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Nonlinear Systems - Fundamentals

ﬂ Discrete Time Systems — Fundamentals

e Sampling: From Continuous Time to Discrete Time
@ Discretization of Linear Systems
@ Higher Order Discretization Schemes

@ stability Notions
@ Lyapunov Characterizations
@ Linear Systems
@ Stability Preservation of Discretized Systems

0 Controllability and Observability
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Section 1

Discrete Time Systems — Fundamentals
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Discrete Time Systems — Fundamentals

Discrete time sys. (F' : R x R™ — R", H : R x R™ — RP)
a:d(k + 1) = F(xd(k),ud(k)), xd(O) =40 € R™
ya(k) = H(za(k), ua(k))
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Discrete Time Systems — Fundamentals

Discrete time sys. (F' : R x R™ — R", H : R x R™ — RP)
zg(k+1) = F(zq(k),ua(k)), =4(0)==z40 €R"
ya(k) = H(zq(k),uq(k))

Time-varying discrete time system (k > ko > 0):
:L‘d(k + 1) = F(k‘, wd(k)), xd(ko) =40 € R™

Time invariant discrete time systems without input:
l'd(k —+ 1) = F((Ed(k)), a:d(()) = 24,0 S Rn,

Shorthand notation for difference equations:

z:; = F(zq,uq),

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control

Ch. 5: Discrete Time Systems

4/22



Discrete Time Systems — Fundamentals

1
_ _ £, T i 11 1ls
Discrete time sys. (F : R x R™ — R"™, H : R” x R™ — RP) R R 70'5“%4(% ¢ ] l s
zq(k +1) = F(zq(k),uq(k)), 4(0) =zq0 €R" " 5 10 15 20
ya(k) = H(za(k), ua(k)) .

Time-varying discrete time system (k > ko > 0):
za(k+1) = F(k,zq(k)), walko) = z4,0 € R" i 5 TR

uq(k)
o
ol
o]
o
N
o

Time invariant discrete time systems without input: .

0
zq(k+1) = F(za(k)), 2a(0)==zq40 € R", B e )
"o 5 10 15 20
Shorthand notation for difference equations: ;
"E: = F(Q?d, ud)’ =
=t 0
-1
0 5 10 15 20
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Discrete Time Systems — Fundamentals

Discrete time sys. (F' : R x R™ — R", H : R" x R™ — RP)
zq(k+1) = F(zq(k), uq(k)),
ya(k) = H(zq(k), uq(k))

zd(O) =40 € R™

Time-varying discrete time system (k > ko > 0):
xd(k + 1) = F(k, :I,‘d(k))), wd(k()) =40 € R™

Time invariant discrete time systems without input:

zq(k+1) = F(zq(k)), =z4(0) ==z40 € R"™,

Shorthand notation for difference equations:

m:; = F(zq4,uq),
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Definition (Equilibrium)
@ The point x5 € R™ is called equilibrium if 2§ = F(z¢)
orz§ = F(k,z) for all k € N is satisfied.

@ The pair (z5,ug) € R™ x R™ is called equilibrium
pair of the system if x5 = F(z§, ug) holds.

Again, without loss of generality we can shift the equilibrium
(pair) to the origin.

Definition (Equilibrium, & = 0)

The point z¢ € R™ is called an equilibrium of the system
&= f(z)if La(t) = f(z¢) =0
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Section 2

Sampling: From Continuous Time to Discrete Time
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Sampling: From Continuous to Discrete Time

Derivative for continuously differentiable function:

. t+A)—x(t
%x(t):hmw

A—0 A
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Sampling: From Continuous to Discrete Time

Derivative for continuously differentiable function:
.ozt +A) —z(t)
ar(t) = Jim =
Difference quotient (for A > 0 small):

WD =2 o da) = 40) = Fa(t),u)

or equivalently
z(t+ A) = z(t) + Af(z(t), u(t))
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Sampling: From Continuous to Discrete Time

Derivative for continuously differentiable function:
.ozt +A) —z(t)
ar(t) = Jim =
Difference quotient (for A > 0 small):

B0 o o) = o0) = F(0),u00)

or equivalently
z(t+A) = z(t) + Af(z(t), u(t))
Approximated discrete time system (identify ¢ with & - A)

o} = F(zg,uqa) = zq + Af (24, ua)

~~ This discretization is known as (explicit) Euler method.
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Sampling: From Continuous to Discrete Time

Derivative for continuously differentiable function:
.ozt +A) —z(t)
ar(t) = Jim =
Difference quotient (for A > 0 small):

B0 o o) = o0) = F(0),u00)

or equivalently
z(t+A) = z(t) + Af(z(t), u(t))
Approximated discrete time system (identify ¢ with & - A)
o} = F(zg,uqa) = zq + Af (24, ua)
~~ This discretization is known as (explicit) Euler method.
Note that:

@ Continuous time: z : R>g — R™ and u : R»g — R™
@ Discrete time: x4 : N — R™ and ug : N — R™
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Sampling: From Continuous to Discrete Time
Zero-order hold: for all k € N, for all ¢ € [0, A)

Derivative for continuously differentiable function: zq(k) = z(Ak) = z(t + Ak)
4 ozt + A) —x(t) uq(k) = u(Ak) = u(t + Ak)
Ze(t) = lim —————" ) . ) .

A0 A (restrict  and u to piecewise constant functions)

Difference quotient (for A > 0 small):

WD =2 o da) = 40) = Fa(t),u)

or equivalently
z(t+A) = z(t) + Af(z(t), u(t))
Approximated discrete time system (identify ¢ with & - A)
o} = F(zg,uqa) = zq + Af (24, ua)
~~ This discretization is known as (explicit) Euler method.

