Introduction to Nonlinear Control

Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett School of Engineering, Australian National University, Canberra, Australia

Part I:

Chapter 6: Absolute Stability 6.1 A Commonly Ignored Design Issue 6.2 Historical Perspective on the Lur'e Problem 6.3 Sufficient Conditions for Absolute Stability

Absolute Stability

1 A Commonly Ignored Design Issue

2 Historical Perspective on the Lur'e Problem

Sufficient Conditions for Absolute Stability

- Circle Criterion
- Popov Criterion
- Circle versus Popov Criterion

Section 1

A Commonly Ignored Design Issue

A Commonly Ignored Design Issue

Linear system: ($A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^{n \times 1}$, $c \in \mathbb{R}^{1 \times n}$)

$$\dot{x} = Ax + bu, \qquad y = cx,$$

Feedback interconnection: u = -ky $\dot{x} = (A - bkc)x,$

A Commonly Ignored Design Issue

Linear system: ($A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^{n \times 1}$, $c \in \mathbb{R}^{1 \times n}$)

$$\dot{x} = Ax + bu, \qquad y = cx,$$

Feedback interconnection: u = -ky $\dot{x} = (A - bkc)x,$

A Commonly Ignored Design Issue (2, Example: Pendulum)

Consider:

• Linearization of the inverted pendulum in the upright position

$$A = \begin{bmatrix} 0 & 1\\ 9.81 & -0.1 \end{bmatrix}, \quad b = \begin{bmatrix} 0\\ 1 \end{bmatrix} \quad c = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

(for given parameters)

• We know that the closed loop system $\dot{x} = A - bkc$, k = 10 is asymptotically stable (i.e., A - bkc is Hurwitz)

A Commonly Ignored Design Issue (2, Example: Pendulum)

Consider:

• Linearization of the inverted pendulum in the upright position

$$A = \begin{bmatrix} 0 & 1 \\ 9.81 & -0.1 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad c = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

(for given parameters)

• We know that the closed loop system $\dot{x} = A - bkc$, k = 10 is asymptotically stable (i.e., A - bkc is Hurwitz)

However:

- Any motor used to drive the cart has limited power $u \in [u_{lb}, u_{ub}], u_{lb}, u_{ub} \in \mathbb{R}.$
- Hence,

$$\psi(e) = \begin{cases} u_{lb}, & \text{for } e \leq u_{lb}, \\ e, & \text{for } u_{lb} \leq e \leq u_{ub}, \\ u_{ub}, & \text{for } e \geq u_{ub}, \end{cases}$$

(where e(t) = v(t) - ky(t) denotes the error variable)

• Question: Is the origin of $\dot{x} = Ax - b\psi(kcx)$ asymptotically stable?

A Commonly Ignored Design Issue (3, Saturations)

Input saturation block diagram:

The saturation function sat : $\mathbb{R} \to [-1, 1]$:

$$\operatorname{sat}(y) = \begin{cases} -1, & \text{for } y \le -1, \\ y, & \text{for } -1 \le y \le 1, \\ 1, & \text{for } y \ge 1. \end{cases}$$

• From the normalized function a specific saturation can be obtained through an appropriate scaling and translation.

A Commonly Ignored Design Issue (4, Example: A servo-valve)

• The linear dynamics are defined through the matrices

$$\begin{split} A &= \left[\begin{array}{cc} 0 & 1 \\ 0 & -\frac{B}{M} \end{array} \right], \quad b = \left[\begin{array}{cc} 0 \\ 1 \end{array} \right], \quad c = \left[\begin{array}{cc} K \\ M \end{array} 0 \right], \\ \text{where} \quad K &= a \frac{\frac{\partial g}{\partial x}}{\frac{\partial g}{\partial P}} \quad \text{and} \quad B &= f + \frac{a^2}{\frac{\partial g}{\partial P}}. \end{split}$$

• Here, g(x, P) denotes the flow, *a* the area of the piston, *P* the pressure, and *f* the viscous friction.

A Commonly Ignored Design Issue (4, Example: A servo-valve)

- Raising the spool allows an inflow of pressure
- Simultaneously pressure drop via the upper return so that the piston will rise
- Note the overlap near the openings

• The linear dynamics are defined through the matrices

$$\begin{split} A &= \left[\begin{array}{cc} 0 & 1 \\ 0 & -\frac{B}{M} \end{array} \right], \quad b = \left[\begin{array}{cc} 0 \\ 1 \end{array} \right], \quad c = \left[\begin{array}{cc} K \\ M \end{array} 0 \right], \\ \end{split}$$
 where $K &= a \frac{\frac{\partial g}{\partial x}}{\frac{\partial g}{\partial P}} \quad \text{and} \quad B = f + \frac{a^2}{\frac{\partial g}{\partial P}}. \end{split}$

• Here, g(x, P) denotes the flow, *a* the area of the piston, *P* the pressure, and *f* the viscous friction.

