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Absolute Stability

0 A Commonly Ignored Design Issue
e Historical Perspective on the Lur'e Problem

e Sufficient Conditions for Absolute Stability
@ Circle Criterion
@ Popov Criterion
@ Circle versus Popov Criterion
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Section 1

A Commonly Ignored Design Issue
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A Commonly Ignored Design Issue

Linear system: (A € R**", b € R**1, ¢ € R1X7)

& = Az + bu, y = cx,

Feedback interconnection: v = —ky

v(t) >@ u(t) q

T = Ax + bu
y=cr

z = (A — bke)z,

y(t)
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A Commonly Ignored Design Issue

Linear system: (A € R™*", b € R"X1, ¢ € R1xn)

Feedback interconnection: v = —ky

i=Az+bu, y=ca, @ = (A — bke)z,
u(t) >® u(t) > z = éﬂx + bu y(t) >
k |le—— |
v(t) f ol w0) u(t) ayc = zz + bu y(t)>
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A Commonly Ignored Design Issue (2, Example: Pendulum)

Consider:

@ Linearization of the inverted pendulum in the upright
position

A:[Q.%l —(1).1]’ b:{?] e=[1 0]

(for given parameters)

@ We know that the closed loop system & = A — bke,
k = 10 is asymptotically stable (i.e., A — bkcis
Hurwitz)
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A Commonly Ignored Design Issue (2, Example: Pendulum)

Consider: However:
@ Linearization of the inverted pendulum in the upright @ Any motor used to drive the cart has limited power
position u e [ulb,uub}, Ulp, Uyp € R.
@ Hence,
A:[S)%l 7(1)1]’ b:{?} e=[1 0]
: ) up, for e < wup,
(for given parameters) YP(e) = e, for up <e < uyp,
Uy, fOr e > uyp,
@ We know that the closed loop system @ = A — bke,
k = 10 is asymptotically stable (i.e., A — bkcis (where e(t) = v(t) — ky(t) denotes the error variable)
Hurwitz) @ Question: Is the origin of £ = Az — by (kcx)

asymptotically stable?

") RN 0

y=cx
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A Commonly Ignored Design Issue (3, Saturations)

Input saturation block diagram:

a(t) > ’ u(t) > T = Ax + bu y(t)

‘ Yy =cr

The saturation function sat : R — [—1, 1]:
-1, fory < -1,
sat(y) = y, for —1<y<1,
1, fory>1.

@ From the normalized function a specific saturation can be obtained
through an appropriate scaling and translation.

Introduction to Nonlinear Control
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A Commonly Ignored Design Issue (4, Example: A servo-valve)

@ The linear dynamics are defined through the matrices

l Spool position @(t)
0 1 0
A:[o —ﬁ}’ :{1}’“[% 0],

Upper 9g 2

refurn ~—— — 40z — a”

9%) where K=a B”; and B=f+ 5
opP opP

Pressure @ Here, g(z, P) denotes the flow, a the area of the piston, P
source X -
the pressure, and f the viscous friction.
Lower
return T

P. Braun & C.M. Kellett (ANU) Ch. 6: Absolute Stability 7/27



A Commonly Ignored Design Issue (4,

Example: A servo-valve)

l Spool position @(t)

i

Pressure .
source

Lower
return

@ Raising the spool allows an inflow of pressure

@ Simultaneously pressure drop via the upper
return so that the piston will rise

@ Note the overlap near the openings

P. Braun & C.M. Kellett (ANU)

@ The linear dynamics are defined through the matrices

0 1 0
A: [ - j|, - |: :|7 ‘T K 0 ’
0 —37 1 [ M ]
— €T —
where K_“ng and B—f—l—E.
apP apP

@ Here, g(z, P) denotes the flow, a the area of the piston, P
the pressure, and f the viscous friction.

a(t) ‘ = Ax + bu
> ‘ y=czr

u(t) >
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A Commonly Ignored Design Issue (4, Example: A servo-valve)

» @ The linear dynamics are defined through the matrices
l Spool position @(t) 0 L
0
(8 ][] s o
0 - 1 [ M ]

Upper 99 2
retirn where K = agj; and B=f+ %.

opP opP
Pressure
source

@ Here, g(z, P) denotes the flow, a the area of the piston, P
the pressure, and f the viscous friction.