Note that:
@ Continuous time: z : R>g — R™ and u : R»g — R™
@ Discrete time: x4 : N — R™ and ug : N — R™
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Sampling: From Continuous to Discrete Time
Zero-order hold: for all k € N, for all ¢ € [0, A)

Derivative for continuously differentiable function: zq(k) = z(Ak) = z(t + Ak)
4 ozt + A) —x(t) uq(k) = u(Ak) = u(t + Ak)
Ze(t) = lim —————" ) . ) .
A0 A (restrict  and u to piecewise constant functions)
Difference quotient (for A > 0 small): Sample-and-hold input: (with sampling rate A)
z(t+ AA) —z(t) 4oty = #(t) = f(a(t), u(t)) u(Ak) = u(t+ Ak), keN, Vtel[0,A)

or equivalently
z(t+A) = z(t) + Af(z(t), u(t))
Approximated discrete time system (identify ¢ with & - A)
o} = F(zg,uqa) = zq + Af (24, ua)
~~ This discretization is known as (explicit) Euler method.

Note that:
@ Continuous time: z : R>g — R™ and u : R»g — R™
@ Discrete time: x4 : N — R™ and ug : N — R™
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Sampling: From Continuous to Discrete Time

Zero-order hold: for all k € N, for all ¢ € [0, A)
Derivative for continuously differentiable function:
.ozt +A) —z(t)
i) = fimy =
Difference quotient (for A > 0 small):
z(t+ A) — z(t)

zq(k) = z(Ak) = z(t + Ak)
uq(k) = u(Ak) = u(t + Ak)
(restrict  and u to piecewise constant functions)
Sample-and-hold input: (with sampling rate A)
< ~ %J)(t) _ :L‘(t) _ f(:t(t),u(t)) u(Ak) =u(t+ Ak), keN, Vtel0,A)
walentl Digital controller:
or equivaiently @ apply a piecewise constant sample-and-hold input to
z(t+ A) = z(t) + Af(z(t), u(t)) a continuous time system.
Approximated discrete time system (identify ¢ with k - A) Solution corresponding to sample-and-hold input (A = 1)
and continuous input
o} = F(zg,uqa) = zq + Af (24, ua) ! 1
~~ This discretization is known as (explicit) Euler method. w0 — w0 — \/
Note that: ) 5 10 15 2 o 5 10 15 20
@ Continuous time: z : R~q — R™ and u : R~¢ — R™ ' ! \
. . =0 =0 Zo g o/\\ /\\ /\
@ Discrete time: x4 : N — R™ and ug : N — R™ = =
40 5 10
P. Braun & C.M. Kellett (ANU)
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Discretization of Linear Systems

Consider the linear system: (A. € R**", B, € R"X™)
z(t) = Acx(t) + Beu(t)
Euler discretization: (sampling rate A > 0)
z(t+ A) = z(t) + A(Acz(t) + Beu(t))
= (I+ AA)x(t) + ABcu(t)
Linear discrete time system:
zq(k + 1) = Agzq(k) + Baua(k)
(z} = Aqzg + Baua)
where
Ag = (I + AA) and By = AB.
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Discretization of Linear Systems

Consider the linear system: (A. € R**", B, € R"X™)
2(t) = Acx(t) + Beu(t)
Euler discretization: (sampling rate A > 0)
z(t+ A) = z(t) + A(Acz(t) + Beu(t))
= (I+ AA)x(t) + ABcu(t)
Linear discrete time system:
zq(k +1) = Agzq(k) + Baua(k)
(z} = Aqzg + Baua)
where

Ag = (I + AA) and By = AB.

P. Braun & C.M. Kellett (ANU)
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Alternative discretization (for linear systems):
Recall the solution of the linear system:

A
z(t+ A) = eePg(t) + / eAe(A=T) B u(t + 7)dr.
0

Let u(-) be constant on the interval = € [t,t + A),
(i.e., u(t +7) = u(t) forall 7 € [0, A)).
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Discretization of Linear Systems

Consider the linear system: (A. € R**", B, € R"X™)
2(t) = Acx(t) + Beu(t)
Euler discretization: (sampling rate A > 0)
z(t+ A) = z(t) + A(Acz(t) + Beu(t))
= (I+ AA)x(t) + ABcu(t)
Linear discrete time system:
zq(k +1) = Agzq(k) + Baua(k)
(z} = Aqzg + Baua)
where

Ag = (I + AA) and By = AB.

Alternative discretization (for linear systems):
Recall the solution of the linear system:

A
z(t+ A) = eA“Ax(t) + / eAC(A*T)BCu(t + 7)dr.
0

Let u(-) be constant on the interval = € [t,t + A),
(i.e., u(t +7) = u(t) forall 7 € [0, A)).

Then
A
ot 4+ A) = eAeB(t) +/ eAe(A=T) dr Bou(t).
0
Define
A
Age =e?® and By, = / eAe(A=T)dr B,
0

Alternative discrete time system:

z} = Agexq + Baeuq
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Discretization of Linear Systems

Consider the linear system: (A. € R**", B, € R"X™)
2(t) = Acx(t) + Beu(t)
Euler discretization: (sampling rate A > 0)
z(t + A) = z(t) + A(Acz(t) + Beu(t))
= (I+ AA)x(t) + ABcu(t)
Linear discrete time system:
zq(k +1) = Agzq(k) + Baua(k)
(z} = Aqzg + Baua)
where

Ag = (I + AA) and By = AB.

