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Discrete Time Systems – Fundamentals

Discrete time sys. (F : Rn×Rm → Rn, H : Rn×Rm → Rp)

xd(k + 1) = F (xd(k), ud(k)), xd(0) = xd,0 ∈ Rn

yd(k) = H(xd(k), ud(k))

Time-varying discrete time system (k ≥ k0 ≥ 0):

xd(k + 1) = F (k, xd(k)), xd(k0) = xd,0 ∈ Rn

Time invariant discrete time systems without input:

xd(k + 1) = F (xd(k)), xd(0) = xd,0 ∈ Rn,

Shorthand notation for difference equations:

x+
d = F (xd, ud),
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Definition (Equilibrium)

The point xe
d ∈ Rn is called equilibrium if xe

d = F (xe
d)

or xe
d = F (k, xe

d) for all k ∈ N is satisfied.

The pair (xe
d, u

e
d) ∈ Rn × Rm is called equilibrium

pair of the system if xe
d = F (xe

d, u
e
d) holds.

Again, without loss of generality we can shift the equilibrium
(pair) to the origin.

Definition (Equilibrium, ẋ = 0)

The point xe ∈ Rn is called an equilibrium of the system
ẋ = f(x) if d

dt
x(t) = f(xe) = 0
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Sampling: From Continuous Time to Discrete Time
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Sampling: From Continuous to Discrete Time

Derivative for continuously differentiable function:

d
dt
x(t) = lim

∆→0

x(t+∆)− x(t)

∆

Difference quotient (for ∆ > 0 small):

x(t+∆)− x(t)

∆
≈ d

dt
x(t) = ẋ(t) = f(x(t), u(t))

or equivalently

x(t+∆) ≈ x(t) + ∆f(x(t), u(t))

Approximated discrete time system (identify t with k ·∆)

x+
d = F (xd, ud)

.
= xd +∆f(xd, ud)

⇝ This discretization is known as (explicit) Euler method.

Note that:
Continuous time: x : R≥0 → Rn and u : R≥0 → Rm

Discrete time: xd : N → Rn and ud : N → Rm

Zero-order hold: for all k ∈ N, for all t ∈ [0,∆)

xd(k) = x(∆k) = x(t+∆k)

ud(k) = u(∆k) = u(t+∆k)

(restrict x and u to piecewise constant functions)

Sample-and-hold input: (with sampling rate ∆)

u(∆k) = u(t+∆k), k ∈ N, ∀ t ∈ [0,∆)

Digital controller:
apply a piecewise constant sample-and-hold input to
a continuous time system.

Solution corresponding to sample-and-hold input (∆ = 1)
and continuous input
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Discretization of Linear Systems

Consider the linear system: (Ac ∈ Rn×n, Bc ∈ Rn×m)

ẋ(t) = Acx(t) +Bcu(t)

Euler discretization: (sampling rate ∆ > 0)

x(t+∆) ≈ x(t) + ∆(Acx(t) +Bcu(t))

= (I +∆Ac)x(t) + ∆Bcu(t)

Linear discrete time system:

xd(k + 1) = Adxd(k) +Bdud(k)

(x+
d = Adxd +Bdud)

where

Ad
.
= (I +∆A) and Bd

.
= ∆B.

Alternative discretization (for linear systems):
Recall the solution of the linear system:

x(t+∆) = eAc∆x(t) +

∫ ∆

0
eAc(∆−τ)Bcu(t+ τ)dτ.

Let u(·) be constant on the interval τ ∈ [t, t+∆),
(i.e., u(t+ τ) = u(t) for all τ ∈ [0,∆)).

Then

x(t+∆) = eAc∆x(t) +

∫ ∆

0
eAc(∆−τ)dτBcu(t).