Lower
return
a(t) \ u® | i = Azt bu | ¥(0)
> Yy =cx _>
|u(t)
@ Raising th  all infl f
aising the spool allows an inflow of pressure Deadzone dz : R —s R
@ Simultaneously pressure drop via the upper ; <
return so that the piston will rise y+1, fory<-1,
i dz(y) = 0, for —1<y<1,
@ Note the overlap near the openings y—1, fory>1.
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A Commonly Ignored Design Issue (5, The Lur’e Problem)

Consider the feedback interconnection:

T = Ax + bu
y=czx

—>

=t y) |[4—

Lur’e problem:

@ Which conditions on the functions ¢ : R>o x R — R
guarantee asymptotic stability of the origin?

Note that:
@ The nonlinearity can be time-dependent
@ We assume that the reference signal v(t) is zero.

@ While we focus on the SISO case, many results can
be extended to the MIMO case.
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A Commonly Ignored Design Issue (5, The Lur’e Problem)

Consider the feedback interconnection:

T = Ax + bu
y=czr

—>

u=—(t,y) [ —

Lur’e problem:

@ Which conditions on the functions ¢ : R>o x R — R
guarantee asymptotic stability of the origin?

Note that:
@ The nonlinearity can be time-dependent
@ We assume that the reference signal v(t) is zero.

@ While we focus on the SISO case, many results can
be extended to the MIMO case.

P. Braun & C.M. Kellett (ANU)
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Definition (Sector condition)

Leta,B € R, a < B, and Q C R. A nonlinearity

1 : R>o X R — R satisfies a sector condition if
ay® < yi(t,y) < By?

forall ¢ > 0 and for all y € Q. For Q = R we say that the
sector condition is satisfied globally.

P(t,y)
By«
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A Commonly Ignored Design Issue (6, The Sector Condition)

Common nonlinearities: sign : R — R,
Definition (Sector condition)

-1, fory < -1,
sat(y) = y, for —1<y<1, Leta,8 € R, a < 8,and Q C R. A nonlinearity
1, fory>1. 1 : R>o X R — R satisfies a sector condition if
y+1, fory<-1, ay® < yi(t,y) < By°
dz(y) = 0, for —1<y<1,
_ forall ¢ > 0 and for all y € Q. For Q = R we say that the
y—1, fory>1 SNEOra Y.
sector condition is satisfied globally.
-1, fory <O,
sign(y) = 0, fory=0, ' .
1, fory >0, w(t:y) /
By /
’ ‘ //' ”””ay
,”’:/ ] y
Question: )
@ Which nonlinearity satisfies a sector condition? ’

9/27
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A Commonly Ignored Design Issue (7, Absolute Stability)

Definition (Sector condition)

Leta,B8 € R, @ < B, and Q C R. A nonlinearity
¥ : R>g x R — R satisfies a sector condition if

ay® < yip(t,y) < By°

forall t > 0 and for all y € Q. For Q = R we say that the
sector condition is satisfied globally.

Definition (Absolute stability)
Leta,8 € R, o < B,and @ C R. The Lur'e system

is called absolutely stable (with respect to «, 3, ) if the
origin is asymptotically stable for all 1) : R~g x R — R
satisfying the sector condition for all t > 0 and for all

Yo € 2.
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Historical Perspective on the Lur'e Problem

Conjecture (Aizerman’s Conjecture (1949))

Leto, B € R, a < B, and suppose the origin of the linear
system © = Az + bu, y = cz is globally asymptotically
stable for all linear feedbacks

u = —1/J(y) =—ky, ke [Oé,ﬂ].

Then the origin is globally asymptotically stable for all
nonlinear feedbacks in the sector

aSMSB, y #0.
Y

~ Conjecture was shown to be wrong through
counterexamples.

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

Conjecture (Kalman’s Conjecture (1957))

Leta,B € R, a < B, and suppose the origin of the linear
system & = Az + bu, y = cx is globally asymptotically
stable for all linear feedbacks

u= —’Z’(y) = _kyz ke [a718]'

Then the origin is globally asymptotically stable for all
nonlinear feedbacks belonging to the incremental sector

a< Ly < B

~ Conjecture was shown to be wrong through
counterexamples.
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Section 2

Historical Perspective on the Lur'e Problem
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Historical Perspective on the Lur'e Problem (Detour into Frequency domain)

Definition (Positive real)

A transfer function H (s) is positive real if
Re(H(s)) >0 forall s € Cy.