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

Alternative discretization (for linear systems):
Recall the solution of the linear system:

A
ot + A) = edela(t) + / eAe(A=T) B u(t + 7)dr.
0

Let u(-) be constant on the interval = € [t,t + A),
(i.e., u(t +7) = u(t) forall 7 € [0, A)).

Then
A
ot 4+ A) = eAeB(t) +/ eAe(A=T) dr Bou(t).
0
Define
A
Age =e4®  and  Bg. = / eAe(A=Tdr B,
0
Alternative discrete time system:
z} = Agexq + Baeuq
The discretization satisfies

z(kA) = zq4(k), forallk e N
if u(t + Ak) = uw(Ak) =uq(k)Vt€[0,A),VkeN.
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Discretization of Linear Systems (Comparison)

Approximation of £ = 1.1z

Euler discretization: 2T = (I + AA.)x Exact discretization: zt = e4c®g

2.5 ||—— Exact solution 2.5 |——Exact solution
—o-A=1 —o—A=1
ol A=05 ol A=05
——A=0.1
——A =0.05
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Higher Order Discretization Schemes
Consider the continuous time system

&(t) = f(a(t), u(?))
Assume that f is sufficiently often cont. differentiable:

di+1 )
L e = @ u), i1

Taylor approximation of z(¢):
z(t+ A) = x(t) + 2(H)A + %:ﬁ(t)AQ
+ L &2 (AT + Re(A)

Remainder

41 ,
R-(A) = (Til)l ;ltr+1 x(T)A +17 TE [t t+ A
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Higher Order Discretization Schemes
Consider the continuous time system

&(t) = fz(t), u(t))

Assume that f is sufficiently often cont. differentiable:

ditt .
e = L s u), =1
Taylor approximation of z(¢):

z(t+ A) = z(t) + 2(t)A + %i(t)Az

+ 71 g 2(DA” + Re(A)

Remainder

41
R(A) = (Til)l ;ltr+193

Example: Consider » = 1. Then
z(t+ A) = z(t) + 2(t)A + R1(A)
=a(t) + Af(x(t) + Ri(A)

Moreover, R1(A) a0 0, quadratically.

(DAY, Tl t+ Al

~~ The Euler method converges quadratically.

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

Include higher order terms in the approximation:
z(t+ A) ma(t) + () A + $3(t)A2

(We ignore terms of order A% in the remainder.)
Note that

i= Z—];(x,u) = a%f(x’ u)t + %f(z,u)u,

= 2 f@,u)f(z,u) + & f (@, w)i,
and thus

2t + A) ~ a(t) + Af(a(t), u(t)

+ 57 (&1 @), u®) f@(t), u(®) + & (@(0), u®)i(t))

Ch. 5: Discrete Time Systems 9/22



Higher Order Discretization Schemes

Consider the continuous time system

Include higher order terms in the approximation:

#(t) = F(a(t),u(t)) olt+ 8) R at) +HOA + 3BT
Assume that f is sufficiently often cont. differentiable: (We ignore terms of order A% in the remainder.)
gt Note that
drtt ()_@f( z(t), u(t)), t=1,...,r :'t:%(z,u):a%f(a:,u):t—&-%f(z,u)u,
Taylor approximation of z(t): =2 f(z,u)f(z,u) + 2 f(z,u)u,
a(t+A) = z(t) + #(t)A + ;:z(t)AQ S and thus
i T' dtr 2(H)AT + Ro(A) z(t+ A) = z(t) + Af(z(t),u(t))
Remainder + 4 (@0, u®)(@(t),u®) + 2 @b, u(d)i()
Rr(A) = (ril)' cgltir:l s(ATT, reftt+ A If u(t) is piecewise constant we simplify to:

Example: Consider » = 1. Then
z(t+ A) = z(t) + 2(t)A + R1(A)
=a(t) + Af(x(t) + Ri(A)

Moreover, R1(A) a0 0, quadratically.

z(t+A)ma(t)+Af(z(D), ud)+%2 A f (@(t), ua) f (x(t), ua)

~~ The Euler method converges quadratically.
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Higher Order Discretization Schemes
Consider the continuous time system
&(t) = f(z(t), u(?))
Assume that f is sufficiently often cont. differentiable:
di+1 di
= — o =1,...
() = T @0, u), =1
Taylor approximation of z(¢):
z(t+ A) = x(t) + 2(H)A + %é&(t)AQ
+ L g e (AT + Re(A)

Remainder

Ro(A) = 1 ar+1

D)l der 1 x(T)AH—ly

€ [t,t+ A
Example: Consider » = 1. Then
z(t+ A) = z(t) + 2(t)A + R1(A)
=a(t) + Af(x(t) + Ri(A)

Moreover, R1(A) a0 0, quadratically.

~~ The Euler method converges quadratically.

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

Include higher order terms in the approximation:
o(t+ A) m a(t) + () A + 2i(t)A?

