Introduction to Nonlinear Control

Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett School of Engineering, Australian National University, Canberra, Australia

Part I:

Chapter 5: Discrete Time Systems 5.1 Discrete Time Systems – Fundamentals 5.2 Sampling From Continuous to Discrete Time 5.3 Stability Notions 5.4 Controllability and Observability

Nonlinear Systems - Fundamentals

[Discrete Time Systems – Fundamentals](#page-3-0)

- [Sampling: From Continuous Time to Discrete Time](#page-8-0)
	- [Discretization of Linear Systems](#page-9-0)
	- **[Higher Order Discretization Schemes](#page-9-0)**

[Stability Notions](#page-35-0)

- [Lyapunov Characterizations](#page-36-0)
- **[Linear Systems](#page-36-0)**
- [Stability Preservation of Discretized Systems](#page-36-0)

⁴ [Controllability and Observability](#page-50-0)

Section 1

[Discrete Time Systems – Fundamentals](#page-3-0)

Discrete Time Systems – Fundamentals

Discrete time sys. $(F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n, H: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p)$ $x_d(k+1) = F(x_d(k), u_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n$ $y_d(k) = H(x_d(k), u_d(k))$

Discrete Time Systems – Fundamentals

Discrete time sys.
$$
(F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n, H : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p)
$$

\n $x_d(k+1) = F(x_d(k), u_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n$
\n $y_d(k) = H(x_d(k), u_d(k))$

Time-varying discrete time system $(k \ge k_0 \ge 0)$: $x_d(k+1) = F(k, x_d(k)), \quad x_d(k_0) = x_{d,0} \in \mathbb{R}^n$

Time invariant discrete time systems without input:

$$
x_d(k+1) = F(x_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n,
$$

Shorthand notation for difference equations:

$$
x_d^+ = F(x_d, u_d),
$$

Discrete Time Systems – Fundamentals

Discrete time sys.
$$
(F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n, H : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p)
$$

\n $x_d(k+1) = F(x_d(k), u_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n$
\n $y_d(k) = H(x_d(k), u_d(k))$

Time-varying discrete time system $(k \geq k_0 \geq 0)$: $x_d(k+1) = F(k, x_d(k)), \quad x_d(k_0) = x_{d,0} \in \mathbb{R}^n$

Time invariant discrete time systems without input:

$$
x_d(k+1) = F(x_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n,
$$

Shorthand notation for difference equations:

$$
x_d^+ = F(x_d, u_d),
$$

Discrete time sys.
$$
(F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n, H : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p)
$$

\n $x_d(k+1) = F(x_d(k), u_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n$
\n $y_d(k) = H(x_d(k), u_d(k))$

Time-varying discrete time system $(k > k_0 > 0)$: $x_d(k+1) = F(k, x_d(k)), \quad x_d(k_0) = x_{d,0} \in \mathbb{R}^n$

Time invariant discrete time systems without input: $x_d(k+1) = F(x_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n,$

Shorthand notation for difference equations:

$$
x_d^+ = F(x_d, u_d),
$$

Definition (Equilibrium)

- The point $x_d^e \in \mathbb{R}^n$ is called equilibrium if $x_d^e = F(x_d^e)$ or $x_d^e = F(\ddot{k}, x_d^e)$ for all $k \in \mathbb{N}$ is satisfied.
- The pair $(x_d^e, u_d^e) \in \mathbb{R}^n \times \mathbb{R}^m$ is called equilibrium pair of the system if $x_d^e = F(x_d^e, u_d^e)$ holds.

Again, without loss of generality we can shift the equilibrium (pair) to the origin.

Definition (Equilibrium, $\dot{x} = 0$)

The point $x^e \in \mathbb{R}^n$ is called an equilibrium of the system $\dot{x} = f(x)$ if $\frac{d}{dt}x(t) = f(x^e) = 0$

Section 2

[Sampling: From Continuous Time to Discrete Time](#page-8-0)

Derivative for continuously differentiable function:

$$
\frac{d}{dt}x(t) = \lim_{\Delta \to 0} \frac{x(t + \Delta) - x(t)}{\Delta}
$$

Derivative for continuously differentiable function:

$$
\frac{d}{dt}x(t) = \lim_{\Delta \to 0} \frac{x(t + \Delta) - x(t)}{\Delta}
$$

Difference quotient (for $\Delta > 0$ small):

$$
\frac{x(t + \Delta) - x(t)}{\Delta} \approx \frac{d}{dt}x(t) = \dot{x}(t) = f(x(t), u(t))
$$

or equivalently

$$
x(t + \Delta) \approx x(t) + \Delta f(x(t), u(t))
$$

Derivative for continuously differentiable function:

$$
\frac{d}{dt}x(t) = \lim_{\Delta \to 0} \frac{x(t + \Delta) - x(t)}{\Delta}
$$

Difference quotient (for $\Delta > 0$ small):

$$
\frac{x(t + \Delta) - x(t)}{\Delta} \approx \frac{d}{dt}x(t) = \dot{x}(t) = f(x(t), u(t))
$$

or equivalently

 $x(t + \Delta) \approx x(t) + \Delta f(x(t), u(t))$

Approximated discrete time system (identify t with $k \cdot \Delta$)

 $x_d^+ = F(x_d, u_d) \doteq x_d + \Delta f(x_d, u_d)$

⇝ This discretization is known as (explicit) *Euler method*.

Derivative for continuously differentiable function:

$$
\frac{d}{dt}x(t) = \lim_{\Delta \to 0} \frac{x(t + \Delta) - x(t)}{\Delta}
$$

Difference quotient (for $\Delta > 0$ small):

$$
\frac{x(t + \Delta) - x(t)}{\Delta} \approx \frac{d}{dt}x(t) = \dot{x}(t) = f(x(t), u(t))
$$

or equivalently

 $x(t + \Delta) \approx x(t) + \Delta f(x(t), u(t))$

Approximated discrete time system (identify t with $k \cdot \Delta$)

 $x_d^+ = F(x_d, u_d) \doteq x_d + \Delta f(x_d, u_d)$

⇝ This discretization is known as (explicit) *Euler method*.

Note that:

- Continuous time: $x : \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ and $u : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$
- Discrete time: $x_d : \mathbb{N} \to \mathbb{R}^n$ and $u_d : \mathbb{N} \to \mathbb{R}^m$

Derivative for continuously differentiable function:

$$
\frac{d}{dt}x(t) = \lim_{\Delta \to 0} \frac{x(t + \Delta) - x(t)}{\Delta}
$$

Difference quotient (for $\Delta > 0$ small):

$$
\frac{x(t + \Delta) - x(t)}{\Delta} \approx \frac{d}{dt}x(t) = \dot{x}(t) = f(x(t), u(t))
$$

or equivalently

 $x(t + \Delta) \approx x(t) + \Delta f(x(t), u(t))$

Approximated discrete time system (identify t with $k \cdot \Delta$)

 $x_d^+ = F(x_d, u_d) \doteq x_d + \Delta f(x_d, u_d)$

⇝ This discretization is known as (explicit) *Euler method*.

Note that:

- Continuous time: $x : \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ and $u : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$
- Discrete time: $x_d : \mathbb{N} \to \mathbb{R}^n$ and $u_d : \mathbb{N} \to \mathbb{R}^m$

Zero-order hold: for all $k \in \mathbb{N}$, for all $t \in [0, \Delta)$

$$
x_d(k) = x(\Delta k) = x(t + \Delta k)
$$

$$
u_d(k) = u(\Delta k) = u(t + \Delta k)
$$

(restrict x and u to piecewise constant functions)

Derivative for continuously differentiable function:

$$
\frac{d}{dt}x(t) = \lim_{\Delta \to 0} \frac{x(t + \Delta) - x(t)}{\Delta}
$$

Difference quotient (for $\Delta > 0$ small):

$$
\frac{x(t + \Delta) - x(t)}{\Delta} \approx \frac{d}{dt}x(t) = \dot{x}(t) = f(x(t), u(t))
$$

or equivalently

 $x(t + \Delta) \approx x(t) + \Delta f(x(t), u(t))$

Approximated discrete time system (identify t with $k \cdot \Delta$)

 $x_d^+ = F(x_d, u_d) \doteq x_d + \Delta f(x_d, u_d)$

⇝ This discretization is known as (explicit) *Euler method*.