The transfer function is strictly positive real (SPR) if
H(s — ¢) is positive real for some £ > 0.

Note that the strictly positive real definition above is
equivalent to the requirement that

Re(H(s)) >0 forall s € Cy.
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Historical Perspective on the Lur'’e Problem (Detour into Frequency domain)

Definition (Positive real)

A transfer function H (s) is positive real if
Re(H(s)) >0 forall s € Cy.

The transfer function is strictly positive real (SPR) if
H(s — ¢) is positive real for some £ > 0.

Note that the strictly positive real definition above is
equivalent to the requirement that

Re(H(s)) >0 forall s € Cy.
Example
Consider H(s) =

1
Re(H(s) = Re (75) = Re (57 ) = oo 2.0
)

Consider H(s) = 7. Then

_ o+l—jw _  o+1
=Re ((o‘+1)2+w2) T o2+w? >0

for o > 0. So H(s) is strictly positive real.

Re(H(s))=Re (ﬁ)
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Historical Perspective on the Lur'’e Problem (Detour into Frequency domain)

Definition (Positive real)

A transfer function H (s) is positive real if
Re(H(s)) >0

The transfer function is strictly positive real (SPR) if
H(s — ¢) is positive real for some £ > 0.

forall s € Cy.

Lemma

The transfer function H (s) is strictly positive real if and only
if H(s) is Hurwitz (i.e., has all its poles in the open left-half
complex plane) and

Re(H (jw)) >0, forallw € R.

Note that the strictly positive real definition above is
equivalent to the requirement that

Re(H(s)) >0 forall s € Cy.

Example

Consider H(s) = 1.
Re (737) = Re (%) = aafam 20

) |s positive real.

+1. Then

1 _ o+l—jw _  o+1
(o'+jw+1)_Re ((o‘+1)2+w2) T o24w? >0
for o > 0. So H(s) is strictly positive real.

P. Braun & C.M. Kellett (ANU)

foroc > 0. So H(s
Consider H(s) =

Re(H (s))=Re

Introduction to Nonlinear Control

Lemma (Kalman-Yakubovich-Popov Lemma)
Let
H(s) =c(sI — A)~'b+d

be a transfer function where A € R™*™ js Hurwitz, (A, b) is
controllable, and (A, c) is observable. Then H(s) is strictly
positive real if and only if there exist P € SZ,, a (row)

vector L € R'*"™, a number w € R, and positive constant
e > 0 such that

ATP+PA=—LTL—¢P,
Pob=c" — LTw

2 = 2d.
Ch. 6: Absolute Stability 13/27




Section 3

Sufficient Conditions for Absolute Stability
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Sufficient Conditions for Absolute Stability

Theorem (Absolute stability)

Assume that A is Hurwitz, (A, b, ¢, d) is controllable and
observable, H(s) = c(sI — A)~1b + d is strictly positive
real, and v (t,y) is in the sector [0, 00). Then the origin of
the Lur'e system & = Ax — biy)(t,y) is globally
exponentially stable (i.e., the system is absolutely stable).
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Sufficient Conditions for Absolute Stability

Theorem (Absolute stability)

Assume that A is Hurwitz, (A, b, ¢, d) is controllable and
observable, H(s) = c(sI — A)~1b + d is strictly positive
real, and v (t,y) is in the sector [0, co). Then the origin of
the Lur'e system & = Ax — biy)(t,y) is globally
exponentially stable (i.e., the system is absolutely stable).

Note that:
@ Result is only applicable to systems with A Hurwitz

@ |dea: apply loop transformation to generalize the
result
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Sufficient Conditions for Absolute Stability

Theorem (Absolute stability)

Assume that A is Hurwitz, (A, b, ¢, d) is controllable and
observable, H(s) = c(sI — A)~1b + d is strictly positive
real, and v (t, y) is in the sector [0, c0). Then the origin of
the Lur’e system & = Az — by (¢, y) is globally
exponentially stable (i.e., the system is absolutely stable).

Note that:
@ Result is only applicable to systems with A Hurwitz

@ |dea: apply loop transformation to generalize the
result

If ¥(t, y) satisfies

ay® <yi(ty) < By, a,BER
then ¢ (¢, y) = 1 (t,y) — vy satisfies the sector condition
ay® <yd(ty) <By®  a=a-v,8=B-7 7€ER

Lety € R such that A = A — ~bc is Hurwitz.
The loop transformation satisfies the assumptions of the
Theorem as long as & > 0.