(We ignore terms of order A% in the remainder.)
Note that

= %(z,u) = a%f(x’ u)t + %f(z,u)u,

= 2 f@,u)f(z,u) + & f (@, w)i,
and thus

z(t+ A) = xz(t) + Af(x(t), u(t))

+ 5 (Z F@t), w®) f(o(t), u(®) + 2 flo(t) u®)ilt) )
If u(t) is piecewise constant we simplify to:
w(t+8) R () + Af (2(t), ua)+ & £ f(2(t), ua) f(2(1), ua)

Avoid the calculation of 21

fla+ Ad,ug) = f(z,uq) + 5L (z,ua)zA

+1 jAJ; (x4 62, uq)A? foras e [0,A]
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Higher Order Discretization Schemes (2)

Include higher order terms in the approximation:
o(t+A) ~ o(t) + (A + L) A2 ASL (2, ug) f(w,ua) = f(@ + Af (2, ua), ua) — f(@,ua)

Rearranging the terms:

(We ignore terms of order A2 in the remainder.) - %T(I + 0, uq) A%,
Note that

i=4(u) = Zf@wi+ L flzw)i,

= & f@,u)f(@,u) + 2 f(z,u)i,
and thus

ot + A) = (t) + Af(x(t), u(t))

+ 87 (&£, u®) f(t), u(®) + & f (1), u®)i(®))
If u(t) is piecewise constant we simplify to:
ff?(t-i-A)M(t)-FAf(fC(t)vUd)+7%f(fv(t) uq) f(x(t), ua)
Avoid the calculation of 2L

f@+ Adyug) = f(z,uq) + UL (2, uq)iA

L8 (24 5d,ug)A? foras € [0,4]
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Higher Order Discretization Schemes (2)

Include higher order terms in the approximation: Rearranging the terms:
o(t+A) ~ o(t) + (A + L) A2 ASL (2, ug) f(w,ua) = f(@ + Af (2, ua), ua) — f(@,ua)
(We ignore terms of order A2 in the remainder.) - %K(fﬂ + 0, uq) A%,
Note that
5= %(x’ u) = a%f(x: )i + %f(% w)i, Continuing with the approximation:
= 2 f(z,u)f(z,u) + 2 f(a,u)i, ot + A) & x(t) + Af(x(t), ua)
and thus + % (f(z(@) + Af(x(t), ua), ua) — f(z(t),ua))
a(t+ A) & a(t) + Af(a(), u(t)) + 5 (3L () + 53, u0)A?)
+ 45 (B £ @, u®)f (@), u®) + L@@ u@)i®) =) + $ @), ua) + 5 @) + Af(@(t),ua), ua)
If u(¢) is piecewise constant we simplify to: i%( (t) + 02, ug) A3
T(t+A)ma(t)+AF(2(t), ua)+ 5 %f(:c(t) ug) f(z(t), uq) ~~ Ignore terms of order A3

Avoid the calculation of 2L

f@+ Adyug) = f(z,uq) + UL (2, uq)iA

L8 (24 5d,ug)A? foras € [0,4]
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Higher Order Discretization Schemes (2)

Include higher order terms in the approximation: Rearranging the terms:
o(t+A) ~ o(t) + (A + L) A2 ASL (2, ug) f(z,ua) = f(z + Af(x,ua), ua) — f(z, uq)
(We ignore terms of order A2 in the remainder.) - %K(fﬂ + 0, uq) A%,
Note that
&= %(x,u) = a%f(x:“)x + Buf(m w)i, Continuing with the approximation:
e f @) f ) + g f ( wyi, 2t +8) & 2(t) + Af(a(t), ua)
and thus + % (f(@(t) + Af(2(t), ua), ua) — f(2(t), ua))

z(t+ A) = o) + Af(x(t), u(t))

+ 5 (-3 L @) + 65, ug) A7)

+ 57 (& 7@, u) @), u®) + 2 F@®u®)i®) =)+ 5 f(
d*f

TG
dA2

(1), ua) + 5 f(@(t) + Af(a(t), ua), ua)
If u(¢) is piecewise constant we simplify to: -3 (t) + 02, ug) A3
T(t+A)ma(t)+AF(2(t), ua)+ 5 %f(a:(t) ug) f(z(t), uq) ~~ Ignore terms of order A3
Avoid the calculation of 2L Heun method:
o+ Ak ug) = [ ug) + 2 (2, ug)A z(t+ A) ~ z(t) 1— 2 F(@(t), ua)
L a2y + 3 f(@@) + Af((t), ua), ua)

LS (x4 6i,uq)A? forad € [0,A
7 a7 (@ + 68, uq) [0, A] ~~ Cubic convergence
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Comparison: Euler & Heun Method

2.5 ||—— Exact solution |
—o—Euler method with A =0.1
Heun’s method with A = 0.1

@ Consider z = 1.1z
@ Euler method:

a(t+A) ~ a(t) + Af(a(t), uq)

x(t)

@ Heun method: 1t ,
z(t+ A) = z(t)

+ 5 1 (@(t), ua)
+ 5 f(@(t) + Af((t), ug), ua) 0.5 5 1
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Runge-Kutta Methods

@ Consider

z = g(t,x).
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Runge-Kutta Methods

@ Consider

z = g(t,x).
@ Runge-Kutta update formula:

a(t+A) =x(t) + A bik;
where i=1

k1 = g(t,fE(t))
ko = g(t + A,z + A(aglkl))
k3 = g(t + c3A,z + A(az1k1 + aszks))

ks = g(t + cs A,z + Aasikr + asoka + -+ + ags-1)k(5)))

@ s c N(stage); a;j,be,c; ER,1<j<i<s,1<L<s
(given parameters)
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Runge-Kutta Methods

@ Consider
z = g(t,x).
@ Runge-Kutta update formula:

a(t+A) =x(t) + A bik;
where i=1

k1 = g(tvx(t))
ko = g(t + A,z + A(aglkl))
k3 = g(t + c3A,z + A(az1k1 + aszks))

ks = g(t + cs A,z + Aasikr + asoka + -+ + ags-1)k(5)))
@ s c N(stage); a;j,be,c; ER,1<j<i<s,1<L<s
(given parameters)