A Commonly Ignored Design Issue (4, Example: A servo-valve)

- Raising the spool allows an inflow of pressure
- Simultaneously pressure drop via the upper return so that the piston will rise
- Note the overlap near the openings

• The linear dynamics are defined through the matrices

$$\begin{split} A &= \left[\begin{array}{cc} 0 & 1 \\ 0 & -\frac{B}{M} \end{array} \right], \quad b = \left[\begin{array}{cc} 0 \\ 1 \end{array} \right], \quad c = \left[\begin{array}{cc} K \\ M \end{array} 0 \right], \\ \end{split}$$
 where $K &= a \frac{\frac{\partial g}{\partial x}}{\frac{\partial g}{\partial P}} \quad \text{and} \quad B = f + \frac{a^2}{\frac{\partial g}{\partial P}}. \end{split}$

• Here, g(x, P) denotes the flow, a the area of the piston, P the pressure, and f the viscous friction.

Deadzone $dz : \mathbb{R} \to \mathbb{R}$:

d

$$\mathbf{z}(y) = \begin{cases} y+1, & \text{for } y \leq -1, \\ 0, & \text{for } -1 \leq y \leq 1, \\ y-1, & \text{for } y \geq 1. \end{cases}$$

Consider the feedback interconnection:

Lur'e problem:

• Which conditions on the functions $\psi : \mathbb{R}_{\geq 0} \times \mathbb{R} \to \mathbb{R}$ guarantee asymptotic stability of the origin?

Note that:

- The nonlinearity can be time-dependent
- We assume that the reference signal v(t) is zero.
- While we focus on the SISO case, many results can be extended to the MIMO case.

Consider the feedback interconnection:

Lur'e problem:

• Which conditions on the functions $\psi : \mathbb{R}_{\geq 0} \times \mathbb{R} \to \mathbb{R}$ guarantee asymptotic stability of the origin?

Note that:

- The nonlinearity can be time-dependent
- We assume that the reference signal v(t) is zero.
- While we focus on the SISO case, many results can be extended to the MIMO case.

Definition (Sector condition)

Let $\alpha, \beta \in \mathbb{R}, \alpha < \beta$, and $\Omega \subset \mathbb{R}$. A nonlinearity $\psi : \mathbb{R}_{>0} \times \mathbb{R} \to \mathbb{R}$ satisfies a sector condition if

$$\alpha y^2 \leq y \psi(t,y) \leq \beta y^2$$

for all $t \ge 0$ and for all $y \in \Omega$. For $\Omega = \mathbb{R}$ we say that the sector condition is satisfied globally.

Common nonlinearities: sign : $\mathbb{R} \to \mathbb{R}$,

$$\operatorname{sat}(y) = \begin{cases} -1, & \text{for } y \leq -1, \\ y, & \text{for } -1 \leq y \leq 1, \\ 1, & \text{for } y \geq 1. \end{cases}$$
$$\operatorname{dz}(y) = \begin{cases} y+1, & \text{for } y \leq -1, \\ 0, & \text{for } -1 \leq y \leq 1, \\ y-1, & \text{for } y \geq 1. \end{cases}$$
$$\operatorname{sign}(y) = \begin{cases} -1, & \text{for } y < 0, \\ 0, & \text{for } y = 0, \\ 1, & \text{for } y > 0, \end{cases}$$

Question:

• Which nonlinearity satisfies a sector condition?

Definition (Sector condition)

Let $\alpha, \beta \in \mathbb{R}, \alpha < \beta$, and $\Omega \subset \mathbb{R}$. A nonlinearity $\psi : \mathbb{R}_{>0} \times \mathbb{R} \to \mathbb{R}$ satisfies a sector condition if

$$\alpha y^2 \leq y \psi(t,y) \leq \beta y^2$$

for all $t \ge 0$ and for all $y \in \Omega$. For $\Omega = \mathbb{R}$ we say that the sector condition is satisfied globally.

Definition (Sector condition)

Let $\alpha, \beta \in \mathbb{R}, \alpha < \beta$, and $\Omega \subset \mathbb{R}$. A nonlinearity $\psi : \mathbb{R}_{>0} \times \mathbb{R} \to \mathbb{R}$ satisfies a sector condition if

 $\alpha y^2 \le y \psi(t,y) \le \beta y^2$

for all $t \ge 0$ and for all $y \in \Omega$. For $\Omega = \mathbb{R}$ we say that the sector condition is satisfied globally.

Definition (Absolute stability)

Let $\alpha, \beta \in \mathbb{R}, \alpha < \beta$, and $\Omega \subset \mathbb{R}$. The Lur'e system

 $\dot{x} = Ax - b\psi(t, y)$

is called absolutely stable (with respect to α, β, Ω) if the origin is asymptotically stable for all $\psi : \mathbb{R}_{\geq 0} \times \mathbb{R} \to \mathbb{R}$ satisfying the sector condition for all $t \geq 0$ and for all $y_0 \in \Omega$.