& = Az + b(—yex + yex — P(t, y))

—>

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control

= (A —7be) = b(¥(t,y) —y)
= Az — b"z’(t Y)

&= Az +bu
y=cx
v |e—
7
u=—(t,y) [
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Circle Criterion
Consider the Lur'e system & = Az — by)(t, y) with
ay? <yy(t,y) <By®,  a,BER
Consider the loop transformation
& = Az + b(—vycx 4+ yex — (L, y))
= (A —vbe) = b(¥(t,y) — vy) = Az — bij(t,y)
with 0 <wi(t,y) <By?, v=a, B=B—-a

Lemma

Consider the Lur’e system with (A, b, ¢) controllable and
observable, and transfer function G(s) = c(sI — A)~'b.
The system (A, b, c) is absolutely stable (with respect to
a,BER a< B, Q=R)ifA=A— abcis Hurwitz, and

1
H(s) = LHAGE)
1+ aG(s)
is strictly positive real; i.e., if

Re(H(s)) = Re (%

>>0 forall s€Cy.
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Circle Criterion (2)
1 . . .
———D(0,1)

Definitions: (Disc in the complex plane)
@ centero : R\{0} X Ry¢g = R ——D(1,2)
@ radius r : R\{0} x R0 — R —— L)
@ for a # 0 and 8 > 0 we define 051
_1(1,1 _sign(@) (11
U(a76)_2 (Oé+5), T'(C!,IB)— 2 (O{ 5) /H\
~— 0 L
Then, the disc D(-, -) is defined as ,E
{xEC:x:—%—i—jw,weR}, ifa=0< 8,
D(a,B) = {z €C:|z—o(a,pB)| =r(a,B)}, fO<a<p,
{eC:|z—o(o,B)| =r(a,8)}, ifa<0<§. 0.5 F
Note that
@ for a # 0, D(a, ) defines a disc centered around o (a, 8) with
R . . .
-1 -0.5 0 0.5
Re(z)

radius r(c, 3)
@ for o = 0, D(0, B) defines a vertical line

Ch. 6: Absolute Stability
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Circle Criterion (3), (First Case)

First case (o = 0 < B): H(s) reduces to Lemma

H(s) =14 BG(s) Consider the Lur'e system with (A, b, c) controllable and
Then observable, and transfer function G(s) = c(sI — A)~1b.
The system (A, b, ¢) is absolutely stable (with respect to

® H(s) has the same poles as G/(s) @ BER a< B Q=R)ifA=A— abeis Hurwitz, and

According to the Lemma

@ G(s) (or A) needs to be Hurwitz H(s) = igigig
@ Re(1+ BG(jw)) >0 Vw € R needs to be satisfied
Note that is strictly positive real; i.e., if
@ since 5 > 0, the last item is equivalent to Re(H(s)) = Re (M) >0 forall seC,.
Re(G(jw)) > %, forallw € k. 1+aG(s) )

1

— Do
D(1,2)
— D2y

@ this corresponds to the Nyquist plot of G(jw) being to
the right of the vertical line in the complex plane 05
through —1/8.
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Circle Criterion (3), (First Case)

First case (o = 0 < B): H(s) reduces to Lemma

H(s) =14 BG(s) Consider the Lur'e system with (A, b, ¢) controllable and
Then observable, and transfer function G(s) = c(sI — A)~1b.
The system (A, b, ¢) is absolutely stable (with respect to

® H{(s) has the same poles as G(s) @ BER a< B Q=R)ifA=A— abeis Hurwitz, and

According to the Lemma

@ G(s) (or A) needs to be Hurwitz H(s) = igigig
@ Re(1+ BG(jw)) >0 Vw € R needs to be satisfied L » o
Note that is strictly positive real; i.e., if
@ since 8 > 0, the last item is equivalent to Re(H(s)) = Re (1 + 5G(s)) >0 forall seCy.
1+ aG(s)

Re(G(jw)) > —4, forallw e R.

1

— Do,
D(1,2)
— D2y

@ this corresponds to the Nyquist plot of G(jw) being to
the right of the vertical line in the complex plane 05
through —1/8.