Define

Ade
.
= eAc∆ and Bde

.
=

∫ ∆

0
eAc(∆−τ)dτBc

Alternative discrete time system:

x+
d = Adexd +Bdeud

The discretization satisfies

x(k∆) = xd(k), for all k ∈ N

if u(t+∆k) = u(∆k) = ud(k) ∀ t ∈ [0,∆), ∀ k ∈ N.
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ẋ(t) = Acx(t) +Bcu(t)

Euler discretization: (sampling rate ∆ > 0)

x(t+∆) ≈ x(t) + ∆(Acx(t) +Bcu(t))

= (I +∆Ac)x(t) + ∆Bcu(t)

Linear discrete time system:

xd(k + 1) = Adxd(k) +Bdud(k)

(x+
d = Adxd +Bdud)

where

Ad
.
= (I +∆A) and Bd

.
= ∆B.

Alternative discretization (for linear systems):
Recall the solution of the linear system:

x(t+∆) = eAc∆x(t) +

∫ ∆

0
eAc(∆−τ)Bcu(t+ τ)dτ.

Let u(·) be constant on the interval τ ∈ [t, t+∆),
(i.e., u(t+ τ) = u(t) for all τ ∈ [0,∆)).

Then

x(t+∆) = eAc∆x(t) +

∫ ∆

0
eAc(∆−τ)dτBcu(t).

Define

Ade
.
= eAc∆ and Bde

.
=

∫ ∆

0
eAc(∆−τ)dτBc

Alternative discrete time system:

x+
d = Adexd +Bdeud

The discretization satisfies

x(k∆) = xd(k), for all k ∈ N

if u(t+∆k) = u(∆k) = ud(k) ∀ t ∈ [0,∆), ∀ k ∈ N.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 5: Discrete Time Systems 7 / 22



Discretization of Linear Systems

Consider the linear system: (Ac ∈ Rn×n, Bc ∈ Rn×m)
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Discretization of Linear Systems (Comparison)

Approximation of ẋ = 1.1x

Euler discretization: x+ = (I +∆Ac)x Exact discretization: x+ = eAc∆x

0 1 2 3

0

0.5

1

1.5

2

2.5

0 1 2 3

0

0.5

1

1.5

2

2.5

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 5: Discrete Time Systems 8 / 22



Higher Order Discretization Schemes
Consider the continuous time system

ẋ(t) = f(x(t), u(t))

Assume that f is sufficiently often cont. differentiable:

di+1

dti+1
x(t) =

di

dti
f(x(t), u(t)), i = 1, . . . , r

Taylor approximation of x(t):

x(t+∆) = x(t) + ẋ(t)∆ + 1
2!
ẍ(t)∆2 + · · ·

+ 1
r!

dr

dtr
x(t)∆r +Rr(∆)

Remainder

Rr(∆) = 1
(r+1)!

dr+1

dtr+1 x(τ)∆
r+1, τ ∈ [t, t+∆]

Example: Consider r = 1. Then

x(t+∆) = x(t) + ẋ(t)∆ +R1(∆)

= x(t) + ∆f(x(t)) +R1(∆)

Moreover, R1(∆)
∆→0−→ 0, quadratically.

⇝ The Euler method converges quadratically.

Include higher order terms in the approximation:

x(t+∆) ≈ x(t) + ẋ(t)∆ + 1
2
ẍ(t)∆2

(We ignore terms of order ∆3 in the remainder.)
Note that

ẍ = df
dt

(x, u) = ∂
∂x

f(x, u)ẋ+ ∂
∂u

f(x, u)u̇,

= ∂
∂x

f(x, u)f(x, u) + ∂
∂u

f(x, u)u̇,

and thus

x(t+∆) ≈ x(t) + ∆f(x(t), u(t))

+ ∆2

2

(
∂
∂x

f(x(t), u(t))f(x(t), u(t)) + ∂
∂u

f(x(t), u(t))u̇(t)
)

If u(t) is piecewise constant we simplify to:

x(t+∆)≈x(t)+∆f(x(t), ud)+
∆2

2
∂
∂x

f(x(t), ud)f(x(t), ud)

