode Plot (Example: Sketching the Bode Plot)

Example:

Consider

$$
G(s) = \frac{P(s)}{Q(s)} = \frac{s+10}{s^2 + 101s + 100} \quad \leadsto \quad G(s) = c \frac{\prod_{i=1}^{d_P} (\frac{s}{p_i} - 1)}{\prod_{j=1}^{d_Q} (\frac{s}{q_j} - 1)}
$$

In terms of the logarithm:

$$
\log_{10} |G(j\omega)| = \log_{10}(|c|) + \sum_{i=1}^{d} \log_{10} \left(\left| \frac{j\omega}{p_i} - 1 \right| \right) - \sum_{i=1}^{d} \log_{10} \left(\left| \frac{j\omega}{q_i} - 1 \right| \right)
$$

Approximation of the individual terms:

$$
\begin{array}{rcl}\n\omega \, \textsf{small} & \Rightarrow & \log_{10}\left(\left|\frac{j\omega}{\kappa} - 1\right|\right) \approx \log_{10}(1) = 0 \\
\omega \, \textsf{large} & \Rightarrow & \log_{10}\left(\left|\frac{j\omega}{\kappa} - 1\right|\right) \approx \log_{10}(\omega) - \log_{10}(|\kappa|)\n\end{array}
$$

The Bode Plot (Example: Sketching the Bode Plot)

Example:

Consider

$$
G(s) = \frac{P(s)}{Q(s)} = \frac{s+10}{s^2 + 101s + 100} \quad \leadsto \quad G(s) = c \frac{\prod_{i=1}^{d_P} (\frac{s}{p_i} - 1)}{\prod_{j=1}^{d_Q} (\frac{s}{q_j} - 1)}
$$

In terms of the logarithm:

$$
\log_{10} |G(j\omega)| = \log_{10}(|c|) + \sum_{i=1}^{d} \log_{10} \left(\left| \frac{j\omega}{p_i} - 1 \right| \right) - \sum_{i=1}^{d} \log_{10} \left(\left| \frac{j\omega}{q_i} - 1 \right| \right)
$$

Approximation of the individual terms:

$$
\omega \text{ small} \quad \Rightarrow \quad \log_{10} \left(\left| \frac{j\omega}{\kappa} - 1 \right| \right) \approx \log_{10}(1) = 0
$$
\n
$$
\omega \text{ large} \quad \Rightarrow \quad \log_{10} \left(\left| \frac{j\omega}{\kappa} - 1 \right| \right) \approx \log_{10}(\omega) - \log_{10}(|\kappa|)
$$

Similar, decomposition of the phase:

$$
\varphi = \arctan_2(0, c) + \sum_{i=1}^{d_P} \arctan_2\left(\frac{\omega}{p_i}, -1\right) - \sum_{i=1}^{d_Q} \arctan_2\left(\frac{\omega}{q_i}, -1\right)
$$

Consider: SISO feedback interconnection

$$
\hat{y}(s)=G_{cl}(s)\hat{u}(s)=\frac{G_{ol}(s)}{1+kG_{ol}(s)}\hat{u}(s)
$$

where

- \bullet G_{ol} open loop transfer function
- \bullet G_{cl} closed loop transfer function

Recall that:

- **•** The system is BIBO stable $\Longleftrightarrow G_{cl}$ does not have any poles in $\overline{\mathbb{C}}_{+}$
- \bullet The zeros of $1 + kG_{ol}(s)$ are the poles of $G_{cl}(s)$

Thus, for BIBO stability of G_{cl} we require

- \bullet 1 + $kG_{ol}(i\omega) \neq 0$ or $G_{ol}(i\omega) \neq -1/k$
- \bullet 1 + $kG_{ol}(s)$ has no zeros in the closed right-half complex plane.

Consider: SISO feedback interconnection

$$
\hat{y}(s) = G_{cl}(s)\hat{u}(s) = \frac{G_{ol}(s)}{1 + kG_{ol}(s)}\hat{u}(s)
$$

where

- \bullet G_{ol} open loop transfer function
- \bullet G_{cl} closed loop transfer function

Recall that:

- **•** The system is BIBO stable $\Longleftrightarrow G_{cl}$ does not have any poles in $\overline{\mathbb{C}}_{\pm}$
- The zeros of $1 + kG_{ol}(s)$ are the poles of $G_{cl}(s)$

Thus, for BIBO stability of G_{cl} we require

- \bullet 1 + kG_{ol}($i\omega$) \neq 0 or $G_{ol}(i\omega) \neq -1/k$
- \bullet 1 + $kG_{ol}(s)$ has no zeros in the closed right-half complex plane.

Cauchy's Argument Principle:

$$
w_n = -\frac{1}{2\pi j} \oint_{\Gamma} \frac{g'(s)}{g(s)} ds = Z - P,
$$

• w_n winding number; • Z and P: zeros/poles of $g(\cdot)$ contained within Γ .

Now, BIBO stability requires $Z=0$ so that $P=\frac{1}{2\pi j}\oint_{\Gamma}\frac{kG'_{ol}(s)}{1+kG_{ol}(s)}ds.$

The Nyquist plot is a graphical representation of the transfer function evaluated along a closed contour Γ in $\mathbb C$ that traverses the imaginary axis and a semicircle of infinite radius.