Conjecture (Aizerman's Conjecture (1949))

Let $\alpha, \beta \in \mathbb{R}, \alpha < \beta$, and suppose the origin of the linear system $\dot{x} = Ax + bu$, y = cx is globally asymptotically stable for all linear feedbacks

 $u = -\psi(y) = -ky, \quad k \in [\alpha, \beta].$

Then the origin is globally asymptotically stable for all nonlinear feedbacks in the sector

$$\alpha \le \frac{\psi(y)}{y} \le \beta, \quad y \ne 0.$$

→ Conjecture was shown to be wrong through counterexamples.

Conjecture (Kalman's Conjecture (1957))

Let $\alpha, \beta \in \mathbb{R}, \alpha < \beta$, and suppose the origin of the linear system $\dot{x} = Ax + bu$, y = cx is globally asymptotically stable for all linear feedbacks

$$u=-\psi(y)=-ky,\quad k\in[\alpha,\beta].$$

Then the origin is globally asymptotically stable for all nonlinear feedbacks belonging to the incremental sector

$$\alpha \leq \frac{\partial}{\partial y}\psi(y) \leq \beta.$$

→ Conjecture was shown to be wrong through counterexamples.

Section 2

Historical Perspective on the Lur'e Problem

Definition (Positive real)

A transfer function H(s) is positive real if

 $\operatorname{Re}(H(s)) \ge 0$ for all $s \in \overline{\mathbb{C}}_+$.

The transfer function is strictly positive real (SPR) if $H(s - \varepsilon)$ is positive real for some $\varepsilon > 0$.

Note that the strictly positive real definition above is equivalent to the requirement that

 $\operatorname{Re}(H(s)) > 0$ for all $s \in \overline{\mathbb{C}}_+$.

Definition (Positive real)

A transfer function H(s) is positive real if

 $\operatorname{Re}(H(s)) \ge 0$ for all $s \in \overline{\mathbb{C}}_+$.

The transfer function is strictly positive real (SPR) if $H(s-\varepsilon)$ is positive real for some $\varepsilon > 0$.

Note that the strictly positive real definition above is equivalent to the requirement that

 $\operatorname{Re}(H(s)) > 0$ for all $s \in \overline{\mathbb{C}}_+$.

Example

Consider $H(s) = \frac{1}{s}$. Then $\operatorname{Re}(H(s)) = \operatorname{Re}\left(\frac{1}{\sigma+j\omega}\right) = \operatorname{Re}\left(\frac{\sigma-j\omega}{\sigma^2+\omega^2}\right) = \frac{\sigma}{\sigma^2+\omega^2} \ge 0$ for $\sigma \ge 0$. So H(s) is positive real. Consider $H(s) = \frac{1}{s+1}$. Then $\operatorname{Re}(H(s)) = \operatorname{Re}\left(\frac{1}{\sigma+j\omega+1}\right) = \operatorname{Re}\left(\frac{\sigma+1-j\omega}{(\sigma+1)^2+\omega^2}\right) = \frac{\sigma+1}{\sigma^2+\omega^2} > 0$ for $\sigma > 0$. So H(s) is strictly positive real.

P. Braun & C.M. Kellett (ANU)

Historical Perspective on the Lur'e Problem (Detour into Frequency domain)

Definition (Positive real)

A transfer function H(s) is positive real if

 $\operatorname{Re}(H(s)) \ge 0$ for all $s \in \overline{\mathbb{C}}_+$.

The transfer function is strictly positive real (SPR) if $H(s-\varepsilon)$ is positive real for some $\varepsilon>0$.

Note that the strictly positive real definition above is equivalent to the requirement that

 $\operatorname{Re}(H(s)) > 0$ for all $s \in \overline{\mathbb{C}}_+$.

Example

Consider $H(s) = \frac{1}{s}$. Then $\operatorname{Re}(H(s)) = \operatorname{Re}\left(\frac{1}{\sigma+j\omega}\right) = \operatorname{Re}\left(\frac{\sigma-j\omega}{\sigma^2+\omega^2}\right) = \frac{\sigma}{\sigma^2+\omega^2} \ge 0$ for $\sigma \ge 0$. So H(s) is positive real. Consider $H(s) = \frac{1}{s+1}$. Then $\operatorname{Re}(H(s)) = \operatorname{Re}\left(\frac{1}{\sigma+j\omega+1}\right) = \operatorname{Re}\left(\frac{\sigma+1-j\omega}{(\sigma+1)^2+\omega^2}\right) = \frac{\sigma+1}{\sigma^2+\omega^2} > 0$ for $\sigma > 0$. So H(s) is strictly positive real.

P. Braun & C.M. Kellett (ANU)

Lemma

The transfer function H(s) is strictly positive real if and only if H(s) is Hurwitz (i.e., has all its poles in the open left-half complex plane) and

 $\operatorname{Re}(H(j\omega)) > 0$, for all $\omega \in \mathbb{R}$.