Note that:

- Continuous time: $x : \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ and $u : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$
- Discrete time: $x_d : \mathbb{N} \to \mathbb{R}^n$ and $u_d : \mathbb{N} \to \mathbb{R}^m$

Zero-order hold: for all $k \in \mathbb{N}$, for all $t \in [0, \Delta)$

$$
x_d(k) = x(\Delta k) = x(t + \Delta k)
$$

$$
u_d(k) = u(\Delta k) = u(t + \Delta k)
$$

(restrict x and u to piecewise constant functions)

Sample-and-hold input: (with sampling rate Δ)

 $u(\Delta k) = u(t + \Delta k), \quad k \in \mathbb{N}, \quad \forall t \in [0, \Delta)$

Derivative for continuously differentiable function:

$$
\frac{d}{dt}x(t) = \lim_{\Delta \to 0} \frac{x(t + \Delta) - x(t)}{\Delta}
$$

Difference quotient (for $\Delta > 0$ small):

$$
\frac{x(t + \Delta) - x(t)}{\Delta} \approx \frac{d}{dt}x(t) = \dot{x}(t) = f(x(t), u(t))
$$

or equivalently

 $x(t + \Delta) \approx x(t) + \Delta f(x(t), u(t))$

Approximated discrete time system (identify t with $k \cdot \Delta$)

 $x_d^+ = F(x_d, u_d) \doteq x_d + \Delta f(x_d, u_d)$

⇝ This discretization is known as (explicit) *Euler method*.

Note that:

- Continuous time: $x : \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ and $u : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$
- Discrete time: $x_d : \mathbb{N} \to \mathbb{R}^n$ and $u_d : \mathbb{N} \to \mathbb{R}^m$

Zero-order hold: for all $k \in \mathbb{N}$, for all $t \in [0, \Delta)$

$$
x_d(k) = x(\Delta k) = x(t + \Delta k)
$$

$$
u_d(k) = u(\Delta k) = u(t + \Delta k)
$$

(restrict x and u to piecewise constant functions)

Sample-and-hold input: (with sampling rate Δ)

 $u(\Delta k) = u(t + \Delta k), \quad k \in \mathbb{N}, \quad \forall t \in [0, \Delta)$

Digital controller:

• apply a piecewise constant sample-and-hold input to a continuous time system.

Solution corresponding to sample-and-hold input ($\Delta = 1$) and continuous input

Consider the linear system: $(A_c \in \mathbb{R}^{n \times n}, B_c \in \mathbb{R}^{n \times m})$

$$
\dot{x}(t) = A_c x(t) + B_c u(t)
$$

Euler discretization: (sampling rate $\Delta > 0$)

$$
x(t + \Delta) \approx x(t) + \Delta(A_c x(t) + B_c u(t))
$$

= $(I + \Delta A_c)x(t) + \Delta B_c u(t)$

Linear discrete time system:

$$
x_d(k+1) = A_d x_d(k) + B_d u_d(k)
$$

$$
(x_d^+ = A_d x_d + B_d u_d)
$$

where

$$
A_d \doteq (I + \Delta A) \qquad \text{and} \qquad B_d \doteq \Delta B.
$$

Consider the linear system: $(A_c \in \mathbb{R}^{n \times n}, B_c \in \mathbb{R}^{n \times m})$

$$
\dot{x}(t) = A_c x(t) + B_c u(t)
$$

Euler discretization: (sampling rate $\Delta > 0$)

$$
x(t + \Delta) \approx x(t) + \Delta(A_c x(t) + B_c u(t))
$$

= $(I + \Delta A_c)x(t) + \Delta B_c u(t)$

Linear discrete time system:

$$
x_d(k+1) = A_d x_d(k) + B_d u_d(k)
$$

$$
(x_d^+ = A_d x_d + B_d u_d)
$$

where

$$
A_d \doteq (I + \Delta A) \qquad \text{and} \qquad B_d \doteq \Delta B.
$$

Alternative discretization (for linear systems): Recall the solution of the linear system:

$$
x(t + \Delta) = e^{A_c \Delta} x(t) + \int_0^{\Delta} e^{A_c(\Delta - \tau)} B_c u(t + \tau) d\tau.
$$

Let $u(\cdot)$ be constant on the interval $\tau \in [t, t + \Delta)$, (i.e., $u(t + \tau) = u(t)$ for all $\tau \in [0, \Delta)$).

Consider the linear system: $(A_c \in \mathbb{R}^{n \times n}, B_c \in \mathbb{R}^{n \times m})$ $\dot{x}(t) = A_c x(t) + B_c u(t)$

Euler discretization: (sampling rate $\Delta > 0$)

$$
x(t + \Delta) \approx x(t) + \Delta(A_c x(t) + B_c u(t))
$$

= $(I + \Delta A_c)x(t) + \Delta B_c u(t)$

Linear discrete time system:

$$
x_d(k+1) = A_d x_d(k) + B_d u_d(k)
$$

$$
(x_d^+ = A_d x_d + B_d u_d)
$$

where

$$
A_d \doteq (I + \Delta A) \qquad \text{and} \qquad B_d \doteq \Delta B.
$$

Alternative discretization (for linear systems): Recall the solution of the linear system:

$$
x(t + \Delta) = e^{A_c \Delta} x(t) + \int_0^{\Delta} e^{A_c(\Delta - \tau)} B_c u(t + \tau) d\tau.
$$

Let $u(\cdot)$ be constant on the interval $\tau \in [t, t + \Delta)$, (i.e., $u(t + \tau) = u(t)$ for all $\tau \in [0, \Delta)$).

Then

$$
x(t + \Delta) = e^{A_c \Delta} x(t) + \int_0^{\Delta} e^{A_c(\Delta - \tau)} d\tau B_c u(t).
$$

Define

$$
A_{de} \doteq e^{A_c \Delta} \qquad \text{and} \qquad B_{de} \doteq \int_0^\Delta e^{A_c (\Delta - \tau)} d\tau B_c
$$

Alternative discrete time system:

$$
x_d^+ = A_{de}x_d + B_{de}u_d
$$

Consider the linear system: $(A_c \in \mathbb{R}^{n \times n}, B_c \in \mathbb{R}^{n \times m})$ $\dot{x}(t) = A_c x(t) + B_c u(t)$

Euler discretization: (sampling rate $\Delta > 0$)

$$
x(t + \Delta) \approx x(t) + \Delta(A_c x(t) + B_c u(t))
$$

= $(I + \Delta A_c)x(t) + \Delta B_c u(t)$

Linear discrete time system:

$$
x_d(k+1) = A_d x_d(k) + B_d u_d(k)
$$

$$
(x_d^+ = A_d x_d + B_d u_d)
$$

where

$$
A_d \doteq (I + \Delta A) \qquad \text{and} \qquad B_d \doteq \Delta B.
$$

Alternative discretization (for linear systems): Recall the solution of the linear system:

$$
x(t + \Delta) = e^{A_c \Delta} x(t) + \int_0^{\Delta} e^{A_c(\Delta - \tau)} B_c u(t + \tau) d\tau.
$$

Let $u(\cdot)$ be constant on the interval $\tau \in [t, t + \Delta)$, (i.e., $u(t + \tau) = u(t)$ for all $\tau \in [0, \Delta)$).

Then

$$
x(t + \Delta) = e^{A_c \Delta} x(t) + \int_0^{\Delta} e^{A_c(\Delta - \tau)} d\tau B_c u(t).
$$

Define

$$
A_{de} \doteq e^{A_c \Delta} \qquad \text{and} \qquad B_{de} \doteq \int_0^\Delta e^{A_c (\Delta - \tau)} d\tau B_c
$$

Alternative discrete time system:

$$
x_d^+ = A_{de}x_d + B_{de}u_d
$$

The discretization satisfies

$$
x(k\Delta)=x_d(k),\qquad \text{for all }k\in\mathbb{N}
$$
 if $u(t+\Delta k)=u(\Delta k)=u_d(k)\ \forall\ t\in[0,\Delta),\ \forall\ k\in\mathbb{N}.$

Discretization of Linear Systems (Comparison)

Approximation of $\dot{x} = 1.1x$

Euler discretization: $x^+ = (I + \Delta A_c)x$

 $+ = (I + \Delta A_c)x$ Exact discretization: $x^+ = e^{A_c\Delta}x$

Consider the continuous time system

$$
\dot{x}(t) = f(x(t), u(t))
$$

Assume that f is sufficiently often cont. differentiable:

$$
\frac{d^{i+1}}{dt^{i+1}}x(t) = \frac{d^i}{dt^i}f(x(t), u(t)), \qquad i = 1, \dots, r
$$