Avoid the calculation of ∂f
∂x

:

f(x+∆ẋ, ud) = f(x, ud) +
∂f
∂x

(x, ud)ẋ∆

+ 1
2

d2f
d∆2 (x+ δẋ, ud)∆

2 for a δ ∈ [0,∆]
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Consider the continuous time system

ẋ(t) = f(x(t), u(t))

Assume that f is sufficiently often cont. differentiable:

di+1

dti+1
x(t) =

di

dti
f(x(t), u(t)), i = 1, . . . , r

Taylor approximation of x(t):

x(t+∆) = x(t) + ẋ(t)∆ + 1
2!
ẍ(t)∆2 + · · ·

+ 1
r!

dr

dtr
x(t)∆r +Rr(∆)

Remainder

Rr(∆) = 1
(r+1)!

dr+1

dtr+1 x(τ)∆
r+1, τ ∈ [t, t+∆]
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f(x+∆ẋ, ud) = f(x, ud) +
∂f
∂x

(x, ud)ẋ∆
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2!
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+ 1
2

d2f
d∆2 (x+ δẋ, ud)∆
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2!
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Higher Order Discretization Schemes (2)
Include higher order terms in the approximation:

x(t+∆) ≈ x(t) + ẋ(t)∆ + 1
2
ẍ(t)∆2

(We ignore terms of order ∆3 in the remainder.)
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ẍ = df
dt
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∂x

f(x, u)ẋ+ ∂
∂u

f(x, u)u̇,

= ∂
∂x

f(x, u)f(x, u) + ∂
∂u

f(x, u)u̇,

and thus

x(t+∆) ≈ x(t) + ∆f(x(t), u(t))

+ ∆2

2

(
∂
∂x

f(x(t), u(t))f(x(t), u(t)) + ∂
∂u

f(x(t), u(t))u̇(t)
)

If u(t) is piecewise constant we simplify to:

x(t+∆)≈x(t)+∆f(x(t), ud)+
∆2

2
∂
∂x

f(x(t), ud)f(x(t), ud)

Avoid the calculation of ∂f
∂x

:

f(x+∆ẋ, ud) = f(x, ud) +
∂f
∂x

(x, ud)ẋ∆

+ 1
2

d2f
d∆2 (x+ δẋ, ud)∆

2 for a δ ∈ [0,∆]

Rearranging the terms:

∆ ∂f
∂x

(x, ud)f(x, ud) = f(x+∆f(x, ud), ud)− f(x, ud)

− 1
2

d2f
d∆2 (x+ δẋ, ud)∆

2.

Continuing with the approximation:

x(t+∆) ≈ x(t) + ∆f(x(t), ud)

+ ∆
2
(f(x(t) + ∆f(x(t), ud), ud)− f(x(t), ud))

+ ∆
2

(
− 1

2
d2f
d∆2 (x(t) + δẋ, ud)∆

2
)

= x(t) + ∆
2
f(x(t), ud) +

∆
2
f(x(t) + ∆f(x(t), ud), ud)

− 1
4

d2f
d∆2 (x(t) + δẋ, ud)∆

3

⇝ Ignore terms of order ∆3

Heun method:

x(t+∆) ≈ x(t) + ∆
2
f(x(t), ud)

+ ∆
2
f(x(t) + ∆f(x(t), ud), ud)

⇝ Cubic convergence
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2
)

= x(t) + ∆
2
f(x(t), ud) +

∆
2
f(x(t) + ∆f(x(t), ud), ud)

− 1
4

d2f
d∆2 (x(t) + δẋ, ud)∆
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Comparison: Euler & Heun Method

Consider ẋ = 1.1x

Euler method:

x(t+∆) ≈ x(t) + ∆f(x(t), ud)

Heun method:

x(t+∆) ≈ x(t) + ∆
2
f(x(t), ud)

+ ∆
2
f(x(t) + ∆f(x(t), ud), ud)

0 1 2 3

0

0.5

1

1.5

2

2.5
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Runge-Kutta Methods
Consider

ẋ = g(t, x).