Lemma (Kalman-Yakubovich-Popov Lemma)

Let

$$H(s) = c(sI - A)^{-1}b + d$$

be a transfer function where $A \in \mathbb{R}^{n \times n}$ is Hurwitz, (A, b) is controllable, and (A, c) is observable. Then H(s) is strictly positive real if and only if there exist $P \in S_{>0}^n$, a (row) vector $L \in \mathbb{R}^{1 \times n}$, a number $w \in \mathbb{R}$, and positive constant $\varepsilon > 0$ such that

$$A^{T}P + PA = -L^{T}L - \varepsilon P,$$
$$Pb = c^{T} - L^{T}w,$$
$$w^{2} = 2d.$$

Section 3

Sufficient Conditions for Absolute Stability

Sufficient Conditions for Absolute Stability

Theorem (Absolute stability)

Assume that A is Hurwitz, (A, b, c, d) is controllable and observable, $H(s) = c(sI - A)^{-1}b + d$ is strictly positive real, and $\psi(t, y)$ is in the sector $[0, \infty)$. Then the origin of the Lur'e system $\dot{x} = Ax - b\psi(t, y)$ is globally exponentially stable (i.e., the system is absolutely stable).

Sufficient Conditions for Absolute Stability

Theorem (Absolute stability)

Assume that A is Hurwitz, (A, b, c, d) is controllable and observable, $H(s) = c(sI - A)^{-1}b + d$ is strictly positive real, and $\psi(t, y)$ is in the sector $[0, \infty)$. Then the origin of the Lur'e system $\dot{x} = Ax - b\psi(t, y)$ is globally exponentially stable (i.e., the system is absolutely stable).

Note that:

- Result is only applicable to systems with A Hurwitz
- Idea: apply loop transformation to generalize the result

Sufficient Conditions for Absolute Stability

Theorem (Absolute stability)

Assume that A is Hurwitz, (A, b, c, d) is controllable and observable, $H(s) = c(sI - A)^{-1}b + d$ is strictly positive real, and $\psi(t, y)$ is in the sector $[0, \infty)$. Then the origin of the Lur'e system $\dot{x} = Ax - b\psi(t, y)$ is globally exponentially stable (i.e., the system is absolutely stable).

Note that:

- Result is only applicable to systems with A Hurwitz
- Idea: apply loop transformation to generalize the result

If $\psi(t,y)$ satisfies

 $\alpha y^2 \leq y \psi(t,y) \leq \beta y^2, \qquad \alpha,\beta \in \mathbb{R}$

then $\hat{\psi}(t,y) = \psi(t,y) - \gamma y$ satisfies the sector condition

 $\hat{\alpha}y^2 \leq y\hat{\psi}(t,y) \leq \hat{\beta}y^2$ $\hat{\alpha} = \alpha - \gamma, \hat{\beta} = \beta - \gamma, \quad \gamma \in \mathbb{R}$

Let $\gamma \in \mathbb{R}$ such that $\hat{A} = A - \gamma bc$ is Hurwitz. The loop transformation satisfies the assumptions of the Theorem as long as $\hat{\alpha} > 0$.

Circle Criterion

Consider the Lur'e system $\dot{x} = Ax - b\psi(t, y)$ with

$$\alpha y^2 \leq y \psi(t,y) \leq \beta y^2, \qquad \alpha,\beta \in \mathbb{R}$$

Consider the loop transformation

$$\begin{split} \dot{x} &= Ax + b(-\gamma cx + \gamma cx - \psi(t,y)) \\ &= (A - \gamma bc) - b(\psi(t,y) - \gamma y) = \hat{A}x - b\hat{\psi}(t,y) \end{split}$$

 $\text{with} \quad 0 \leq y \hat{\psi}(t,y) \leq \hat{\beta} y^2, \qquad \gamma = \alpha, \quad \hat{\beta} \doteq \beta - \alpha$

Lemma

Consider the Lur'e system with (A, b, c) controllable and observable, and transfer function $G(s) = c(sI - A)^{-1}b$. The system (A, b, c) is absolutely stable (with respect to $\alpha, \beta \in \mathbb{R}, \alpha < \beta, \Omega = \mathbb{R}$) if $\hat{A} = A - \alpha bc$ is Hurwitz, and

$$H(s) = \frac{1 + \beta G(s)}{1 + \alpha G(s)}$$

is strictly positive real; i.e., if

$$\operatorname{Re}(H(s)) = \operatorname{Re}\left(\frac{1+\beta G(s)}{1+\alpha G(s)}\right) > 0 \quad \text{ for all } \quad s \in \overline{\mathbb{C}}_+.$$

Circle Criterion (2)

Definitions: (Disc in the complex plane)