Taylor approximation of $x(t)$:

$$
x(t + \Delta) = x(t) + \dot{x}(t)\Delta + \frac{1}{2!}\ddot{x}(t)\Delta^2 + \cdots
$$

$$
+ \frac{1}{r!}\frac{d^r}{dt^r}x(t)\Delta^r + R_r(\Delta)
$$

Remainder

$$
R_r(\Delta) = \frac{1}{(r+1)!} \frac{d^{r+1}}{dt^{r+1}} x(\tau) \Delta^{r+1}, \qquad \tau \in [t, t + \Delta]
$$

Consider the continuous time system

 $\dot{x}(t) = f(x(t), u(t))$

Assume that f is sufficiently often cont. differentiable:

$$
\frac{d^{i+1}}{dt^{i+1}}x(t) = \frac{d^i}{dt^i}f(x(t), u(t)), \qquad i = 1, \dots, r
$$

Taylor approximation of $x(t)$:

$$
x(t + \Delta) = x(t) + \dot{x}(t)\Delta + \frac{1}{2!}\ddot{x}(t)\Delta^2 + \cdots
$$

$$
+ \frac{1}{r!}\frac{d^r}{dt^r}x(t)\Delta^r + R_r(\Delta)
$$

Remainder

$$
R_r(\Delta) = \frac{1}{(r+1)!} \frac{d^{r+1}}{dt^{r+1}} x(\tau) \Delta^{r+1}, \qquad \tau \in [t, t + \Delta]
$$

Example: Consider $r = 1$. Then

$$
x(t + \Delta) = x(t) + \dot{x}(t)\Delta + R_1(\Delta)
$$

= $x(t) + \Delta f(x(t)) + R_1(\Delta)$

Moreover, $R_1(\Delta) \stackrel{\Delta \rightarrow 0}{\longrightarrow} 0$, quadratically.

 \rightarrow The Euler method converges quadratically.

Include higher order terms in the approximation:

$$
x(t + \Delta) \approx x(t) + \dot{x}(t)\Delta + \frac{1}{2}\ddot{x}(t)\Delta^{2}
$$

(We ignore terms of order Δ^3 in the remainder.) Note that

$$
\ddot{x} = \frac{df}{dt}(x, u) = \frac{\partial}{\partial x} f(x, u)\dot{x} + \frac{\partial}{\partial u} f(x, u)\dot{u}, \n= \frac{\partial}{\partial x} f(x, u) f(x, u) + \frac{\partial}{\partial u} f(x, u)\dot{u},
$$

and thus

$$
x(t + \Delta) \approx x(t) + \Delta f(x(t), u(t))
$$

+
$$
\frac{\Delta^2}{2} \left(\frac{\partial}{\partial x} f(x(t), u(t)) f(x(t), u(t)) + \frac{\partial}{\partial u} f(x(t), u(t)) \dot{u}(t) \right)
$$

Consider the continuous time system

 $\dot{x}(t) = f(x(t), u(t))$

Assume that f is sufficiently often cont. differentiable:

$$
\frac{d^{i+1}}{dt^{i+1}}x(t) = \frac{d^i}{dt^i}f(x(t), u(t)), \qquad i = 1, \dots, r
$$

Taylor approximation of $x(t)$:

$$
x(t + \Delta) = x(t) + \dot{x}(t)\Delta + \frac{1}{2!}\ddot{x}(t)\Delta^2 + \cdots
$$

$$
+ \frac{1}{r!}\frac{d^r}{dt^r}x(t)\Delta^r + R_r(\Delta)
$$

Remainder

$$
R_r(\Delta) = \frac{1}{(r+1)!} \frac{d^{r+1}}{dt^{r+1}} x(\tau) \Delta^{r+1}, \qquad \tau \in [t, t + \Delta]
$$

Example: Consider $r = 1$. Then

$$
x(t + \Delta) = x(t) + \dot{x}(t)\Delta + R_1(\Delta)
$$

= $x(t) + \Delta f(x(t)) + R_1(\Delta)$

Moreover, $R_1(\Delta) \stackrel{\Delta \rightarrow 0}{\longrightarrow} 0$, quadratically.

 \rightarrow The Euler method converges quadratically.

Include higher order terms in the approximation:

$$
x(t + \Delta) \approx x(t) + \dot{x}(t)\Delta + \frac{1}{2}\ddot{x}(t)\Delta^{2}
$$

(We ignore terms of order Δ^3 in the remainder.) Note that

$$
\ddot{x} = \frac{df}{dt}(x, u) = \frac{\partial}{\partial x} f(x, u)\dot{x} + \frac{\partial}{\partial u} f(x, u)\dot{u}, \n= \frac{\partial}{\partial x} f(x, u) f(x, u) + \frac{\partial}{\partial u} f(x, u)\dot{u},
$$

and thus

$$
x(t + \Delta) \approx x(t) + \Delta f(x(t), u(t))
$$

+
$$
\frac{\Delta^2}{2} \left(\frac{\partial}{\partial x} f(x(t), u(t)) f(x(t), u(t)) + \frac{\partial}{\partial u} f(x(t), u(t)) \dot{u}(t) \right)
$$

If $u(t)$ is piecewise constant we simplify to:

$$
x(t+\Delta)\!\approx\!x(t)+\Delta f(x(t),u_d)+\tfrac{\Delta^2}{2}\tfrac{\partial}{\partial x}f(x(t),u_d)f(x(t),u_d)
$$

Consider the continuous time system

 $\dot{x}(t) = f(x(t), u(t))$

Assume that f is sufficiently often cont. differentiable:

$$
\frac{d^{i+1}}{dt^{i+1}}x(t) = \frac{d^i}{dt^i}f(x(t), u(t)), \qquad i = 1, \dots, r
$$

Taylor approximation of $x(t)$:

$$
x(t + \Delta) = x(t) + \dot{x}(t)\Delta + \frac{1}{2!}\ddot{x}(t)\Delta^2 + \cdots
$$

$$
+ \frac{1}{r!}\frac{d^r}{dt^r}x(t)\Delta^r + R_r(\Delta)
$$

Remainder

$$
R_r(\Delta) = \frac{1}{(r+1)!} \frac{d^{r+1}}{dt^{r+1}} x(\tau) \Delta^{r+1}, \qquad \tau \in [t, t + \Delta]
$$

Example: Consider $r = 1$. Then

$$
x(t + \Delta) = x(t) + \dot{x}(t)\Delta + R_1(\Delta)
$$

= $x(t) + \Delta f(x(t)) + R_1(\Delta)$

Moreover, $R_1(\Delta) \stackrel{\Delta \rightarrow 0}{\longrightarrow} 0$, quadratically.

Include higher order terms in the approximation:

$$
x(t + \Delta) \approx x(t) + \dot{x}(t)\Delta + \frac{1}{2}\ddot{x}(t)\Delta^{2}
$$

(We ignore terms of order Δ^3 in the remainder.) Note that

$$
\ddot{x} = \frac{df}{dt}(x, u) = \frac{\partial}{\partial x} f(x, u)\dot{x} + \frac{\partial}{\partial u} f(x, u)\dot{u}, \n= \frac{\partial}{\partial x} f(x, u) f(x, u) + \frac{\partial}{\partial u} f(x, u)\dot{u},
$$

and thus

$$
x(t + \Delta) \approx x(t) + \Delta f(x(t), u(t))
$$

+
$$
\frac{\Delta^2}{2} \left(\frac{\partial}{\partial x} f(x(t), u(t)) f(x(t), u(t)) + \frac{\partial}{\partial u} f(x(t), u(t)) \dot{u}(t) \right)
$$

If $u(t)$ is piecewise constant we simplify to: $x(t+\Delta) \approx x(t) + \Delta f(x(t), u_d) + \frac{\Delta^2}{2} \frac{\partial}{\partial x} f(x(t), u_d) f(x(t), u_d)$

Avoid the calculation of $\frac{\partial f}{\partial x}$:

$$
\begin{aligned} f(x+\Delta \dot{x},u_d) &= f(x,u_d) + \tfrac{\partial f}{\partial x}(x,u_d) \dot{x} \Delta \\ &+ \tfrac{1}{2} \tfrac{d^2 f}{d \Delta^2}(x+\delta \dot{x},u_d) \Delta^2 \quad \text{for a } \delta \in [0,\Delta] \end{aligned}
$$

 \rightarrow The Euler method converges quadratically.