Recall the disc D(:,-) fora =0 < f:

D(a,ﬁ):{we([::cc:—%—i—jw,weR}

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 6: Absolute Stability

18/27




Circle Criterion (4), (Second Case)

. ) " . Then we can rewrite
Second case (0 < o < 3): H(s) is strictly positive real if

1 - .
3 + G(jw) r1ed%1 ;
1 ; B _ 1 _ 71 ,3(01—02)
Re(H(s)) = Re (M) >0 foralweR 0<Re<;+g(jw) Re (r23192) Re(me ' )

14+ aG(jw)
_n _ sin(0) — _rn _
Let ¢ = G(j&) and choose the polar coordinates = 75 Re(cos(fr — 02) +jsin(fh — 02)) = - cos(01 — 62)

r1,72 > 0and 61,02 € (—m, ) so that (01— 62| < 5 _ , _
) . ~ Re(H(s)) > 0V w € R ~ Nyquist plot lies entirely
% +q=r1e? and 1 +q=ryel’2. outside the disc.

Note that:
@ H(s) needs to be Hurwitz
@ Poles: 0 = 1+ aG(jw)

@ the Nyquist plot needs to encircle
the point —1/a. as many times as
there are right-half plane poles of
G(s).

Absolute stability:

The Nyquist plot does not enter the disc D(a, 8
and encircles the disc as many times as

there are right-half plane poles of G(s).

Im(z)
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Circle Criterion (5), (Third Case)

Then we can rewrite
Third case (o« < 0 < B): H(s) is strictly positive real if

1 - .
3 +G(jw) r1elf ;
1 . B _ 1 _ 71 ,5(01—02)
Re(H(s)) = Re (M) >0 forallweR 0>Re<1+G(jw) Re (r23192) Re(me ' )

1+ aG(jw)
_n _ sin(0) — _n _
Let ¢ = G(j&) and choose the polar coordinates = 75 Re(cos(01 — 02) + jsin(61 — 02)) = 7 cos(fr — 02)

r1,r2 > 0and 61,602 € (—m, m) so that v 101 — 02| > 5 . . o
" " ~+ Re(H(s)) > 0V w € R~ Nyquist plot lies entirely inside
%—l—q:rlej 1oand L1 4g=ryelf. the disc.

Note that:

@ Since the Nyquist plot cannot leave
the disc, it cannot encircle the point
-1/«

@ ((s) cannot have any right-half
plane poles, (i.e., G(s) is Hurwitz)

Im(x)

Re(z)

Absolute stability:
The Nyquist plot lies entirely inside the D(«, s D(e, B
disc.

3 =02 — 01
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Circle Criterion (6), (Theorem)

Theorem (Circle Criterion)

Suppose (A, b, ¢) is a minimal realization of G(s) and
Y(t, y) satisfies the sector condition

ay® < y(t,y) < By°
globally. Then the system is absolutely stable if:

@ o =0 < B, the Nyquist plot is to the right of the line
Re(s) = —%, (i.e., to the right of D(0, 8)) and G(s) is
Hurwitz;

@ 0 < a < B, the Nyquist plot does not enter the disk
D(e, B8), and encircles it in the counter-clockwise
direction as many times, N, as there are right-half
plane poles of G(s); or

© o < 0 < B, the Nyquist plot lies in the interior of the
disk D(c, 8), and G(s) is Hurwitz.
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Circle Criterion (6), (Theorem)

Theorem (Circle Criterion) : :
—— Nyquist plot

Suppose (A, b, c) is a minimal realization of G(s) and 051 D(0,10
W (t,y) satisfies the sector condition 10)

oy < yh(t,y) < By?

globally. Then the system is absolutely stable if: I \
@ o =0 < B, the Nyquist plot is to the right of the line /
]

Re(s) = —%, (i.e., to the right of D(0, 8)) and G(s) is

Hurwitz; 057
@ 0 < a < 8, the Nyquist plot does not enter the disk 1 _0‘_5 0 0_‘5

D(a, B), and encircles it in the counter-clockwise Re(G(s))

direction as many times, N, as there are right-half

plane poles of G(s); or o It_em 1 (« =0 and 8 = 10): the Nyquist plot is to the
© o < 0 < B, the Nyquist plot lies in the interior of the right of the line D)(0,10) ~ Gi(s) is absolutely stable

disk D(c, 8), and G(s) is Hurwitz. )

Example: Consider

1
G(s) = ith pole s = —1
(s) ST 1 with pole s

(G(s) is Hurwitz, i.e., three items are potentially applicable.)
Ch. 6: Absolute Stability 21/27
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Circle Criterion (6), (Theorem)