- center $\sigma : \mathbb{R} \setminus \{0\} \times \mathbb{R}_{>0} \to \mathbb{R}$
- radius $r : \mathbb{R} \setminus \{0\} \times \mathbb{R}_{>0} \to \mathbb{R}$
- for $\alpha \neq 0$ and $\beta > 0$ we define

$$\sigma(\alpha,\beta) = \frac{1}{2} \left(\frac{1}{\alpha} + \frac{1}{\beta} \right), \quad r(\alpha,\beta) = \frac{\operatorname{sign}(\alpha)}{2} \left(\frac{1}{\alpha} - \frac{1}{\beta} \right)$$

Then, the disc $D(\cdot, \cdot)$ is defined as

$$D(\alpha,\beta) = \begin{cases} \{x \in \mathbb{C} : x = -\frac{1}{\beta} + j\omega, \omega \in \mathbb{R}\}, & \text{ if } \alpha = 0 < \beta, \\ \{x \in \mathbb{C} : |x - \sigma(\alpha,\beta)| = r(\alpha,\beta)\}, & \text{ if } 0 < \alpha < \beta, \\ \{x \in \mathbb{C} : |x - \sigma(\alpha,\beta)| = r(\alpha,\beta)\}, & \text{ if } \alpha < 0 < \beta. \end{cases}$$

Note that

- for $\alpha \neq 0$, $D(\alpha, \beta)$ defines a disc centered around $\sigma(\alpha, \beta)$ with radius $r(\alpha, \beta)$
- for $\alpha = 0$, $D(0, \beta)$ defines a vertical line

Circle Criterion (3), (First Case)

First case ($\alpha = 0 < \beta$): H(s) reduces to

 $H(s) = 1 + \beta G(s)$

Then

• H(s) has the same poles as G(s)

According to the Lemma

- G(s) (or A) needs to be Hurwitz
- $\operatorname{Re}(1+\beta G(j\omega))>0 \ \forall \ \omega \in \mathbb{R}$ needs to be satisfied Note that
 - since $\beta > 0$, the last item is equivalent to

 $\operatorname{Re}(G(j\omega)) > -\frac{1}{\beta}, \quad \text{for all } \omega \in \mathbb{R}.$

• this corresponds to the Nyquist plot of $G(j\omega)$ being to the right of the vertical line in the complex plane through $-1/\beta$.

Lemma

Consider the Lur'e system with (A, b, c) controllable and observable, and transfer function $G(s) = c(sI - A)^{-1}b$. The system (A, b, c) is absolutely stable (with respect to $\alpha, \beta \in \mathbb{R}, \alpha < \beta, \Omega = \mathbb{R}$) if $\hat{A} = A - \alpha bc$ is Hurwitz, and

$$H(s) = \frac{1 + \beta G(s)}{1 + \alpha G(s)}$$

is strictly positive real; i.e., if

$$\operatorname{Re}(H(s)) = \operatorname{Re}\left(\frac{1+\beta G(s)}{1+\alpha G(s)}\right) > 0 \quad \text{ for all } \quad s \in \overline{\mathbb{C}}_+.$$

Circle Criterion (3), (First Case)

First case ($\alpha = 0 < \beta$): H(s) reduces to

 $H(s) = 1 + \beta G(s)$

Then

- H(s) has the same poles as G(s)
- According to the Lemma
 - G(s) (or A) needs to be Hurwitz
- $\operatorname{Re}(1+\beta G(j\omega))>0 \ \forall \ \omega\in\mathbb{R}$ needs to be satisfied Note that
 - since $\beta > 0$, the last item is equivalent to

 $\operatorname{Re}(G(j\omega)) > -\frac{1}{\beta}, \quad \text{for all } \omega \in \mathbb{R}.$

• this corresponds to the Nyquist plot of $G(j\omega)$ being to the right of the vertical line in the complex plane through $-1/\beta$.

Recall the disc $D(\cdot, \cdot)$ for $\alpha = 0 < \beta$:

$$D(\alpha,\beta)=\{x\in\mathbb{C}:x=-\tfrac{1}{\beta}+j\omega,\omega\in\mathbb{R}\}$$

Lemma

Consider the Lur'e system with (A, b, c) controllable and observable, and transfer function $G(s) = c(sI - A)^{-1}b$. The system (A, b, c) is absolutely stable (with respect to $\alpha, \beta \in \mathbb{R}, \alpha < \beta, \Omega = \mathbb{R}$) if $\hat{A} = A - \alpha bc$ is Hurwitz, and

$$H(s) = \frac{1 + \beta G(s)}{1 + \alpha G(s)}$$

is strictly positive real; i.e., if

$$\operatorname{Re}(H(s)) = \operatorname{Re}\left(\frac{1+\beta G(s)}{1+\alpha G(s)}\right) > 0 \quad \text{ for all } \quad s \in \overline{\mathbb{C}}_+.$$

Circle Criterion (4), (Second Case)