@ The case f(z,u) for sample-and-hold inputs
u(t+6) = uqg € R™ forall § € [0, A) is covered through

g9(t,x(t)) = f(2(t), ua)
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Runge-Kutta Methods

@ Consider
z = g(t,x).
@ Runge-Kutta update formula:

a(t+A) =x(t) + A bik;
where i=1

k1 = g(t, z(t))
ko = g(t + oA,z + A(az1k1))
k3 = g(t + c3A, x4+ A(az1k1 + az2k2))

ks = g(t + cs A,z + Aasikr + asoka + -+ + ags-1)k(5)))
@ s c N(stage); a;j,be,c; ER,1<j<i<s,1<L<s
(given parameters)

@ The case f(z,u) for sample-and-hold inputs
u(t+6) = uqg € R™ forall § € [0, A) is covered through

g9(t,x(t)) = f(2(t), ua)

Butcher tableau:

0
C2 | a21
¢3 | a3l as2

Cs | Asl  As2 -+ QOg(s—1)
| b1 b2 - be_1  bs

~- ¢; is only necessary for time-varying systems
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Runge-Kutta Methods

@ Consider
z = g(t,x).
@ Runge-Kutta update formula:

a(t+A) =x(t) + A bik;
where i=1

k1 = g(t, z(t))
ko = g(t + oA,z + A(az1k1))
k3 = g(t + c3A, x4+ A(az1k1 + az2k2))

ks = g(t +csA,z 4 A(asikr + as2k2 + -+ + ags—1)k(s)))
@ s c N(stage); a;j,be,c; ER,1<j<i<s,1<L<s
(given parameters)

@ The case f(z,u) for sample-and-hold inputs
u(t+6) = uqg € R™ forall § € [0, A) is covered through

g9(t,x(t)) = f(2(t), ua)
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@ Butcher tableau:

0
C2 | a21
¢3 | a3l as2

Cs QAs] As2 As(s—1)
| b1 b2 - be_1  bs

~- ¢; is only necessary for time-varying systems
@ Examples: The Euler and the Heun method
0
0
111
A’T and
2 2
@ Heun Method: Update of z in three steps
ki = f(z(t), ua),
ko = f(z(t) + Ak, ud),
(t+A)=a(t) + A (3k1 + Lko) .
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Runge-Kutta Methods (in Matlab)

The function ode23.m relies on the Butcher tableaus The function ode45 . m relies on the Butcher tableaus
0
1 1 0
312 3 1 1
and 210 = = =
112 1 a 3] 3 9
9 ‘ E i i T léo ﬁ _4& 32
24 4 3 8 8 | 12 250 ealas 212
9 7 9
@ One scheme is used to approximate z(t + A). 1 % 7%3;7535 4665%]72 AT
. . Ll s TE Ry I ThE o
@ The second scheme is needed to approximate the 384 1113 102 6784 84
error, to select the step size A. o 0 T 1 s 5 O
5179 7571 393 _ 92097 187 RS
57600 16695 640 339200 2100 40
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Section 3

Stability Notions
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Stability Notions

Discrete time systems: Consider
zt = F(x), z(0) =29 € R™

Definition
Consider the origin of the discrete time system.

1. (Stability) The origin is Lyapunov stable (or simply
stable) if, for any € > 0 there exists § > 0 such that if
|z(0)| < 4 then, for all k > 0,

lz(k)| <e.
2. (Instability) The origin is unstable if it is not stable.

3. (Attractivity) The origin is attractive if there exists
6 > 0 such that if |x(0)| < ¢ then

lim z(k) = 0.
k—o0

4. (Asymptotic stability) The origin is asymptotically
stable if it is both stable and attractive.

Continuous time systems: Consider
z = f(x), z(0) = z9 € R™

Definition
Consider the origin of the continuous time system.

1. (Stability) The origin is Lyapunov stable (or simply
stable) if, for any € > 0 there exists § > 0 such that if
|z(0)| < 6 then, for all ¢ > 0,

le(t)] < e.
2. (Instability) The origin is unstable if it is not stable.

3. (Attractivity) The origin is attractive if there exists
6 > 0 such that if |z(0)| < 6 then

tgngo z(t) = 0.

4. (Asymptotic stability) The origin is asymptotically
stable if it is both stable and attractive.
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Stability Notions (2)

Discrete time systems: Consider
zt = F(x), z(0) =29 € R"

Definition (KL-stability)

The origin of the discrete time system is is globally
asymptotically stable, or alternatively K £-stable, if there
exists 8 € KL such that

lz(k)| < B(|z(0)], ), VkeN,
is satisfied for all z(0) € R™.

Continuous time systems: Consider
z = f(x), z(0) =29 € R"

Definition (K L-stability)

The origin of the discrete time system is is globally
asymptotically stable, or alternatively KL-stable, if there
exists 8 € KL such that

is satisfied for all z(0) € R™.
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Stability Notions (2)
Discrete time systems: Consider
zt = F(x), z(0) =29 € R"

Definition (KL-stability)

The origin of the discrete time system is is globally
asymptotically stable, or alternatively K £-stable, if there
exists 8 € KL such that

lz(k)| < B(1=(0)], k),
is satisfied for all z(0) € R™.