Theorem (Circle Criterion) : :
—— Nyquist plot

Suppose (A, b, ¢) is a minimal realization of G(s) and 051 5 10
(t,y) satisfies the sector condition (1,10) / \

oy < yh(t,y) < By?

globally. Then the system is absolutely stable if:
@ o =0 < B, the Nyquist plot is to the right of the line \\/
Re(s) = —%, (i.e., to the right of D(0, 8)) and G(s) is

Hurwitz; 057
@ 0 < a < B, the Nyquist plot does not enter the disk A 05 0 05 1
D(a, B), and encircles it in the counter-clockwise Re(G(s))
direction as many times, N, as there are right-half
plane poles of G(s); or o It_em 1 (« =0 and 8 = 10): the N_yquist plot is to the
@ o < 0 < B, the Nyquist plot lies in the interior of the right of the line D(0,10) ~ Gi(s) is absolutely stable
disk D(a, 8), and G(s) is Hurwitz. @ Item 2 (a« = 1 and 8 = 10): the Nyquist plot is outside
/ the disc D(1, 10) and encircles it zero times ~~ G(s)

Example: Consider is absolutely stable

1
G(s) = ith pole s = —1
(s) ST 1 with pole s

(G(s) is Hurwitz, i.e., three items are potentially applicable.)
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Circle Criterion (6), (Theorem)

Theorem (Circle Criterion)

Suppose (A, b, c) is a minimal realization of G(s) and
Y(t, y) satisfies the sector condition
ay® < yy(t,y) < By
globally. Then the system is absolutely stable if:
@ o =0 < B, the Nyquist plot is to the right of the line
Re(s) = —%, (i.e., to the right of D(0, 8)) and G(s) is
Hurwitz;

@ 0 < a < B, the Nyquist plot does not enter the disk
D(e, B8), and encircles it in the counter-clockwise
direction as many times, N, as there are right-half
plane poles of G(s); or

© o < 0 < B, the Nyquist plot lies in the interior of the
disk D(c, 8), and G(s) is Hurwitz.

Example: Consider

1 .
with pole s = —1
s+1

(G(s) is Hurwitz, i.e., three items are potentially applicable.)

P. Braun & C.M. Kellett (ANU)

Im(G(s))
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—— Nyquist plot |
05t 5 00 10) /:\
/ \\
C‘ / “\
(] ) \

°l | |
\\\ /
05 v ]
4 95 0 05 1
Re(G(s))

@ ltem 1 (o = 0 and 8 = 10): the Nyquist plot is to the
right of the line D(0,10) ~ G(s) is absolutely stable

@ Item 2 (a« = 1 and 8 = 10): the Nyquist plot is outside
the disc D(1, 10) and encircles it zero times ~~ G(s)
is absolutely stable

@ ltem 3 (o = 1 and B8 = 10): the Nyquist is inside the
disc D(—0.9,10) ~ G(s) is absolutely stable
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Circle Criterion (7), (Examples)

Theorem (Circle Criterion)

Suppose (A, b, ¢) is a minimal realization of G(s) and
1 (t,y) satisfies the sector condition

ay® < yi(t,y) < By?
globally. Then the system is absolutely stable if:
@ o = 0 < B, the Nyquist plot is to the right of the line
Re(s) = -5 (i.e., to the right of D(0, 8)) and G(s) is
Hurwitz;

@ 0 < a < 3, the Nyquist plot does not enter the disk
D(a, B), and encircles it in the counter-clockwise
direction as many times, N, as there are right-half
plane poles of G(s); or

@ o < 0 < B, the Nyquist plot lies in the interior of the
disk D(e, 8), and G(s) is Hurwitz.

P. Braun & C.M. Kellett (ANU)
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Example (Consider G(s) = -27)

0.5 ——Nyquist plot
———D(1.01,100) \
T o c
B x<
-0.5
-1 -0.5 0

Re(G(s))
@ G(s) not Hurwitz; one pole in the right-half plane

@ D(1.01,100) encircles the Nyquist plot exactly once in
the counter-clockwise direction

@ Absolute stability follows (ltem 2)
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Circle Criterion (8), (Examples)

Example
: — Consider the transfer functi
Theorem (Circle Criterion) onsider the ranssei ;’”C ion .
G(s) = =