Include higher order terms in the approximation:

 $x(t + \Delta) \approx x(t) + \dot{x}(t)\Delta + \frac{1}{2}\ddot{x}(t)\Delta^2$

(We ignore terms of order Δ^3 in the remainder.) Note that

$$
\ddot{x} = \frac{df}{dt}(x, u) = \frac{\partial}{\partial x} f(x, u)\dot{x} + \frac{\partial}{\partial u} f(x, u)\dot{u}, \n= \frac{\partial}{\partial x} f(x, u) f(x, u) + \frac{\partial}{\partial u} f(x, u)\dot{u},
$$

and thus

$$
x(t + \Delta) \approx x(t) + \Delta f(x(t), u(t))
$$

+
$$
\frac{\Delta^2}{2} \left(\frac{\partial}{\partial x} f(x(t), u(t)) f(x(t), u(t)) + \frac{\partial}{\partial u} f(x(t), u(t)) \dot{u}(t) \right)
$$

If $u(t)$ is piecewise constant we simplify to:

 $x(t+\Delta) \approx x(t) + \Delta f(x(t), u_d) + \frac{\Delta^2}{2} \frac{\partial}{\partial x} f(x(t), u_d) f(x(t), u_d)$ Avoid the calculation of $\frac{\partial f}{\partial x}$:

$$
\begin{aligned} f(x+\Delta \dot{x},u_d) &= f(x,u_d) + \tfrac{\partial f}{\partial x}(x,u_d) \dot{x} \Delta \\ &+ \tfrac{1}{2} \tfrac{d^2 f}{d \Delta^2}(x+\delta \dot{x},u_d) \Delta^2 \quad \text{for a } \delta \in [0,\Delta] \end{aligned}
$$

Rearranging the terms:

$$
\Delta \frac{\partial f}{\partial x}(x, u_d) f(x, u_d) = f(x + \Delta f(x, u_d), u_d) - f(x, u_d) - \frac{1}{2} \frac{d^2 f}{d \Delta^2} (x + \delta \dot{x}, u_d) \Delta^2.
$$

Include higher order terms in the approximation:

 $x(t + \Delta) \approx x(t) + \dot{x}(t)\Delta + \frac{1}{2}\ddot{x}(t)\Delta^2$

(We ignore terms of order Δ^3 in the remainder.) Note that

$$
\ddot{x} = \frac{df}{dt}(x, u) = \frac{\partial}{\partial x} f(x, u)\dot{x} + \frac{\partial}{\partial u} f(x, u)\dot{u}, \n= \frac{\partial}{\partial x} f(x, u) f(x, u) + \frac{\partial}{\partial u} f(x, u)\dot{u},
$$

and thus

$$
\begin{split} &x(t+\Delta) \approx x(t)+\Delta f(x(t),u(t))\\ &+\tfrac{\Delta^2}{2}\left(\tfrac{\partial}{\partial x}f(x(t),u(t))f(x(t),u(t))+\tfrac{\partial}{\partial u}f(x(t),u(t))\dot{u}(t)\right)\\ &\text{If}\ u(t)\text{ is piecewise constant we simplify to:}\\ &x(t+\Delta) \!\approx\! x(t)\!+\!\Delta f(x(t),u_d)\!+\!\tfrac{\Delta^2}{2}\tfrac{\partial}{\partial x}f(x(t),u_d)f(x(t),u_d) \end{split}
$$

Avoid the calculation of $\frac{\partial f}{\partial x}$:

$$
f(x + \Delta \dot{x}, u_d) = f(x, u_d) + \frac{\partial f}{\partial x}(x, u_d) \dot{x} \Delta
$$

$$
+ \frac{1}{2} \frac{d^2 f}{d\Delta^2} (x + \delta \dot{x}, u_d) \Delta^2 \quad \text{for a } \delta \in [0, \Delta]
$$

Rearranging the terms:

$$
\Delta \frac{\partial f}{\partial x}(x, u_d) f(x, u_d) = f(x + \Delta f(x, u_d), u_d) - f(x, u_d) \n- \frac{1}{2} \frac{d^2 f}{d \Delta^2} (x + \delta \dot{x}, u_d) \Delta^2.
$$

Continuing with the approximation:

$$
x(t + \Delta) \approx x(t) + \Delta f(x(t), u_d)
$$

+
$$
\frac{\Delta}{2} (f(x(t) + \Delta f(x(t), u_d), u_d) - f(x(t), u_d))
$$

+
$$
\frac{\Delta}{2} \left(-\frac{1}{2} \frac{d^2 f}{d\Delta^2} (x(t) + \delta \dot{x}, u_d) \Delta^2 \right)
$$

=
$$
x(t) + \frac{\Delta}{2} f(x(t), u_d) + \frac{\Delta}{2} f(x(t) + \Delta f(x(t), u_d), u_d)
$$

-
$$
\frac{1}{4} \frac{d^2 f}{d\Delta^2} (x(t) + \delta \dot{x}, u_d) \Delta^3
$$

 \rightsquigarrow Ignore terms of order Δ^3

Include higher order terms in the approximation:

 $x(t + \Delta) \approx x(t) + \dot{x}(t)\Delta + \frac{1}{2}\ddot{x}(t)\Delta^2$

(We ignore terms of order Δ^3 in the remainder.) Note that

$$
\ddot{x} = \frac{df}{dt}(x, u) = \frac{\partial}{\partial x} f(x, u)\dot{x} + \frac{\partial}{\partial u} f(x, u)\dot{u}, \n= \frac{\partial}{\partial x} f(x, u) f(x, u) + \frac{\partial}{\partial u} f(x, u)\dot{u},
$$

and thus

$$
\begin{aligned} &x(t+\Delta) \approx x(t) + \Delta f(x(t),u(t)) \\ &+ \frac{\Delta^2}{2} \left(\frac{\partial}{\partial x} f(x(t),u(t)) f(x(t),u(t)) + \frac{\partial}{\partial u} f(x(t),u(t)) \dot{u}(t) \right) \\ & \text{If } u(t) \text{ is piecewise constant we simplify to: } \\ &x(t+\Delta) \!\approx\! x(t) \!+\! \Delta f(x(t),u_d) \!+\! \frac{\Delta^2}{2} \frac{\partial}{\partial x} f(x(t),u_d) f(x(t),u_d) \end{aligned}
$$

Avoid the calculation of $\frac{\partial f}{\partial x}$:

$$
f(x + \Delta \dot{x}, u_d) = f(x, u_d) + \frac{\partial f}{\partial x}(x, u_d) \dot{x} \Delta
$$

$$
+ \frac{1}{2} \frac{d^2 f}{d\Delta^2} (x + \delta \dot{x}, u_d) \Delta^2 \quad \text{for a } \delta \in [0, \Delta]
$$

Rearranging the terms:

$$
\Delta \frac{\partial f}{\partial x}(x, u_d) f(x, u_d) = f(x + \Delta f(x, u_d), u_d) - f(x, u_d) \n- \frac{1}{2} \frac{d^2 f}{d \Delta^2} (x + \delta \dot{x}, u_d) \Delta^2.
$$

Continuing with the approximation:

$$
x(t + \Delta) \approx x(t) + \Delta f(x(t), u_d)
$$

+
$$
\frac{\Delta}{2} (f(x(t) + \Delta f(x(t), u_d), u_d) - f(x(t), u_d))
$$

+
$$
\frac{\Delta}{2} \left(-\frac{1}{2} \frac{d^2 f}{d\Delta^2} (x(t) + \delta \dot{x}, u_d) \Delta^2 \right)
$$

=
$$
x(t) + \frac{\Delta}{2} f(x(t), u_d) + \frac{\Delta}{2} f(x(t) + \Delta f(x(t), u_d), u_d)
$$

-
$$
\frac{1}{4} \frac{d^2 f}{d\Delta^2} (x(t) + \delta \dot{x}, u_d) \Delta^3
$$

 \rightsquigarrow Ignore terms of order Δ^3

Heun method:

$$
\begin{aligned} x(t+\Delta) &\approx x(t)+\tfrac{\Delta}{2}f(x(t),u_d) \\ &+\tfrac{\Delta}{2}f(x(t)+\Delta f(x(t),u_d),u_d) \end{aligned}
$$