Consider: SISO feedback interconnection

$$
\hat{y}(s) = G_{cl}(s)\hat{u}(s) = \frac{G_{ol}(s)}{1 + kG_{ol}(s)}\hat{u}(s)
$$

where

 $G_{\alpha l}, G_{\alpha l}$: open loop and closed loop transfer function

Theorem (Nyquist Criterion)

Consider the SISO closed loop system. Let $P \in \mathbb{N}$ *denote the number of poles of* G_{ol} *in* \mathbb{C}^{+} *. Moreover, assume that* Gol *does not have any poles in* jR*. Then the system is BIBO stable if and only if* $G_{ol}(jw)$, $w \in [-\infty, \infty]$, encircles −1/k ∈ C *exactly* −P*-times clockwise.*

Consider: SISO feedback interconnection

$$
\hat{y}(s) = G_{cl}(s)\hat{u}(s) = \frac{G_{ol}(s)}{1 + kG_{ol}(s)}\hat{u}(s)
$$

where

 $G_{\alpha l}, G_{\alpha l}$: open loop and closed loop transfer function

Theorem (Nyquist Criterion)

Consider the SISO closed loop system. Let $P \in \mathbb{N}$ *denote the number of poles of* G_{ol} *in* \mathbb{C}^{+} *. Moreover, assume that* Gol *does not have any poles in* jR*. Then the system is BIBO stable if and only if* $G_{ol}(jw)$ *, w* ∈ $[-\infty, \infty]$ *, encircles* −1/k ∈ C *exactly* −P*-times clockwise.*

Example:

• Linearization of the pendulum in the upright position $[x, \dot{x}]^T = \theta, \dot{\theta}]^T = [0, 0]^T$:

$$
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{mg\ell}{J+m\ell^2} & -\frac{\gamma}{J+m\ell^2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{\ell}{J+m\ell^2} \end{bmatrix} u
$$

$$
y = \begin{bmatrix} 1 & 0 \end{bmatrix} x
$$

• Transfer fcn ($m = \ell = 1$, $J = 0$, $q = 9.81$, $\gamma = 0.1$) $G_{ol}(s) = \frac{1}{s^2 + 0.1s - 9.81}$ $G_{cl}(s) = \frac{1}{s^2 + 0.1s - 9.81 + k}$

Consider: SISO feedback interconnection

$$
\hat{y}(s) = G_{cl}(s)\hat{u}(s) = \frac{G_{ol}(s)}{1 + kG_{ol}(s)}\hat{u}(s)
$$

where

 $G_{\alpha l}, G_{\alpha l}$: open loop and closed loop transfer function

Theorem (Nyquist Criterion)

Consider the SISO closed loop system. Let $P \in \mathbb{N}$ *denote the number of poles of* G_{ol} *in* \mathbb{C}^{+} *. Moreover, assume that* Gol *does not have any poles in* jR*. Then the system is BIBO stable if and only if* $G_{ol}(jw)$ *, w* ∈ [$-\infty$, ∞]*, encircles* −1/k ∈ C *exactly* −P*-times clockwise.*

Example:

• Linearization of the pendulum in the upright position $[x, \dot{x}]^T = \theta, \dot{\theta}]^T = [0, 0]^T$:

$$
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{mg\ell}{J+m\ell^2} & -\frac{\gamma}{J+m\ell^2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{\ell}{J+m\ell^2} \end{bmatrix} u
$$

$$
y = \begin{bmatrix} 1 & 0 \end{bmatrix} x
$$

- Transfer fcn ($m = \ell = 1$, $J = 0$, $q = 9.81$, $\gamma = 0.1$) $G_{ol}(s) = \frac{1}{s^2 + 0.1s - 9.81}$ $G_{cl}(s) = \frac{1}{s^2 + 0.1s - 9.81 + k}$
- Roots of G_{α} : $\lambda_1 = -3.18$ and $\lambda_2 = 3.08$, i.e., $P = 1$

Consider: SISO feedback interconnection

$$
\hat{y}(s) = G_{cl}(s)\hat{u}(s) = \frac{G_{ol}(s)}{1 + kG_{ol}(s)}\hat{u}(s)
$$

where

 $G_{\alpha l}, G_{\alpha l}$: open loop and closed loop transfer function

Theorem (Nyquist Criterion)

Consider the SISO closed loop system. Let $P \in \mathbb{N}$ *denote the number of poles of* G_{ol} *in* \mathbb{C}^{+} *. Moreover, assume that* Gol *does not have any poles in* jR*. Then the system is BIBO stable if and only if* $G_{ol}(jw)$ *, w* ∈ [$-\infty$, ∞]*, encircles* −1/k ∈ C *exactly* −P*-times clockwise.*

Example:

• Linearization of the pendulum in the upright position $[x, \dot{x}]^T = \theta, \dot{\theta}]^T = [0, 0]^T$:

$$
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{mg\ell}{J+m\ell^2} & -\frac{\gamma}{J+m\ell^2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{\ell}{J+m\ell^2} \end{bmatrix} u
$$

$$
y = \begin{bmatrix} 1 & 0 \end{bmatrix} x
$$

- Transfer fcn ($m = \ell = 1$, $J = 0$, $q = 9.81$, $\gamma = 0.1$) $G_{ol}(s) = \frac{1}{s^2 + 0.1s - 9.81}$ $G_{cl}(s) = \frac{1}{s^2 + 0.1s - 9.81 + k}$
- Roots of G_{ol} : $\lambda_1 = -3.18$ and $\lambda_2 = 3.08$, i.e., $P = 1$

For $k < 9.81$ the graph of $G_{ol}(j\omega)$ encircles the point $-\frac{1}{k}$ zero times and for $k > 9.81$ the graph encircles the point $-\frac{1}{k}$ exactly -1 time clockwise.

Introduction to Nonlinear Control

Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett School of Engineering, Australian National University, Canberra, Australia

Part I:

Chapter 4: Frequency Domain Analysis 4.1 Fundamental Results in the Frequency Domain 4.2 The Transfer Function