Suppose (A, b, c) is a minimal realization of G(s) and
Y (t, y) satisfies the sector condition

s2-254+2 (s—1+4+34)(s—1—17)
Two poles in right-half plane ~~ absolute stability (ltem 2)

ay® < yi(t,y) < By’ .
i ) 0.6 | |—Nyquist plot|
globally. Then the system is absolutely stable if: —D(2.5 20)

@ o = 0 < 3, the Nyquist plot is to the right of the line 0.4

Re(s) = —%, (i.e., to the right of D(0, 8)) and G(s) is — 02 ‘

Hurwitz; = \
@ 0 < a < 3, the Nyquist plot does not enter the disk o 0 \\ “J

D(a, B), and encircles it in the counter-clockwise ,E 0.2 [ /f

direction as many times, N, as there are right-half

plane poles of G(s); or 0.4 \ /
@ o < 0 < B, the Nyquist plot lies in the interior of the -0.6

disk D(c, 8), and G(s) is Hurwitz.

7 05 0 0.5
Re(G(s))
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Circle Criterion (9), (Examples)

—— Nyquist plot

——Nyquist plot
—D(~1.5,3.5)

— D(~1,100)
/ N / \\
Consider the transfer function = | \ =z
T o <
1 = \ | = |
) = 5t = E | ) B ]
524+ 25+ 2 /
_ s+1 /
(sl (s+1-5) o
"7 02 0 02 04 06 08 02 0 02 04 06 08
@ G(s) is Hurwitz Re(G(s)) Re(G(s))
@ ltem 3: Absolute stability ' o0t —Nyaquist plot] ||
for (o, B) = (—1.5,3.5) — D(0,1000) |||
and for (a, 8) = (1, 100) Ve 002
but not for = { \ =
(a, B) = (—1.5,100). T o \ J\ S o
@ ltem 1: 3 can be selected = E
arbitrarily large if o = 0. -0.02
-0.5 -0.04 \
-0.2 0 02 04 06 08 -0.05 0 0.05
Re(G(s)) Re(G(s))
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Popov Criterion

Theorem (Popov Criterion)

Suppose A is Hurwitz, (A, b) is controllable, (A, c) is
observable, and 1) (y) satisfies the sector condition

0 < yh(y) < By° (1)

for all y € R. Then the Lur’e system with
G(s) = c(sI — A)~'b is absolutely stable if there is an
n > 0 with —% not an eigenvalue of A such that

H(s) =14 (14 ns)BG(s)

is strictly positive real.
If 1) only satisfies the sector condition (1) fory € Q C R,
then the system is absolutely stable with a finite domain.

Note that:
@ ((s) needs to be Hurwitz
@ a=0

@ ¢ is memoryless, i.e., ¥(t,y) = ¥(y)

Proof.
Assume there exists n > 0 such that —% is not an
eigenvalue of A and H(s) is strictly positive real. Then
H(s) =14 (1+ns)BG(s)
=1+nBch+c(BI +nBA) (sI — A)~'b
=d+é(sI—A)~1b

where d = 1 + nBcb and é = ¢ (BI + nBA).
The condition on —% ensures that ¢ # 0 whenever ¢ # 0.

Since H (s) is strictly positive real by assumption there
exist P > 0, L, € and w satisfying the KYP-equations.
Consider the candidate Lyapunov function

V(z) = 2T Pz + 21 /y Y(r)dr.
0

It can be shown that
V(z) < —ezT Pz.

which shows absolute stability of the system. |
v



Popov Criterion

Theorem (Popov Criterion)

Suppose A is Hurwitz, (A, b) is controllable, (A, c) is
observable, and +)(y) satisfies the sector condition

0 < yy(y) < By®
for all y € R. Then the Lur’e system with
G(s) = c(sI — A)~1b is absolutely stable if there is an
n > 0 with —% not an eigenvalue of A such that
H(s) =1+ (1+ns)BG(s)
is strictly positive real.

Development of a graphical interpretation:

@ Recall: H(s) is strictly positive real if and only if H(s)

is Hurwitz and
Re(1+ (14 jnw)BG(jw)) >0 forallw € R.

@ H(s) has the same poles as G(s) since —1/n is not
an eigenvalue of A.