VEkeEN,

Continuous time systems: Consider
z = f(x), z(0) =z9 € R™

Definition (KL-stability)

The origin of the discrete time system is is globally
asymptotically stable, or alternatively KL-stable, if there
exists 8 € KL such that

lz(®)] < B(z(0)],1),
is satisfied for all z(0) € R™.

V't € Rso,

Definition (Exponential stability)

Consider the origin of the discrete time system. If there
exist M > 0 and vy € (0, 1) such that for each z(0) € R™
the inequality

(k)| < M|z(0)]~", VkEN,

is satisfied, then the origin is globally exponentially stable. )

Definition (Exponential stability)

Consider the origin of the discrete time system. If there
exist M > 0 and X\ > 0 such that for each 2(0) € R™ the
inequality

|z(t)] < Mz(0)]e™ ", V€ Rxo,
is satisfied, then the origin is globally exponentially stable.
v
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Lyapunov Characterizations

Consider z+ = f(x), 0 = f(0), 0 € D C R™ open. Consider & = f(z), 0 = f(0), 0 € D C R™ open.
Theorem (Lyapunov stability theorem) Theorem (Lyapunov stability theorem)
Suppose there exists a continuous function V : D — R> Suppose there exists a smooth function V : D — R>q and
and functions a1, as € K such that, for all x € D, functions a1, as € Koo such that, for all z € D,

o (lz]) < V(z) < aa(|zf) (1) a1 (|z]) < V() < az(|z]) ()

V(f(z)) —V(z) <0 (VV(2), f(z)) <0

Then the origin is stable. Then the origin is stable.
Note that

@ Decrease condition V(z+) = V(f(z)) < V(z)
@ differentiability of V' (or even continuity) is not required
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Lyapunov Characterizations

Consider z+ = f(x), 0 = f(0),0 € D C R™ open.

Theorem (Lyapunov stability theorem)

Suppose there exists a continuous function V : D — R>
and functions a1, as € K such that, for all x € D,

a1(|z]) < V() < az(|z]) (1)
V(f(z)) — V(z) <0
Then the origin is stable.

Consider ¢ = f(x), 0 = f(0), 0 € D C R™ open.

Theorem (Lyapunov stability theorem)

Suppose there exists a smooth function V : D — R> and
functions a1, as € Koo such that, for all z € D,

i (|z]) < V() < ao(lz]) )
(VV(z), f(z)) <0
Then the origin is stable.

Note that

@ Decrease condition V(z+) = V(f(z)) < V(z)

@ differentiability of V' (or even continuity) is not required
Theorem (Asymptotic stability)

Suppose there exists a continuous function V : D — R,
and functions a1, a2 € Koo, p € P satisfying p(s) < s for
all s > 0, such that, for all z € D, (1) holds and

V(f(z)) = V(z) < —p(V(2)).
Then the origin is asymptotically stable.

Theorem (Asymptotic stability)

Suppose there exists a smooth function V' : D — R>q, and
functions a1, o2 € Koo, p € P, such that, for all z € D, (2)
holds and

(VV(z), f(z)) < —p(V(2)).
Then the origin is asymptotically stable.
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Lyapunov Characterizations (2)
Consider z+ = f(z), 0 = £(0),0 € D C R™ open.

Theorem (Exponential stability)

Suppose there exists a continuous function V : D — R>
and constants A\1,A2 > 0,p > 1, and c € (0,1) such that,
forallz € D
AM|zP < V(z) < X2|z|P and
V(f(z)) — V(z)< —cV(z).

Then the origin is exponentially stable.

Consider ¢ = f(x), 0 = f(0), 0 € D C R™ open.

Theorem (Exponential stability)

Suppose there exists a smooth function V : D — Rxq and
constants A1, 2 > 0,p > 1, and c € (0, 1) such that, for all
r €D

Az|? < V(z) < Ao|z|P and
(VV(2), f(z))< —cV ().
Then the origin is exponentially stable.
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Lyapunov Characterizations (2)
Consider z+ = f(z), 0 = £(0),0 € D C R™ open.

Theorem (Exponential stability)

Suppose there exists a continuous function V : D — R>
and constants A1, 2 > 0, p > 1, and c € (0, 1) such that,
forallz € D
Az|? < V(z) < Ao|z|P and
V(f(z)) — V(z)< —cV(z).

Then the origin is exponentially stable.

Consider © = f(x), 0 = f(0), 0 € D C R™ open.

Theorem (Exponential stability)

Suppose there exists a smooth function V : D — Rxq and
constants A1, 2 > 0,p > 1, and c € (0, 1) such that, for all
z €D

Az|? < V(z) < Ao|z|P and
(VV(2), f(z))< —cV ().
Then the origin is exponentially stable.

Consider z+ = f(k,z),0 = f(k,0) forallk € N

Theorem

If there exist a function V' : N x R™ — R>, and functions
a1, a2 € Ko and p € P such that, for all x € R™ and
k> ko >0,

ai(|z]) <V(k,z) < az(lz])  and
V(k + 17 f(k,I))*V(k?, .CL‘) S 7p(|l“)
then the origin is uniformly globally asymptotically stable.