⇝ Cubic convergence

Comparison: Euler & Heun Method

Exact solution 2.5 -Euler method with $\Delta = 0.1$ -Heun's method with $\Delta = 0.1$ 2 • Consider $\dot{x} = 1.1x$ **•** Euler method: $\frac{1}{8}$ 1.5 $x(t + \Delta) \approx x(t) + \Delta f(x(t), u_d)$ **• Heun method:** 1 $x(t + \Delta) \approx x(t) + \frac{\Delta}{2}f(x(t), u_d)$ 0.5 $+\frac{\Delta}{2}f(x(t)+\Delta f(x(t), u_d), u_d)$ 0

0 1 2 3

 \bar{t}

o Consider

 $\dot{x} = g(t, x).$

o Consider

where

. . .

$$
\dot{x} = g(t, x).
$$

• Runge-Kutta update formula:

$$
x(t + \Delta) = x(t) + \Delta \sum_{i=1}^{s} b_i k_i
$$

$$
k_1 = g(t, x(t))
$$

\n
$$
k_2 = g(t + c_2 \Delta, x + \Delta(a_{21}k_1))
$$

\n
$$
k_3 = g(t + c_3 \Delta, x + \Delta(a_{31}k_1 + a_{32}k_2))
$$

$$
k_s = g(t + c_s \Delta, x + \Delta(a_{s1}k_1 + a_{s2}k_2 + \cdots + a_{s(s-1)}k(s)))
$$

\n- $$
s \in \mathbb{N}
$$
 (stage); $a_{ij}, b_{\ell}, c_i \in \mathbb{R}$, $1 \leq j < i \leq s$, $1 \leq \ell \leq s$ (given parameters)
\n

• Consider

where

. . .

$$
\dot{x} = g(t, x).
$$

Runge-Kutta update formula:

$$
x(t + \Delta) = x(t) + \Delta \sum_{i=1}^{s} b_i k_i
$$

$$
k_1 = g(t, x(t))
$$

\n
$$
k_2 = g(t + c_2 \Delta, x + \Delta(a_{21}k_1))
$$

\n
$$
k_3 = g(t + c_3 \Delta, x + \Delta(a_{31}k_1 + a_{32}k_2))
$$

$$
k_s = g(t + c_s \Delta, x + \Delta(a_{s1}k_1 + a_{s2}k_2 + \cdots + a_{s(s-1)}k(s)))
$$

- $s \in \mathbb{N}$ (stage); $a_{ij}, b_{\ell}, c_i \in \mathbb{R}, 1 \leq j < i \leq s, 1 \leq \ell \leq s$ (given parameters)
- The case $f(x, u)$ for sample-and-hold inputs $u(t + \delta) = u_d \in \mathbb{R}^m$ for all $\delta \in [0, \Delta)$ is covered through $q(t, x(t)) = f(x(t), u_d)$

• Consider

where

. . .

$$
\dot{x} = g(t, x).
$$

Runge-Kutta update formula:

$$
x(t + \Delta) = x(t) + \Delta \sum_{i=1}^{s} b_i k_i
$$

$$
k_1 = g(t, x(t))
$$

\n
$$
k_2 = g(t + c_2 \Delta, x + \Delta(a_{21}k_1))
$$

\n
$$
k_3 = g(t + c_3 \Delta, x + \Delta(a_{31}k_1 + a_{32}k_2))
$$

$$
k_s = g(t + c_s \Delta, x + \Delta(a_{s1}k_1 + a_{s2}k_2 + \cdots + a_{s(s-1)}k(s)))
$$

- $\bullet s \in \mathbb{N}$ (stage); $a_{ij}, b_{\ell}, c_i \in \mathbb{R}, 1 \leq j \leq i \leq s, 1 \leq \ell \leq s$ (given parameters)
- \bullet The case $f(x, u)$ for sample-and-hold inputs $u(t + \delta) = u_d \in \mathbb{R}^m$ for all $\delta \in [0, \Delta)$ is covered through

 $q(t, x(t)) = f(x(t), u_d)$

• Butcher tableau:

 \rightsquigarrow c_i is only necessary for time-varying systems

• Consider

where

. . .

$$
\dot{x} = g(t, x).
$$

Runge-Kutta update formula:

$$
x(t + \Delta) = x(t) + \Delta \sum_{i=1}^{s} b_i k_i
$$

$$
k_1 = g(t, x(t))
$$

\n
$$
k_2 = g(t + c_2 \Delta, x + \Delta(a_{21}k_1))
$$

\n
$$
k_3 = g(t + c_3 \Delta, x + \Delta(a_{31}k_1 + a_{32}k_2))
$$

$$
k_s = g(t + c_s \Delta, x + \Delta(a_{s1}k_1 + a_{s2}k_2 + \cdots + a_{s(s-1)}k(s)))
$$

- $s \in \mathbb{N}$ (stage); $a_{ij}, b_{\ell}, c_i \in \mathbb{R}, 1 \leq j < i \leq s, 1 \leq \ell \leq s$ (given parameters)
- \bullet The case $f(x, u)$ for sample-and-hold inputs $u(t + \delta) = u_d \in \mathbb{R}^m$ for all $\delta \in [0, \Delta)$ is covered through $q(t, x(t)) = f(x(t), u_d)$

Butcher tableau:

0 c² a²¹ c³ a³¹ a³² c^s as¹ as² · · · as(s−1) b¹ b² · · · bs−¹ b^s

 \rightsquigarrow c_i is only necessary for time-varying systems

Examples: The Euler and the Heun method

 \bullet Heun Method: Update of x in three steps

$$
k_1 = f(x(t), u_d),
$$

\n
$$
k_2 = f(x(t) + \Delta k_1, u_d),
$$

\n
$$
x(t + \Delta) = x(t) + \Delta \left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right).
$$

Runge-Kutta Methods (in Matlab)

The function ode23.m relies on the Butcher tableaus

- One scheme is used to approximate $x(t + \Delta)$. \bullet
- The second scheme is needed to approximate the error, to select the step size Δ .

The function ode45.m relies on the Butcher tableaus

Section 3

[Stability Notions](#page-35-0)

Stability Notions

Discrete time systems: Consider

 $x^+ = F(x), \quad x(0) = x_0 \in \mathbb{R}^n$

Definition

Consider the origin of the discrete time system.

1. (Stability) The origin is *Lyapunov stable* (or simply *stable*) if, for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $|x(0)| \leq \delta$ then, for all $k > 0$,

 $|x(k)| < \varepsilon$.

- 2. (Instability) The origin is *unstable* if it is not stable.
- 3. (Attractivity) The origin is *attractive* if there exists $\delta > 0$ such that if $|x(0)| < \delta$ then

 $\lim_{k \to \infty} x(k) = 0.$

4. (Asymptotic stability) The origin is *asymptotically stable* if it is both stable and attractive.

Continuous time systems: Consider

 $\dot{x} = f(x), \quad x(0) = x_0 \in \mathbb{R}^n$

Definition

Consider the origin of the continuous time system.

1. (Stability) The origin is *Lyapunov stable* (or simply *stable*) if, for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $|x(0)| < \delta$ then, for all $t > 0$,

 $|x(t)| \leq \varepsilon$.

- 2. (Instability) The origin is *unstable* if it is not stable.
- 3. (Attractivity) The origin is *attractive* if there exists $\delta > 0$ such that if $|x(0)| < \delta$ then

 $\lim_{t\to\infty}x(t)=0.$

4. (Asymptotic stability) The origin is *asymptotically stable* if it is both stable and attractive.

Stability Notions (2)

Discrete time systems: Consider

$$
x^+ = F(x), \qquad x(0) = x_0 \in \mathbb{R}^n
$$

Definition $(KL$ -stability)

The origin of the discrete time system is is globally asymptotically stable, or alternatively $K\mathcal{L}$ -stable, if there exists $\beta \in \mathcal{KL}$ such that

$$
|x(k)| \leq \beta(|x(0)|, k), \qquad \forall \ k \in \mathbb{N},
$$

is satisfied for all $x(0) \in \mathbb{R}^n$.

Continuous time systems: Consider

 $\dot{x} = f(x), \quad x(0) = x_0 \in \mathbb{R}^n$

Definition ($K\mathcal{L}$ -stability)

The origin of the discrete time system is is globally asymptotically stable, or alternatively $K\mathcal{L}$ -stable, if there exists $\beta \in K\Gamma$ such that

 $|x(t)| \leq \beta(|x(0)|, t), \qquad \forall t \in \mathbb{R}_{\geq 0},$

is satisfied for all $x(0) \in \mathbb{R}^n$.