Second case $(0 < \alpha < \beta)$: H(s) is strictly positive real if

$$\operatorname{Re}(H(s)) = \operatorname{Re}\left(rac{1+eta G(j\omega)}{1+lpha G(j\omega)}
ight) > 0 \quad ext{for all } \omega \in \mathbb{R}$$

Let $q = G(j\hat{\omega})$ and choose the polar coordinates

$$\begin{split} r_1,r_2 > 0 \text{ and } \theta_1,\theta_2 \in (-\pi,\pi) \text{ so that} \\ \frac{1}{\beta} + q = r_1 e^{j\theta_1} \quad \text{and} \quad \frac{1}{\alpha} + q = r_2 e^{j\theta_2}. \end{split}$$

Then we can rewrite

$$0 < \operatorname{Re}\left(\frac{\frac{1}{\beta} + G(j\omega)}{\frac{1}{\alpha} + G(j\omega)}\right) = \operatorname{Re}\left(\frac{r_1 e^{j\theta_1}}{r_2 e^{j\theta_2}}\right) = \operatorname{Re}\left(\frac{r_1}{r_2} e^{j(\theta_1 - \theta_2)}\right)$$
$$= \frac{r_1}{r_2} \operatorname{Re}(\cos(\theta_1 - \theta_2) + j\sin(\theta_1 - \theta_2)) = \frac{r_1}{r_2} \cos(\theta_1 - \theta_2)$$
$$\rightsquigarrow |\theta_1 - \theta_2| < \frac{\pi}{2}$$
$$\rightsquigarrow \operatorname{Re}(H(s)) > 0 \forall \omega \in \mathbb{R} \rightsquigarrow \text{Nyquist plot lies entirely}$$
outside the disc.

Note that:

- *H*(*s*) needs to be Hurwitz
- Poles: $0 = 1 + \alpha G(j\omega)$
- the Nyquist plot needs to encircle the point $-1/\alpha$ as many times as there are right-half plane poles of G(s).

Absolute stability:

The Nyquist plot does not enter the disc and encircles the disc as many times as there are right-half plane poles of G(s).

P. Braun & C.M. Kellett (ANU)

19/27

Circle Criterion (5), (Third Case)

Third case ($\alpha < 0 < \beta$): H(s) is strictly positive real if

$$\operatorname{Re}(H(s)) = \operatorname{Re}\left(\frac{1+\beta G(j\omega)}{1+\alpha G(j\omega)}\right) > 0 \quad \text{for all } \omega \in \mathbb{R}$$

Let $q=G(j\hat{\omega})$ and choose the polar coordinates

$$\begin{split} r_1,r_2 > 0 \text{ and } \theta_1,\theta_2 \in (-\pi,\pi) \text{ so that} \\ \frac{1}{\beta} + q = r_1 e^{j\theta_1} \quad \text{and} \quad \frac{1}{\alpha} + q = r_2 e^{j\theta_2}. \end{split}$$

Then we can rewrite

the disc.

$$\begin{split} 0 > \operatorname{Re}\left(\frac{\frac{1}{\beta} + G(j\omega)}{\frac{1}{\alpha} + G(j\omega)}\right) &= \operatorname{Re}\left(\frac{r_1e^{j\theta_1}}{r_2e^{j\theta_2}}\right) = \operatorname{Re}\left(\frac{r_1}{r_2}e^{j(\theta_1 - \theta_2)}\right) \\ &= \frac{r_1}{r_2}\operatorname{Re}(\cos(\theta_1 - \theta_2) + j\sin(\theta_1 - \theta_2)) = \frac{r_1}{r_2}\cos(\theta_1 - \theta_2) \\ & \rightsquigarrow |\theta_1 - \theta_2| > \frac{\pi}{2} \\ & \rightsquigarrow \operatorname{Re}(H(s)) > 0 \ \forall \ \omega \in \mathbb{R} \rightsquigarrow \text{Nyquist plot lies entirely inside} \end{split}$$

Note that:

- Since the Nyquist plot cannot leave the disc, it cannot encircle the point $-1/\alpha$
- *G*(*s*) cannot have any right-half plane poles, (i.e., *G*(*s*) is Hurwitz)

Absolute stability:

The Nyquist plot lies entirely inside the disc.

Theorem (Circle Criterion)

Suppose (A,b,c) is a minimal realization of G(s) and $\psi(t,y)$ satisfies the sector condition

 $\alpha y^2 \leq y \psi(t,y) \leq \beta y^2$

globally. Then the system is absolutely stable if:

- $\alpha = 0 < \beta$, the Nyquist plot is to the right of the line $\operatorname{Re}(s) = -\frac{1}{\beta}$, (i.e., to the right of $D(0,\beta)$) and G(s) is Hurwitz;
- 2 0 < α < β, the Nyquist plot does not enter the disk D(α, β), and encircles it in the counter-clockwise direction as many times, N, as there are right-half plane poles of G(s); or
- α < 0 < β, the Nyquist plot lies in the interior of the disk D(α, β), and G(s) is Hurwitz.