Consider & = f(t,x), 0 = f(k,0) forallt € R>q

Theorem

If there exist a smooth function V : R>o x R™ — R>q, and
functions a1, a2 € Ko and p € P such that, for all z € R™
andt >ty > 0,

ai(|z]) <V (t,2) < az(lz])  and
(VaV(t, ), f(t,2)+V:V(t, ) < —p(|z))
then the origin is uniformly globally asymptotically stable.
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Linear systems

Consider the discrete time linear system Consider the continuous time linear system
zt = Az,  x(0) e R™  [Solution z(k) = A*¥z(0)] &=Az, «(0)€R™  [Solution z(t) = eA*z(0)]
Theorem Theorem
The following properties are equivalent: The following properties are equivalent:
@ The origin ¢ = 0 is exponentially stable; @ The origin ¢ = 0 is exponentially stable;
@ The eigenvalues \1, ..., \n € C of A satisfy |\;| < 1 @ The eigenvalues \1, ..., \n, € C of A satisfy \; € C~
foralli =1,...,n;and foralli =1,...,n; and
@ ForQe SZ,, there exists a unique P € S, @ ForQe SZ, there exists a unique P € SZ,
satisfying the discrete time Lyapunov equation satisfying the continuous time Lyapunov equation
ATPA—P=—Q. ATP 4+ PA=—Q.
V. 4
A matrix A which satisfies |\;| < 1foralli =1,...,nis A matrix A which satisfies \; € C~ forall: = 1,...,nis
called a Schur matrix. called a Hurwitz matrix.
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Linear systems
Consider the discrete time linear system
z(0) € R"

zt = Az, [Solution z(k) = AFx(0)]

Theorem
The following properties are equivalent:
@ The origin z¢ = 0 is exponentially stable;

@ The eigenvalues \1, ..., \, € C of A satisfy |\;| < 1
foralli =1,...,n;and

@ ForQ € 82, there exists a unique P € SZ
satisfying the discrete time Lyapunov equation

ATPA—P=—Q.

4

Consider the continuous time linear system

z(0) € R™ =

&= A, [Solution z(t) = e?tz(0)]

Theorem
The following properties are equivalent:
@ The origin z¢ = 0 is exponentially stable;

@ The eigenvalues \1, ..., \n, € C of A satisfy \; € C~
foralli =1,...,n; and

@ ForQ € 82, there exists a unique P € SZ
satisfying the continuous time Lyapunov equation

ATP 1+ PA=—Q.

v

A matrix A which satisfies |\;| < 1foralli =1,...,nis
called a Schur matrix.

Theorem

If the origin of =+ = Az with A = [g—i(x)] s globally
o

exponentially stable, then the origin of z+ = F(z),
0 = F(0), is locally exponentially stable.

A matrix A which satisfies \; € C~ forall:i = 1,...,n s
called a Hurwitz matrix.

Theorem

If the origin of 3 = Az with A = [%(w)] s globally

exponentially stable, then the origin of ¢ = f(x), 0 = f(0),
is locally exponentially stable.
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Stability Preservation of Discretized Systems

Consider (continuous time system):
% = Az, AER
Euler discretization (A > 0):
st =z 4+ Az =(14+ANz
@ The origin of the continuous time system is
exponentially stable if and only if A < 0

@ The origin of the discrete time system is exponentially
stable if and only if |1 + A)| < 1.
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Stability Preservation of Discretized Systems

Consider (continuous time system):
% = Az, AER
Euler discretization (A > 0):
st =z 4+ Az =(14+ANz
@ The origin of the continuous time system is
exponentially stable if and only if A < 0

@ The origin of the discrete time system is exponentially
stable if and only if |1 + AN < 1.

For A < 0 it holds that
@ the condition |1 + A)| < 1 is equivalent to
1+AX<1 and —1-AX<1
or

0<A<-2
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Stability Preservation of Discretized Systems

Consider (continuous time system):

For
T = Az, AER @ )\ — 0 the condition is not restrictive
Euler discretization (A > 0): @ )\ = —1000, A needs satisfy A < 0.002 to preserve
et =24 Az =(1+ ANz stability (~ stiff ODE)

@ The origin of the continuous time system is
exponentially stable if and only if A < 0

@ The origin of the discrete time system is exponentially
stable if and only if |1 + AN < 1.

For A < 0 it holds that
@ the condition |1 + A)| < 1 is equivalent to
1+AX<1 and —1-AX<1
or

0<A<-2
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Stability Preservation of Discretized Systems

Consider (continuous time system):

For
T = Az, AER @ )\ — 0 the condition is not restrictive
Euler discretization (A > 0): @ )\ = —1000, A needs satisfy A < 0.002 to preserve
et =24 Az =(1+ ANz stability (~ stiff ODE)
ForA >0

@ The origin of the continuous time system is
exponentially stable if and only if A < 0

_2
@ The origin of the discrete time system is exponentially A>0 o A<—3
stable if and only if |1 + A)| < 1. (not restrictive)

For A < 0 it holds that
@ the condition |1 + A)| < 1 is equivalent to

1+AXN< 1 and —1-AX<1

@ the condition |1 + A)X| > 1 implies that

or

0<A<-2
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Stability Preservation of Discretized Systems

Consider (continuous time system):
T = Az, AeR
Euler discretization (A > 0):
2t =24+ Adz=(1+ ANz
@ The origin of the continuous time system is
exponentially stable if and only if A < 0

@ The origin of the discrete time system is exponentially
stable if and only if |1 + AN < 1.

For A\ < 0 it holds that

@ the condition |1 + A)| < 1 is equivalent to
1+AX<1 and —1-AX<1
or
0<A<-2

P. Braun & C.M. Kellett (ANU)
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For
@ )\ — 0 the condition is not restrictive

@ )\ = —1000, A needs satisfy A < 0.002 to preserve
stability (~ stiff ODE)

ForA >0
@ the condition |1 + AX| > 1 implies that
A>0 or A<-2

(not restrictive)

Note that

@ we have only considered the Euler method and linear
systems

~+ See sections on ‘stability’ in references on ‘numerical so-
lution of differential equations’
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Section 4

Controllability and Observability
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Controllability and Observability

Consider
2T = Az + Bu, y = Cz + Du.