Stability Notions (2)

Discrete time systems: Consider

$$
x^+ = F(x), \qquad x(0) = x_0 \in \mathbb{R}^n
$$

Definition ($K\mathcal{L}$ -stability)

The origin of the discrete time system is is globally asymptotically stable, or alternatively $K\mathcal{L}$ -stable, if there exists $\beta \in \mathcal{K} \mathcal{L}$ such that

$$
|x(k)| \leq \beta(|x(0)|, k), \qquad \forall \ k \in \mathbb{N},
$$

is satisfied for all $x(0) \in \mathbb{R}^n$.

Definition (Exponential stability)

Consider the origin of the discrete time system. If there exist $M > 0$ and $\gamma \in (0, 1)$ such that for each $x(0) \in \mathbb{R}^n$ the inequality

 $|x(k)| \leq M|x(0)|\gamma^k, \qquad \forall \ k \in \mathbb{N},$

is satisfied, then the origin is globally exponentially stable.

Continuous time systems: Consider

 $\dot{x} = f(x), \quad x(0) = x_0 \in \mathbb{R}^n$

Definition ($K\mathcal{L}$ -stability)

The origin of the discrete time system is is globally asymptotically stable, or alternatively $K\mathcal{L}$ -stable, if there exists $\beta \in K\Gamma$ such that

 $|x(t)| \leq \beta(|x(0)|, t), \qquad \forall t \in \mathbb{R}_{>0},$

is satisfied for all $x(0) \in \mathbb{R}^n$.

Definition (Exponential stability)

Consider the origin of the discrete time system. If there exist $M > 0$ and $\lambda > 0$ such that for each $x(0) \in \mathbb{R}^n$ the inequality

 $|x(t)| \leq M|x(0)|e^{-\lambda t}, \qquad \forall t \in \mathbb{R}_{\geq 0},$

is satisfied, then the origin is globally exponentially stable.

Lyapunov Characterizations

Consider $x^+ = f(x)$, $0 = f(0)$, $0 \in \mathcal{D} \subset \mathbb{R}^n$ open.

Theorem (Lyapunov stability theorem)

Suppose there exists a continuous function $V : \mathcal{D} \to \mathbb{R}_{\geq 0}$ *and functions* $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ *such that, for all* $x \in \mathcal{D}$ *,*

> $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$ (1) $V(f(x)) - V(x) \leq 0$

Then the origin is stable.

Note that

- Decrease condition $V(x^+) = V(f(x)) \le V(x)$
- \bullet differentiability of V (or even continuity) is not required

Consider $\dot{x} = f(x)$, $0 = f(0)$, $0 \in \mathcal{D} \subset \mathbb{R}^n$ open.

Theorem (Lyapunov stability theorem)

Suppose there exists a smooth function $V : \mathcal{D} \to \mathbb{R}_{\geq 0}$ and *functions* $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ *such that, for all* $x \in \mathcal{D}$ *,*

$$
\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)
$$

$$
\langle \nabla V(x), f(x) \rangle \le 0
$$
 (2)

Then the origin is stable.

Lyapunov Characterizations

Consider $x^+ = f(x)$, $0 = f(0)$, $0 \in \mathcal{D} \subset \mathbb{R}^n$ open.

Theorem (Lyapunov stability theorem)

Suppose there exists a continuous function $V : \mathcal{D} \to \mathbb{R}_{\geq 0}$ *and functions* $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ *such that, for all* $x \in \mathcal{D}$ *,*

> $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$ (1) $V(f(x)) - V(x) \leq 0$

Then the origin is stable.

Consider $\dot{x} = f(x)$, $0 = f(0)$, $0 \in \mathcal{D} \subset \mathbb{R}^n$ open.

Theorem (Lyapunov stability theorem)

Suppose there exists a smooth function $V : \mathcal{D} \to \mathbb{R}_{\geq 0}$ and *functions* $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ *such that, for all* $x \in \mathcal{D}$ *,*

$$
\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)
$$

$$
\langle \nabla V(x), f(x) \rangle \le 0
$$
 (2)

Then the origin is stable.

Note that

- Decrease condition $V(x^+) = V(f(x)) \le V(x)$
- \bullet differentiability of V (or even continuity) is not required

Theorem (Asymptotic stability)

Suppose there exists a continuous function $V : \mathcal{D} \to \mathbb{R}_{\geq 0}$, *and functions* $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}, \rho \in \mathcal{P}$ *satisfying* $\rho(s) < s$ *for all* $s > 0$, such that, for all $x \in \mathcal{D}$, [\(1\)](#page-39-0) holds and

 $V(f(x)) - V(x) \le -\rho(V(x)).$

Then the origin is asymptotically stable.

Theorem (Asymptotic stability)

Suppose there exists a smooth function $V : \mathcal{D} \to \mathbb{R}_{\geq 0}$, and *functions* $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}, \rho \in \mathcal{P}$, such that, for all $x \in \mathcal{D}$, [\(2\)](#page-39-1) *holds and*

 $\langle \nabla V(x), f(x) \rangle \leq -\rho(V(x)).$

Then the origin is asymptotically stable.

Lyapunov Characterizations (2)

Consider $x^+ = f(x)$, $0 = f(0)$, $0 \in \mathcal{D} \subset \mathbb{R}^n$ open.

Theorem (Exponential stability)

Suppose there exists a continuous function $V : \mathcal{D} \to \mathbb{R}_{\geq 0}$ *and constants* $\lambda_1, \lambda_2 > 0$, $p > 1$, and $c \in (0, 1)$ *such that, for all* $x \in \mathcal{D}$

> $\lambda_1|x|^p \leq V(x) \leq \lambda_2|x|$ ^p *and* $V(f(x)) - V(x) \leq -cV(x).$

Then the origin is exponentially stable.

Consider $\dot{x} = f(x)$, $0 = f(0)$, $0 \in \mathcal{D} \subset \mathbb{R}^n$ open.

Theorem (Exponential stability)

Suppose there exists a smooth function $V : \mathcal{D} \to \mathbb{R}_{\geq 0}$ and *constants* $\lambda_1, \lambda_2 > 0$, $p > 1$, and $c \in (0, 1)$ *such that, for all* $x \in \mathcal{D}$

$$
\lambda_1|x|^p \le V(x) \le \lambda_2|x|^p \quad \text{and} \quad \langle \nabla V(x), f(x) \rangle \le -cV(x).
$$

Then the origin is exponentially stable.

Lyapunov Characterizations (2)

Consider $x^+ = f(x)$, $0 = f(0)$, $0 \in \mathcal{D} \subset \mathbb{R}^n$ open.

Theorem (Exponential stability)

Suppose there exists a continuous function $V : \mathcal{D} \to \mathbb{R}_{\geq 0}$ *and constants* $\lambda_1, \lambda_2 > 0$, $p > 1$, and $c \in (0, 1)$ *such that, for all* $x \in \mathcal{D}$

> $\lambda_1|x|^p \leq V(x) \leq \lambda_2|x|$ ^p *and* $V(f(x)) - V(x) \leq -cV(x).$

Then the origin is exponentially stable.

Consider
$$
x^+ = f(k, x)
$$
, $0 = f(k, 0)$ for all $k \in \mathbb{N}$

Theorem

If there exist a function $V : \mathbb{N} \times \mathbb{R}^n \to \mathbb{R}_{\geq 0}$, and functions $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ *and* $\rho \in \mathcal{P}$ *such that, for all* $x \in \mathbb{R}^n$ *and* $k > k_0 > 0$.

> $\alpha_1(|x|) \le V(k, x) \le \alpha_2(|x|)$ and $V(k+1, f(k, x)) - V(k, x) \le -\rho(|x|)$

then the origin is uniformly globally asymptotically stable.

Consider $\dot{x} = f(x)$, $0 = f(0)$, $0 \in \mathcal{D} \subset \mathbb{R}^n$ open.

Theorem (Exponential stability)

Suppose there exists a smooth function $V : \mathcal{D} \to \mathbb{R}_{\geq 0}$ and *constants* $\lambda_1, \lambda_2 > 0$, $p > 1$, and $c \in (0, 1)$ *such that, for all* $x \in \mathcal{D}$

$$
\lambda_1|x|^p \le V(x) \le \lambda_2|x|^p \quad \text{and} \quad \langle \nabla V(x), f(x) \rangle \le -cV(x).
$$

Then the origin is exponentially stable.