Theorem (Circle Criterion)

Suppose (A,b,c) is a minimal realization of G(s) and $\psi(t,y)$ satisfies the sector condition

 $\alpha y^2 \leq y \psi(t,y) \leq \beta y^2$

globally. Then the system is absolutely stable if:

- $\alpha = 0 < \beta$, the Nyquist plot is to the right of the line $\operatorname{Re}(s) = -\frac{1}{\beta}$, (i.e., to the right of $D(0,\beta)$) and G(s) is Hurwitz;
- 2 0 < α < β, the Nyquist plot does not enter the disk D(α, β), and encircles it in the counter-clockwise direction as many times, N, as there are right-half plane poles of G(s); or
- α < 0 < β, the Nyquist plot lies in the interior of the disk D(α, β), and G(s) is Hurwitz.

Example: Consider

$$G(s) = \frac{1}{s+1}$$
 with pole $s = -1$

(G(s) is Hurwitz, i.e., three items are potentially applicable.)

• Item 1 ($\alpha = 0$ and $\beta = 10$): the Nyquist plot is to the right of the line $D(0, 10) \rightsquigarrow G(s)$ is absolutely stable

Theorem (Circle Criterion)

Suppose (A,b,c) is a minimal realization of G(s) and $\psi(t,y)$ satisfies the sector condition

 $\alpha y^2 \leq y \psi(t,y) \leq \beta y^2$

globally. Then the system is absolutely stable if:

- $\alpha = 0 < \beta$, the Nyquist plot is to the right of the line $\operatorname{Re}(s) = -\frac{1}{\beta}$, (i.e., to the right of $D(0,\beta)$) and G(s) is Hurwitz;
- 2 0 < α < β, the Nyquist plot does not enter the disk D(α, β), and encircles it in the counter-clockwise direction as many times, N, as there are right-half plane poles of G(s); or

Example: Consider

$$G(s) = \frac{1}{s+1}$$
 with pole $s = -1$

(G(s) is Hurwitz, i.e., three items are potentially applicable.)

- Item 1 ($\alpha = 0$ and $\beta = 10$): the Nyquist plot is to the right of the line $D(0, 10) \rightsquigarrow G(s)$ is absolutely stable
- Item 2 ($\alpha = 1$ and $\beta = 10$): the Nyquist plot is outside the disc D(1, 10) and encircles it zero times $\rightsquigarrow G(s)$ is absolutely stable

Theorem (Circle Criterion)

Suppose (A,b,c) is a minimal realization of G(s) and $\psi(t,y)$ satisfies the sector condition

 $\alpha y^2 \leq y \psi(t,y) \leq \beta y^2$

globally. Then the system is absolutely stable if:

- $\alpha = 0 < \beta$, the Nyquist plot is to the right of the line $\operatorname{Re}(s) = -\frac{1}{\beta}$, (i.e., to the right of $D(0,\beta)$) and G(s) is Hurwitz;
- 2 0 < α < β, the Nyquist plot does not enter the disk D(α, β), and encircles it in the counter-clockwise direction as many times, N, as there are right-half plane poles of G(s); or

Example: Consider

$$G(s) = \frac{1}{s+1}$$
 with pole $s = -1$

(G(s) is Hurwitz, i.e., three items are potentially applicable.)

- Item 1 ($\alpha = 0$ and $\beta = 10$): the Nyquist plot is to the right of the line $D(0, 10) \rightsquigarrow G(s)$ is absolutely stable
- Item 2 ($\alpha = 1$ and $\beta = 10$): the Nyquist plot is outside the disc D(1, 10) and encircles it zero times $\rightsquigarrow G(s)$ is absolutely stable
- Item 3 ($\alpha = 1$ and $\beta = 10$): the Nyquist is inside the disc $D(-0.9, 10) \rightsquigarrow G(s)$ is absolutely stable

Theorem (Circle Criterion)

Suppose (A,b,c) is a minimal realization of G(s) and $\psi(t,y)$ satisfies the sector condition

 $\alpha y^2 \leq y \psi(t,y) \leq \beta y^2$

globally. Then the system is absolutely stable if:

- $\alpha = 0 < \beta$, the Nyquist plot is to the right of the line $\operatorname{Re}(s) = -\frac{1}{\beta}$, (i.e., to the right of $D(0,\beta)$) and G(s) is Hurwitz;
- 2 0 < α < β, the Nyquist plot does not enter the disk D(α, β), and encircles it in the counter-clockwise direction as many times, N, as there are right-half plane poles of G(s); or

 α < 0 < β, the Nyquist plot lies in the interior of the disk D(α, β), and G(s) is Hurwitz.