Definition (Controllability)

The pair (A, B) is said to be controllable, if for all
z1,2z2 € R™ there exists K € Nand v : Ng — R" such
that

K
o = AKz1 + Z AKfiBu(i —1).
i=1

Definition (Observability)

The pair (A, C) is said to be observable, if for all
z1,x2 € R™, x1 # 2 there exists K € N such that

CAX gy + CAK ;.
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Controllability and Observability

Consider
2T = Az + Bu, y = Cz + Du.

Definition (Controllability)

The pair (A, B) is said to be controllable, if for all
z1,2z2 € R™ there exists K € Nand v : Ng — R" such
that

K
o = AKz1 + Z AKfiBu(i —1).
i=1

Definition (Observability)

The pair (A, C) is said to be observable, if for all
z1,x2 € R™, x1 # 2 there exists K € N such that

CAX gy + CAK ;.

Controllability:
@ Kalman matrix: rank ([B AB A?2B --- A""1B]) =n
@ PBHtest: rank ([A — AI B]) =n, xecC
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Controllability and Observability

Consider Note that:
2T = Az + Bu, y = Cx + Du. @ Different to the continuous time setting, K cannot be
chosen arbitrarily small.
Definition (Controllability)
The pair (A, B) is said to be controllable, if for all

z1,2z2 € R™ there exists K € Nand v : Ng — R" such
that

K
o = AKz1 + ZAKfiBu(i —1).

=1

Definition (Observability)

The pair (A, C) is said to be observable, if for all
z1,x2 € R™, x1 # 2 there exists K € N such that

CAX gy + CAK ;.

Controllability:
@ Kalman matrix: rank ([B AB A?2B --- A""1B]) =n
@ PBHtest:rank ([A— AT B])=n, AeC
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Controllability and Observability

Consider

zt = Az + Bu, y = Cz + Du.

Definition (Controllability)

The pair (A, B) is said to be controllable, if for all
xz1,x2 € R™ there exists K € N and v : Ng — R™ such
that

K
o = AKz1 + ZAKfiBu(i —1).

=1

Definition (Observability)

The pair (A, C) is said to be observable, if for all
z1,x2 € R™, x1 # 2 there exists K € N such that

CAX gy + CAK ;.

Controllability:
@ Kalman matrix: rank ([B AB A%B - ..

@ PBHtest: rank ([A — Al B]) =n,

A"’lBD =n
recC

P. Braun & C.M. Kellett (ANU)
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Note that:

@ Different to the continuous time setting, K cannot be
chosen arbitrarily small.

Example:
@ Consider the controllable pair

0 1 0
A=|0 0 1|, B=
0 0 0

Consider the states z1 = [0,0, 1] and
x2 = [0,0,0]T. Then it holds that

0 1 0
Az1 =11, A2z1 =10 , Az1 =10
0 0 0

@ Hence, without input, the origin is reached in
K =n = 3 steps zy = A3z;.

= o o
| S

@ Due to the vector B which is only unequal to zero in
the last entry, z; cannot be steered to the origin in
fewer steps.
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Controllability and Observability

Consider

zt = Az + Bu, y = Cz + Du.

Definition (Controllability)

The pair (A, B) is said to be controllable, if for all
x1,z2 € R™ there exists K € Nand u : Ny — R™ such
that

K
o = AKz1 + ZAKfiBu(i —1).

=1

Definition (Observability)

The pair (A, C) is said to be observable, if for all
z1,x2 € R™, x1 # 2 there exists K € N such that

CAX gy + CAK ;.

Controllability:
@ Kalman matrix: rank ([B AB A?2B --- A""1B]) =n
@ PBHtest:rank ([A— AT B])=n, AeC
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Loss of Controllability:
@ Consider & = Acx + Beu:

0o 1 0
Ac:{_1 0] and Bc:[l}.
@ Exact discretization:
_AlA _ cos(A)  sin(A)
Ade(B) =e - [ —sin(A)  cos(A)

1 — cos(A)

Ba@) =[G ] Baenn = |

Ch. 5: Discrete Time Systems
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Controllability and Observability

Consider
zt = Az + Bu y = Ca + Du. Loss of Controllability:
@ Consider ¢ = Acz + Beu:
Definition (Controllability) 0 1 0
. - . Ae=1 _1 ¢ and  Be=| | |-
The pair (A, B) is said to be controllable, if for all

x1,z2 € R™ there exists K € Nand u : Ny — R™ such

that @ Exact discretization:

_AlA _ cos(A)  sin(A)
zy = ARz + iAK*iBu(i -1). AaelB) = e = [ —sin(A) = cos(A) }

i=1
v —
— - Ba®) = | VoY | Baern = | 7]
Definition (Observability)
The pair (A, C) is said to be observable, if for all
x1,x2 € R™, 1 # x5 there exists K € N such that Lemma
CAK gy £ CAK 1. Consider the pair (A, B) and let (Ag4e, Bae) be defined
< through exact discretization for A > 0. The pair (Age, Bage)
Controllability: is controllable if and only if (¢4, B) is controllable and A
@ Kalman matrix: rank ([B AB A2B .. A""1B]) =n has no eigenvalues of the form 2 ¢, £ € N.

@ PBHtest: rank ([A — AI B]) =n, reC
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