Consider $\dot{x} = f(t, x)$, $0 = f(k, 0)$ for all $t \in \mathbb{R}_{\geq 0}$

Theorem

If there exist a smooth function $V : \mathbb{R}_{>0} \times \mathbb{R}^n \to \mathbb{R}_{>0}$, and *functions* $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ *and* $\rho \in \mathcal{P}$ *such that, for all* $\overline{x} \in \mathbb{R}^n$ *and* $t > t_0 > 0$,

> $\alpha_1(|x|) \le V(t, x) \le \alpha_2(|x|)$ and $\langle \nabla_x V(t,x), f(t,x) \rangle + \nabla_t V(t,x) \leq -\rho(|x|)$

then the origin is uniformly globally asymptotically stable.

Linear systems

Consider the discrete time linear system

 $x^+ = Ax$, $x(0) \in \mathbb{R}^n$ [Solution $x(k) = A^k x(0)$]

Theorem

The following properties are equivalent:

- **1** The origin $x^e = 0$ is exponentially stable;
- 2 *The eigenvalues* $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ of A satisfy $|\lambda_i| < 1$ *for all* $i = 1, \ldots, n$; and
- **3** For $Q \in S^n_{\geq 0}$ there exists a unique $P \in S^n_{\geq 0}$ *satisfying the discrete time Lyapunov equation*

 $A^T P A - P = -Q.$

A matrix A which satisfies $|\lambda_i| < 1$ for all $i = 1, \ldots, n$ is called a *Schur matrix*.

Consider the continuous time linear system

 $\dot{x} = Ax,$ $x(0) \in \mathbb{R}^n$ [Solution $x(t) = e^{At}x(0)$]

Theorem

The following properties are equivalent:

- **1** The origin $x^e = 0$ is exponentially stable,
- 2 *The eigenvalues* $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ *of A satisfy* $\lambda_i \in \mathbb{C}^$ *for all* $i = 1, \ldots, n$ *; and*
- **3** For $Q \in \mathcal{S}_{\geq 0}^n$ there exists a unique $P \in \mathcal{S}_{> 0}^n$ *satisfying the continuous time Lyapunov equation*

 $A^T P + P A = -Q.$

A matrix A which satisfies $\lambda_i \in \mathbb{C}^-$ for all $i = 1, \ldots, n$ is called a *Hurwitz matrix*.

Linear systems

Consider the discrete time linear system

 $x^+ = Ax$, $x(0) \in \mathbb{R}^n$ [Solution $x(k) = A^k x(0)$]

Theorem

The following properties are equivalent:

- **1** The origin $x^e = 0$ is exponentially stable;
- 2 *The eigenvalues* $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ of A satisfy $|\lambda_i| < 1$ *for all* $i = 1, \ldots, n$ *; and*
- **3** For $Q \in S^n_{\geq 0}$ there exists a unique $P \in S^n_{\geq 0}$ *satisfying the discrete time Lyapunov equation*

 $A^T P A - P = -Q.$

A matrix A which satisfies $|\lambda_i| < 1$ for all $i = 1, \ldots, n$ is called a *Schur matrix*.

Theorem

If the origin of
$$
z^+ = Az
$$
 with $A = \left[\frac{\partial F}{\partial x}(x)\right]_{x=0}$ is globally
exponentially stable, then the origin of $x^+ = F(x)$,
 $0 = F(0)$, is locally exponentially stable.

Consider the continuous time linear system

 $\dot{x} = Ax,$ $x(0) \in \mathbb{R}^n$ [Solution $x(t) = e^{At}x(0)$]

Theorem

The following properties are equivalent:

- **1** The origin $x^e = 0$ is exponentially stable,
- 2 *The eigenvalues* $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ of A satisfy $\lambda_i \in \mathbb{C}^$ *for all* $i = 1, \ldots, n$ *; and*
- **3** For $Q \in \mathcal{S}_{\geq 0}^n$ there exists a unique $P \in \mathcal{S}_{> 0}^n$ *satisfying the continuous time Lyapunov equation*

 $A^T P + P A = -Q.$

A matrix A which satisfies $\lambda_i \in \mathbb{C}^-$ for all $i = 1, \ldots, n$ is called a *Hurwitz matrix*.

Theorem

If the origin of $\dot{z} = Az$ *with* $A = \left[\frac{\partial f}{\partial x}(x)\right]$ x=0 *is globally exponentially stable, then the origin of* $\dot{x} = f(x)$, $0 = f(0)$, *is locally exponentially stable.*

$$
\dot{x} = \lambda x, \qquad \lambda \in \mathbb{R}
$$

Euler discretization ($\Delta > 0$):

 $x^+ = x + \Delta\lambda x = (1 + \Delta\lambda)x$

- The origin of the continuous time system is exponentially stable if and only if $\lambda < 0$
- The origin of the discrete time system is exponentially stable if and only if $|1 + \Delta \lambda| < 1$.

$$
\dot{x} = \lambda x, \qquad \lambda \in \mathbb{R}
$$

Euler discretization ($\Delta > 0$):

 $x^+ = x + \Delta\lambda x = (1 + \Delta\lambda)x$

- The origin of the continuous time system is exponentially stable if and only if $\lambda < 0$
- The origin of the discrete time system is exponentially stable if and only if $|1 + \Delta \lambda| < 1$.

For $\lambda < 0$ it holds that

• the condition $|1 + \Delta \lambda| < 1$ is equivalent to

$$
1+\Delta\lambda<1\qquad\text{and}\qquad -1-\Delta\lambda<1
$$

or

$$
0<\Delta<-\tfrac{2}{\lambda}
$$

$$
\dot{x} = \lambda x, \qquad \lambda \in \mathbb{R}
$$

Euler discretization ($\Delta > 0$):

 $x^+ = x + \Delta\lambda x = (1 + \Delta\lambda)x$

- The origin of the continuous time system is exponentially stable if and only if $\lambda < 0$
- The origin of the discrete time system is exponentially stable if and only if $|1 + \Delta \lambda| < 1$.

For $\lambda < 0$ it holds that

• the condition $|1 + \Delta \lambda| < 1$ is equivalent to

$$
1+\Delta\lambda<1\qquad\text{and}\qquad -1-\Delta\lambda<1
$$

or

$$
0<\Delta<-\tfrac{2}{\lambda}
$$

For

- $\bullet \lambda \rightarrow 0$ the condition is not restrictive
- $\lambda = -1000$, Δ needs satisfy $\Delta < 0.002$ to preserve stability (\rightsquigarrow stiff ODE)

$$
\dot{x} = \lambda x, \qquad \lambda \in \mathbb{R}
$$

Euler discretization ($\Delta > 0$):

 $x^+ = x + \Delta\lambda x = (1 + \Delta\lambda)x$

- The origin of the continuous time system is exponentially stable if and only if $\lambda < 0$
- The origin of the discrete time system is exponentially stable if and only if $|1 + \Delta \lambda| < 1$.

For $\lambda < 0$ it holds that

• the condition $|1 + \Delta \lambda| < 1$ is equivalent to

$$
1+\Delta\lambda<1\qquad\text{and}\qquad -1-\Delta\lambda<1
$$

or

$$
0<\Delta<-\tfrac{2}{\lambda}
$$

For

- $\bullet \lambda \rightarrow 0$ the condition is not restrictive
- $\lambda = -1000$, Δ needs satisfy $\Delta < 0.002$ to preserve stability (\rightsquigarrow stiff ODE)

For $\lambda > 0$

• the condition $|1 + \Delta \lambda| > 1$ implies that

$$
\Delta>0\quad\text{or}\quad\Delta<-\tfrac{2}{\lambda}
$$

(not restrictive)

$$
\dot{x} = \lambda x, \qquad \lambda \in \mathbb{R}
$$

Euler discretization ($\Delta > 0$):

 $x^+ = x + \Delta\lambda x = (1 + \Delta\lambda)x$

- The origin of the continuous time system is exponentially stable if and only if $\lambda < 0$
- The origin of the discrete time system is exponentially stable if and only if $|1 + \Delta \lambda| < 1$.

For $\lambda < 0$ it holds that

• the condition $|1 + \Delta \lambda| < 1$ is equivalent to

$$
1+\Delta\lambda<1\qquad\text{and}\qquad -1-\Delta\lambda<1
$$

or

$$
0<\Delta<-\tfrac{2}{\lambda}
$$

For

- $\bullet \lambda \rightarrow 0$ the condition is not restrictive
- $\lambda = -1000$, Δ needs satisfy $\Delta < 0.002$ to preserve stability (\rightsquigarrow stiff ODE)

For $\lambda > 0$

• the condition $|1 + \Delta \lambda| > 1$ implies that

$$
\Delta>0\quad\text{or}\quad\Delta<-\tfrac{2}{\lambda}
$$

(not restrictive)

Note that

we have only considered the Euler method and linear systems

 \rightsquigarrow See sections on 'stability' in references on 'numerical solution of differential equations'

Section 4

[Controllability and Observability](#page-50-0)

Consider

 $x^+ = Ax + Bu$, $y = Cx + Du$.