Runge-Kutta update formula:

x(t+∆) = x(t) + ∆

s∑
i=1

biki
where

k1 = g(t, x(t))

k2 = g(t+ c2∆, x+∆(a21k1))

k3 = g(t+ c3∆, x+∆(a31k1 + a32k2))

...
ks = g(t+ cs∆, x+∆(as1k1 + as2k2 + · · ·+ as(s−1)k(s)))

s ∈ N (stage); aij , bℓ, ci ∈ R, 1 ≤ j < i ≤ s, 1 ≤ ℓ ≤ s
(given parameters)

The case f(x, u) for sample-and-hold inputs
u(t+ δ) = ud ∈ Rm for all δ ∈ [0,∆) is covered through

g(t, x(t)) = f(x(t), ud)

Butcher tableau:

0
c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 · · · as(s−1)

b1 b2 · · · bs−1 bs

⇝ ci is only necessary for time-varying systems

Examples: The Euler and the Heun method

0
1

and
0
1 1

1
2

1
2

Heun Method: Update of x in three steps

k1 = f(x(t), ud),

k2 = f(x(t) + ∆k1, ud),

x(t+∆) = x(t) + ∆
(
1
2
k1 + 1

2
k2

)
.
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Runge-Kutta Methods (in Matlab)

The function ode23.m relies on the Butcher tableaus

0
1
2

1
2

3
4

0 3
4

2
9

1
3

4
9

and

0
1
2

1
2

3
4

0 3
4

1 2
9

1
3

4
9

7
24

1
4

1
3

1
8

One scheme is used to approximate x(t+∆).

The second scheme is needed to approximate the
error, to select the step size ∆.

The function ode45.m relies on the Butcher tableaus

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45

− 56
15

32
9

8
9

19372
6561

− 25360
2187

64448
6561

− 212
729

1 9017
3168

− 355
33

46732
5247

49
176

− 5103
18656

1 35
384

0 500
1113

125
192

− 2187
6784

11
84

35
384

0 500
1113

125
192

− 2187
6784

11
84

0

5179
57600

0 7571
16695

393
640

− 92097
339200

187
2100

1
40
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Section 3

Stability Notions
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Stability Notions

Discrete time systems: Consider

x+ = F (x), x(0) = x0 ∈ Rn

Definition
Consider the origin of the discrete time system.

1. (Stability) The origin is Lyapunov stable (or simply
stable) if, for any ε > 0 there exists δ > 0 such that if
|x(0)| ≤ δ then, for all k ≥ 0,

|x(k)| ≤ ε.

2. (Instability) The origin is unstable if it is not stable.

3. (Attractivity) The origin is attractive if there exists
δ > 0 such that if |x(0)| < δ then

lim
k→∞

x(k) = 0.

4. (Asymptotic stability) The origin is asymptotically
stable if it is both stable and attractive.

Continuous time systems: Consider

ẋ = f(x), x(0) = x0 ∈ Rn

Definition
Consider the origin of the continuous time system.

1. (Stability) The origin is Lyapunov stable (or simply
stable) if, for any ε > 0 there exists δ > 0 such that if
|x(0)| ≤ δ then, for all t ≥ 0,

|x(t)| ≤ ε.

2. (Instability) The origin is unstable if it is not stable.

3. (Attractivity) The origin is attractive if there exists
δ > 0 such that if |x(0)| < δ then

lim
t→∞

x(t) = 0.

4. (Asymptotic stability) The origin is asymptotically
stable if it is both stable and attractive.
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Stability Notions (2)
Discrete time systems: Consider

x+ = F (x), x(0) = x0 ∈ Rn

Definition (KL-stability)
The origin of the discrete time system is is globally
asymptotically stable, or alternatively KL-stable, if there
exists β ∈ KL such that

|x(k)| ≤ β(|x(0)|, k), ∀ k ∈ N,

is satisfied for all x(0) ∈ Rn.

Definition (Exponential stability)
Consider the origin of the discrete time system. If there
exist M > 0 and γ ∈ (0, 1) such that for each x(0) ∈ Rn

the inequality

|x(k)| ≤ M |x(0)|γk, ∀ k ∈ N,

is satisfied, then the origin is globally exponentially stable.