P. Braun & C.M. Kellett (ANU)
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G(jw) € C can be written as v + jé = G(jw) for
v,8 € Rforallw € R. Then

Re(1+8G (jw) + jnwBG(jw))
=Re(1+ (v +56) + jnwB(y + 59))
=Re(1 + By — nwps + j(B5 + nwpv))
=14 By —nwps
=14 8 Re(G(jw)) — nwp Im(G(jw)).
Hence, Re(H (jw)) > 0V w € R is equivalent to
£ + Re(G(jw)) — nw Im(G(jw)) > 0.
If we plot Re(G(jw)) versus w Im(G(jw)), the above

inequality defines a half space on the right side of the
line through —% of slope %

Define the line
LB,n)={zeC:z= (—%-&—j%)w, w € R}

dependingon 8 > 0andn > 0.

@ We refer to a plot of w Im(G(jw) versus Re(G(jw))

including the line L(8,n) as a Popov plot.
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Popov Criterion

Example (Consider G(s) = =)
@ G(s) is Hurwitz, i.e., the Popov Criterion is applicable.

@ Absolute stability can be concluded for the sector
defined through o = 0 and 8 = 100.

2

—(Re(G(jw)) wIn(G(jw)))
~L(100,0.5)

-

w Im(G(jw))
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@ G(jw) € Ccan be written as v + jé = G(jw) for
v,6 € Rforallw € R. Then

Re(1+8G(jw) + jnwBG(jw))
= Re(1 + B(y + j6) + jnwB(vy + jo))
= Re(1 + By — nwBd + j (B + nwB))
=1+ By —nwps
=1+ Re(G(jw)) — nwp Im(G(jw)).
@ Hence, Re(H (jw)) > 0V w € Ris equivalent to
£ + Re(G(jw)) — nw Im(G(jw)) > 0.

@ If we plot Re(G(jw)) versus wIm(G(jw)), the above
inequality defines a half space on the right side of the
line through — 7 of slope %

@ Define the line
LB ={reC:z=(~%+j;)w, weR}
dependingon 8 > 0 and n > 0.

@ We refer to a plot of w Im(G(jw) versus Re(G(jw))
including the line L(8,n) as a Popov plot.

Ch. 6: Absolute Stability 26/27



Popov Criterion

Example (Consider G(s) = 757)

@ Two (complex) poles in the open left-half plane.

@ Absolute stability can be concluded for different
values of 8 (and a = 0)
0.5

——(Re(G(w) eI ()
- L(10,0.5)
_ 0
T 05
E
3
E
15
-1.5 -1 -0.5 0 0.5 1 1.5
Re(G(jw))
05
— (Re(G(w))wIm(G))
L(1000,1)
3
T 05
E
3 .

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

@ G(jw) € Ccan be written as v + j§ = G(jw) for
v,0 € Rforallw € R. Then

Re(1+8G(jw) + jnwBG(jw))
= Re(1 + B(y + j0) + jnwB(y + jo))
=Re(l + By — nwpd + j(BS + nwpy))
=14 By —nwps
=1+ Re(G(jw)) — nwp Im(G(jw)).
@ Hence, Re(H(jw)) > 0V w € R is equivalent to
£ + Re(G(jw)) — nw Im(G(jw)) > 0.

@ If we plot Re(G(jw)) versus wIm(G(jw)), the above
inequality defines a half space on the right side of the
line through —% of slope %

@ Define the line
LB,m)={zeCiz=(-5+jl)w, weR}
dependingon 8 > 0andn > 0.

@ We refer to a plot of w Im(G(jw) versus Re(G(jw))
including the line L(8,n) as a Popov plot.
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Circle versus Popov Criterion

The Popov Criterion

@ Can be extended to the multi-input multi-output
The Circle Criterion: settings, but appears to require more structure in the

@ The single-input single-output case discussed here interconnection structure of the input-output behavior

can be extended to multi-input multi-output systems. and types of nonlinearities that can be
accommodated.
@ The Circle Criterion allows for time-varying

nonlinearities.
@ Checkable conditions for o # 0 derived from @ Reasonable to assume G(s) that is Hurwitz and take
«a = 0 (due to the factor)

@ Only applicable to time-invariant nonlinearities.

%G(S)A @ If n =0 and o = 0 the Circle Criterion and the Popov
1+ aG(s) Criterion are equivalent.
@ If n = 0 and o = 0 the Circle Criterion and the Popov @ The freedom to choose n > 0 can provide a less
Criterion are equivalent. conservative results.

@ The assumption G(s) Hurwitz and o = 0 can be
accomplished through an appropriate loop transform.

Note that: The Circle Criterion and the Popov Criterion define sufficient conditions.
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