Definition (Controllability)

The pair (A, B) is said to be controllable, if for all $x_1, x_2 \in \mathbb{R}^n$ there exists $K \in \mathbb{N}$ and $u : \mathbb{N}_0 \to \mathbb{R}^m$ such that

$$
x_2 = A^K x_1 + \sum_{i=1}^K A^{K-i} B u(i-1).
$$

Definition (Observability)

The pair (A, C) is said to be observable, if for all $x_1, x_2 \in \mathbb{R}^n$, $x_1 \neq x_2$ there exists $K \in N$ such that $CA^{K}x_{2} \neq CA^{K}x_{1}$.

Consider

 $x^+ = Ax + Bu$, $y = Cx + Du$.

Definition (Controllability)

The pair (A, B) is said to be controllable, if for all $x_1, x_2 \in \mathbb{R}^n$ there exists $K \in \mathbb{N}$ and $u : \mathbb{N}_0 \to \mathbb{R}^m$ such that

$$
x_2 = A^K x_1 + \sum_{i=1}^K A^{K-i} B u(i-1).
$$

Definition (Observability)

The pair (A, C) is said to be observable, if for all $x_1, x_2 \in \mathbb{R}^n$, $x_1 \neq x_2$ there exists $K \in N$ such that $CA^Kx_2 \neq CA^Kx_1$.

Controllability:

Kalman matrix: rank $([B AB A²B \cdots Aⁿ⁻¹B]) = n$

• PBH test: rank
$$
([A - \lambda I \ B]) = n
$$
, $\lambda \in \mathbb{C}$

Consider

$$
x^+ = Ax + Bu, \qquad y = Cx + Du.
$$

Definition (Controllability)

The pair (A, B) is said to be controllable, if for all $x_1, x_2 \in \mathbb{R}^n$ there exists $K \in \mathbb{N}$ and $u : \mathbb{N}_0 \to \mathbb{R}^m$ such that

$$
x_2 = A^K x_1 + \sum_{i=1}^K A^{K-i} B u(i-1).
$$

Definition (Observability)

The pair (A, C) is said to be observable, if for all $x_1, x_2 \in \mathbb{R}^n$, $x_1 \neq x_2$ there exists $K \in N$ such that $CA^Kx_2 \neq CA^Kx_1$.

Controllability:

Kalman matrix: rank $([B AB A²B \cdots Aⁿ⁻¹B]) = n$

• PBH test: rank
$$
([A - \lambda I \ B]) = n
$$
, $\lambda \in \mathbb{C}$

 \bullet Different to the continuous time setting, K cannot be chosen arbitrarily small.

Consider

$$
x^+ = Ax + Bu, \qquad y = Cx + Du.
$$

Definition (Controllability)

The pair (A, B) is said to be controllable, if for all $x_1, x_2 \in \mathbb{R}^n$ there exists $K \in \mathbb{N}$ and $u : \mathbb{N}_0 \to \mathbb{R}^m$ such that

$$
x_2 = A^K x_1 + \sum_{i=1}^K A^{K-i} B u(i-1).
$$

Definition (Observability)

The pair (A, C) is said to be observable, if for all $x_1, x_2 \in \mathbb{R}^n$, $x_1 \neq x_2$ there exists $K \in N$ such that $CA^{K}x_{2} \neq CA^{K}x_{1}$.

Controllability:

Kalman matrix: rank $([B AB A²B \cdots Aⁿ⁻¹B]) = n$

• PBH test: rank
$$
([A - \lambda I \ B]) = n
$$
, $\lambda \in \mathbb{C}$

Note that:

 \bullet Different to the continuous time setting, K cannot be chosen arbitrarily small.

Example:

• Consider the controllable pair

$$
A = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right], \qquad B = \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right].
$$

Consider the states $x_1 = [0, 0, 1]^T$ and $x_2 = [0, 0, 0]^T$. Then it holds that

$$
Ax_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad A^2x_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad A^3x_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
$$

- Hence, without input, the origin is reached in $K = n = 3$ steps $x_2 = A^3 x_1$.
- \bullet Due to the vector B which is only unequal to zero in the last entry, x_1 cannot be steered to the origin in fewer steps.

Consider

$$
x^+ = Ax + Bu, \qquad y = Cx + Du.
$$

Definition (Controllability)

The pair (A, B) is said to be controllable, if for all $x_1, x_2 \in \mathbb{R}^n$ there exists $K \in \mathbb{N}$ and $u : \mathbb{N}_0 \to \mathbb{R}^m$ such that

$$
x_2 = A^K x_1 + \sum_{i=1}^{K} A^{K-i} B u(i-1).
$$

Definition (Observability)

The pair (A, C) is said to be observable, if for all $x_1, x_2 \in \mathbb{R}^n$, $x_1 \neq x_2$ there exists $K \in N$ such that $CA^Kx_2 \neq CA^Kx_1$.

Controllability:

Kalman matrix: rank $([B AB A²B \cdots Aⁿ⁻¹B]) = n$

• PBH test: rank
$$
([A - \lambda I \ B]) = n
$$
, $\lambda \in \mathbb{C}$

Loss of Controllability:

۰

Consider
$$
\dot{x} = A_c x + B_c u
$$
:
\n
$$
A_c = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad \text{and} \quad B_c = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.
$$

e Exact discretization:

$$
A_{de}(\Delta) = e^{A_c \Delta} = \begin{bmatrix} \cos(\Delta) & \sin(\Delta) \\ -\sin(\Delta) & \cos(\Delta) \end{bmatrix}
$$

$$
B_{de}(\Delta) = \left[\begin{array}{c} 1 - \cos(\Delta) \\ \sin(\Delta) \end{array} \right], \qquad B_{de}(2\pi\ell) = \left[\begin{array}{c} 0 \\ 0 \end{array} \right]
$$

Consider

$$
x^+ = Ax + Bu, \qquad y = Cx + Du.
$$

Definition (Controllability)

The pair (A, B) is said to be controllable, if for all $x_1, x_2 \in \mathbb{R}^n$ there exists $K \in \mathbb{N}$ and $u : \mathbb{N}_0 \to \mathbb{R}^m$ such that

$$
x_2 = A^K x_1 + \sum_{i=1}^{K} A^{K-i} B u(i-1).
$$

Definition (Observability)

The pair (A, C) is said to be observable, if for all $x_1, x_2 \in \mathbb{R}^n$, $x_1 \neq x_2$ there exists $K \in N$ such that $CA^{K}x_{2} \neq CA^{K}x_{1}$.

Controllability:

Kalman matrix: rank $([B AB A²B \cdots Aⁿ⁻¹B]) = n$

• PBH test: rank
$$
([A - \lambda I \ B]) = n
$$
, $\lambda \in \mathbb{C}$

Loss of Controllability:

۰

Consider
$$
\dot{x} = A_c x + B_c u
$$
:
\n
$$
A_c = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad \text{and} \quad B_c = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

e Exact discretization:

$$
A_{de}(\Delta) = e^{A_c \Delta} = \begin{bmatrix} \cos(\Delta) & \sin(\Delta) \\ -\sin(\Delta) & \cos(\Delta) \end{bmatrix}
$$

$$
B_{de}(\Delta) = \begin{bmatrix} 1 - \cos(\Delta) \\ \sin(\Delta) \end{bmatrix}, \qquad B_{de}(2\pi\ell) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

Lemma

Consider the pair (A, B) *and let* (A_{de}, B_{de}) *be defined through exact discretization for* $\Delta > 0$. The pair (A_{de}, B_{de}) *is controllable if and only if* $(e^{A\Delta}, B)$ *is controllable and A has no eigenvalues of the form* $\frac{2}{\Delta}\pi\ell$ *,* $\ell \in \mathbb{N}$ *.*

.

Introduction to Nonlinear Control

Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett School of Engineering, Australian National University, Canberra, Australia

Part I:

Chapter 5: Discrete Time Systems 5.1 Discrete Time Systems – Fundamentals 5.2 Sampling From Continuous to Discrete Time 5.3 Stability Notions 5.4 Controllability and Observability