Continuous time systems: Consider

ẋ = f(x), x(0) = x0 ∈ Rn

Definition (KL-stability)
The origin of the discrete time system is is globally
asymptotically stable, or alternatively KL-stable, if there
exists β ∈ KL such that

|x(t)| ≤ β(|x(0)|, t), ∀ t ∈ R≥0,

is satisfied for all x(0) ∈ Rn.

Definition (Exponential stability)
Consider the origin of the discrete time system. If there
exist M > 0 and λ > 0 such that for each x(0) ∈ Rn the
inequality

|x(t)| ≤ M |x(0)|e−λt, ∀ t ∈ R≥0,

is satisfied, then the origin is globally exponentially stable.
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Lyapunov Characterizations
Consider x+ = f(x), 0 = f(0), 0 ∈ D ⊂ Rn open.

Theorem (Lyapunov stability theorem)
Suppose there exists a continuous function V : D → R≥0

and functions α1, α2 ∈ K∞ such that, for all x ∈ D,

α1(|x|) ≤ V (x) ≤ α2(|x|) (1)
V (f(x))− V (x) ≤ 0

Then the origin is stable.

Note that
Decrease condition V (x+) = V (f(x)) ≤ V (x)

differentiability of V (or even continuity) is not required

Theorem (Asymptotic stability)
Suppose there exists a continuous function V : D → R≥0,
and functions α1, α2 ∈ K∞, ρ ∈ P satisfying ρ(s) < s for
all s > 0, such that, for all x ∈ D, (1) holds and

V (f(x))− V (x) ≤ −ρ(V (x)).

Then the origin is asymptotically stable.

Consider ẋ = f(x), 0 = f(0), 0 ∈ D ⊂ Rn open.

Theorem (Lyapunov stability theorem)
Suppose there exists a smooth function V : D → R≥0 and
functions α1, α2 ∈ K∞ such that, for all x ∈ D,

α1(|x|) ≤ V (x) ≤ α2(|x|) (2)
⟨∇V (x), f(x)⟩ ≤ 0

Then the origin is stable.

Theorem (Asymptotic stability)
Suppose there exists a smooth function V : D → R≥0, and
functions α1, α2 ∈ K∞, ρ ∈ P, such that, for all x ∈ D, (2)
holds and

⟨∇V (x), f(x)⟩ ≤ −ρ(V (x)).

Then the origin is asymptotically stable.
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Lyapunov Characterizations (2)
Consider x+ = f(x), 0 = f(0), 0 ∈ D ⊂ Rn open.

Theorem (Exponential stability)
Suppose there exists a continuous function V : D → R≥0

and constants λ1, λ2 > 0, p ≥ 1, and c ∈ (0, 1) such that,
for all x ∈ D

λ1|x|p ≤ V (x) ≤ λ2|x|p and
V (f(x))− V (x)≤ −cV (x).

Then the origin is exponentially stable.

Consider x+ = f(k, x), 0 = f(k, 0) for all k ∈ N

Theorem
If there exist a function V : N× Rn → R≥0, and functions
α1, α2 ∈ K∞ and ρ ∈ P such that, for all x ∈ Rn and
k ≥ k0 ≥ 0,

α1(|x|) ≤V (k, x) ≤ α2(|x|) and
V (k + 1, f(k, x))−V (k, x) ≤ −ρ(|x|)

then the origin is uniformly globally asymptotically stable.

Consider ẋ = f(x), 0 = f(0), 0 ∈ D ⊂ Rn open.

Theorem (Exponential stability)
Suppose there exists a smooth function V : D → R≥0 and
constants λ1, λ2 > 0, p ≥ 1, and c ∈ (0, 1) such that, for all
x ∈ D

λ1|x|p ≤ V (x) ≤ λ2|x|p and
⟨∇V (x), f(x)⟩≤ −cV (x).

Then the origin is exponentially stable.

Consider ẋ = f(t, x), 0 = f(k, 0) for all t ∈ R≥0

Theorem
If there exist a smooth function V : R≥0 × Rn → R≥0, and
functions α1, α2 ∈ K∞ and ρ ∈ P such that, for all x ∈ Rn

and t ≥ t0 ≥ 0,

α1(|x|) ≤V (t, x) ≤ α2(|x|) and
⟨∇xV (t, x), f(t, x)⟩+∇tV (t, x) ≤ −ρ(|x|)

then the origin is uniformly globally asymptotically stable.
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Linear systems
Consider the discrete time linear system

x+ = Ax, x(0) ∈ Rn [Solution x(k) = Akx(0)]

Theorem
The following properties are equivalent:

1 The origin xe = 0 is exponentially stable;
2 The eigenvalues λ1, . . . , λn ∈ C of A satisfy |λi| < 1

for all i = 1, . . . , n; and
3 For Q ∈ Sn

>0 there exists a unique P ∈ Sn
>0

satisfying the discrete time Lyapunov equation

ATPA− P = −Q.

A matrix A which satisfies |λi| < 1 for all i = 1, . . . , n is
called a Schur matrix.

Theorem

If the origin of z+ = Az with A =
[
∂F
∂x

(x)
]
x=0

is globally

exponentially stable, then the origin of x+ = F (x),
0 = F (0), is locally exponentially stable.

Consider the continuous time linear system

ẋ = Ax, x(0) ∈ Rn [Solution x(t) = eAtx(0)]

Theorem
The following properties are equivalent:

1 The origin xe = 0 is exponentially stable;
2 The eigenvalues λ1, . . . , λn ∈ C of A satisfy λi ∈ C−

for all i = 1, . . . , n; and
3 For Q ∈ Sn

>0 there exists a unique P ∈ Sn
>0

satisfying the continuous time Lyapunov equation

ATP + PA = −Q.

A matrix A which satisfies λi ∈ C− for all i = 1, . . . , n is
called a Hurwitz matrix.

Theorem

If the origin of ż = Az with A =
[
∂f
∂x

(x)
]
x=0

is globally

exponentially stable, then the origin of ẋ = f(x), 0 = f(0),
is locally exponentially stable.
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Stability Preservation of Discretized Systems

Consider (continuous time system):

ẋ = λx, λ ∈ R

Euler discretization (∆ > 0):

x+ = x+∆λx = (1 +∆λ)x

The origin of the continuous time system is
exponentially stable if and only if λ < 0

The origin of the discrete time system is exponentially
stable if and only if |1 + ∆λ| < 1.

For λ < 0 it holds that
the condition |1 + ∆λ| < 1 is equivalent to

1 + ∆λ < 1 and − 1−∆λ < 1

or

0 < ∆ < − 2
λ

For
λ → 0 the condition is not restrictive

λ = −1000, ∆ needs satisfy ∆ < 0.002 to preserve
stability (⇝ stiff ODE)

For λ > 0

the condition |1 + ∆λ| > 1 implies that

∆ > 0 or ∆ < − 2
λ

(not restrictive)

Note that
we have only considered the Euler method and linear
systems

⇝ See sections on ‘stability’ in references on ‘numerical so-
lution of differential equations’
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ẋ = λx, λ ∈ R

Euler discretization (∆ > 0):

x+ = x+∆λx = (1 +∆λ)x

The origin of the continuous time system is
exponentially stable if and only if λ < 0

The origin of the discrete time system is exponentially
stable if and only if |1 + ∆λ| < 1.

For λ < 0 it holds that
the condition |1 + ∆λ| < 1 is equivalent to

1 + ∆λ < 1 and − 1−∆λ < 1

or

0 < ∆ < − 2
λ

For
λ → 0 the condition is not restrictive

λ = −1000, ∆ needs satisfy ∆ < 0.002 to preserve
stability (⇝ stiff ODE)

For λ > 0

the condition |1 + ∆λ| > 1 implies that

∆ > 0 or ∆ < − 2
λ

(not restrictive)

Note that
we have only considered the Euler method and linear
systems

⇝ See sections on ‘stability’ in references on ‘numerical so-
lution of differential equations’

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 5: Discrete Time Systems 20 / 22



Stability Preservation of Discretized Systems

Consider (continuous time system):
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Section 4

Controllability and Observability
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Controllability and Observability

Consider

x+ = Ax+Bu, y = Cx+Du.

Definition (Controllability)
The pair (A,B) is said to be controllable, if for all
x1, x2 ∈ Rn there exists K ∈ N and u : N0 → Rm such
that

x2 = AKx1 +
K∑
i=1

AK−iBu(i− 1).

Definition (Observability)
The pair (A,C) is said to be observable, if for all
x1, x2 ∈ Rn, x1 ̸= x2 there exists K ∈ N such that

CAKx2 ̸= CAKx1.

Controllability:
Kalman matrix: rank

(
[B AB A2B · · · An−1B]

)
= n

PBH test: rank ([A− λI B]) = n, λ ∈ C
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Kalman matrix: rank

(
[B AB A2B · · · An−1B]

)
= n

PBH test: rank ([A− λI B]) = n, λ ∈ C

Note that:
Different to the continuous time setting, K cannot be
chosen arbitrarily small.

Example:
Consider the controllable pair

A =

 0 1 0
0 0 1
0 0 0

 , B =

 0
0
1

 .

Consider the states x1 = [0, 0, 1]T and
x2 = [0, 0, 0]T . Then it holds that

Ax1 =

 0
1
0

 , A2x1 =

 1
0
0

 , A3x1 =

 0
0
0


Hence, without input, the origin is reached in
K = n = 3 steps x2 = A3x1.

Due to the vector B which is only unequal to zero in
the last entry, x1 cannot be steered to the origin in
fewer steps.
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Consider

x+ = Ax+Bu, y = Cx+Du.

Definition (Controllability)
The pair (A,B) is said to be controllable, if for all
x1, x2 ∈ Rn there exists K ∈ N and u : N0 → Rm such
that

x2 = AKx1 +
K∑
i=1

AK−iBu(i− 1).

Definition (Observability)
The pair (A,C) is said to be observable, if for all
x1, x2 ∈ Rn, x1 ̸= x2 there exists K ∈ N such that

CAKx2 ̸= CAKx1.

Controllability:
Kalman matrix: rank

(
[B AB A2B · · · An−1B]

)
= n

PBH test: rank ([A− λI B]) = n, λ ∈ C

Loss of Controllability:
Consider ẋ = Acx+Bcu:

Ac =

[
0 1

−1 0

]
and Bc =

[
0
1

]
.

Exact discretization:

Ade(∆) = eAc∆ =

[
cos(∆) sin(∆)

− sin(∆) cos(∆)

]

Bde(∆) =

[
1− cos(∆)
sin(∆)

]
, Bde(2πℓ) =

[
0
0

]

Lemma
Consider the pair (A,B) and let (Ade, Bde) be defined
through exact discretization for ∆ > 0. The pair (Ade, Bde)
is controllable if and only if (eA∆, B) is controllable and A

has no eigenvalues of the form 2
∆
πℓ, ℓ ∈ N.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 5: Discrete Time Systems 22 / 22



Controllability and Observability

Consider

x+ = Ax+Bu, y = Cx+Du.

Definition (Controllability)
The pair (A,B) is said to be controllable, if for all
x1, x2 ∈ Rn there exists K ∈ N and u : N0 → Rm such
that

x2 = AKx1 +
K∑
i=1

AK−iBu(i− 1).

Definition (Observability)
The pair (A,C) is said to be observable, if for all
x1, x2 ∈ Rn, x1 ̸= x2 there exists K ∈ N such that

CAKx2 ̸= CAKx1.

Controllability:
Kalman matrix: rank

(
[B AB A2B · · · An−1B]

)
= n

PBH test: rank ([A− λI B]) = n, λ ∈ C

Loss of Controllability:
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