Example (Consider $G(s) = \frac{1}{s-1}$)

- G(s) not Hurwitz; one pole in the right-half plane
- $\bullet \ D(1.01,100)$ encircles the Nyquist plot exactly once in the counter-clockwise direction
- Absolute stability follows (Item 2)

Theorem (Circle Criterion)

Suppose (A, b, c) is a minimal realization of G(s) and $\psi(t, y)$ satisfies the sector condition

 $\alpha y^2 \leq y \psi(t,y) \leq \beta y^2$

globally. Then the system is absolutely stable if:

- $\alpha = 0 < \beta$, the Nyquist plot is to the right of the line $\operatorname{Re}(s) = -\frac{1}{\beta}$, (i.e., to the right of $D(0,\beta)$) and G(s) is Hurwitz;
- O < α < β, the Nyquist plot does not enter the disk D(α, β), and encircles it in the counter-clockwise direction as many times, N, as there are right-half plane poles of G(s); or

Example

Consider the transfer function

$$G(s) = \frac{s+1}{s^2 - 2s + 2} = \frac{s+1}{(s-1+j)(s-1-j)}$$

Two poles in right-half plane \rightsquigarrow absolute stability (Item 2)

Circle Criterion (9), (Examples)

Consider the transfer function

$$\begin{split} G(s) &= \frac{s+1}{s^2+2s+2} \\ &= \frac{s+1}{(s+1+j)(s+1-j)}. \end{split}$$

- G(s) is Hurwitz
- Item 3: Absolute stability for $(\alpha, \beta) = (-1.5, 3.5)$ and for $(\alpha, \beta) = (-1, 100)$ but not for $(\alpha, \beta) = (-1.5, 100).$
- Item 1: β can be selected arbitrarily large if $\alpha = 0$.

Theorem (Popov Criterion)

Suppose A is Hurwitz, (A, b) is controllable, (A, c) is observable, and $\psi(y)$ satisfies the sector condition

$$0 \le y\psi(y) \le \beta y^2 \tag{1}$$

for all $y \in \mathbb{R}$. Then the Lur'e system with $G(s) = c(sI - A)^{-1}b$ is absolutely stable if there is an $\eta \geq 0$ with $-\frac{1}{\eta}$ not an eigenvalue of A such that

 $H(s) = 1 + (1 + \eta s)\beta G(s)$

is strictly positive real.

If ψ only satisfies the sector condition (1) for $y \in \Omega \subset \mathbb{R}$, then the system is absolutely stable with a finite domain.

Note that:

- G(s) needs to be Hurwitz
- $\alpha = 0$
- ψ is memoryless, i.e., $\psi(t, y) = \psi(y)$

Proof.

Assume there exists $\eta \ge 0$ such that $-\frac{1}{\eta}$ is not an eigenvalue of A and H(s) is strictly positive real. Then

$$\begin{split} H(s) &= 1 + (1 + \eta s)\beta G(s) \\ &= 1 + \eta\beta cb + c \left(\beta I + \eta\beta A\right)(sI - A)^{-1}b \\ &= d + \hat{c}(sI - A)^{-1}b \end{split}$$

where $d = 1 + \eta\beta cb$ and $\hat{c} = c (\beta I + \eta\beta A)$. The condition on $-\frac{1}{\eta}$ ensures that $\hat{c} \neq 0$ whenever $c \neq 0$. Since H(s) is strictly positive real by assumption there exist P > 0, L, ε and w satisfying the KYP-equations. Consider the candidate Lyapunov function

$$V(x) = x^T P x + 2\eta\beta \int_0^y \psi(r) dr.$$

It can be shown that

$$\dot{V}(x) \le -\varepsilon x^T P x.$$

which shows absolute stability of the system.

Theorem (Popov Criterion)

Suppose A is Hurwitz, (A, b) is controllable, (A, c) is observable, and $\psi(y)$ satisfies the sector condition

$$0 \le y\psi(y) \le \beta y^2$$

for all $y \in \mathbb{R}$. Then the Lur'e system with $G(s) = c(sI - A)^{-1}b$ is absolutely stable if there is an $\eta \ge 0$ with $-\frac{1}{n}$ not an eigenvalue of A such that

$$H(s) = 1 + (1 + \eta s)\beta G(s)$$

is strictly positive real.

Development of a graphical interpretation:

 $\bullet \;$ Recall: H(s) is strictly positive real if and only if H(s) is Hurwitz and

 $\operatorname{Re}(1+(1+j\eta\omega)\beta G(j\omega))>0\quad \text{ for all }\omega\in\mathbb{R}.$

• H(s) has the same poles as G(s) since $-1/\eta$ is not an eigenvalue of A.

• $G(j\omega) \in \mathbb{C}$ can be written as $\gamma + j\delta = G(j\omega)$ for $\gamma, \delta \in \mathbb{R}$ for all $\omega \in \mathbb{R}$. Then

$$\begin{aligned} \operatorname{Re}(1 + \beta G(j\omega) + j\eta\omega\beta G(j\omega)) \\ &= \operatorname{Re}(1 + \beta(\gamma + j\delta) + j\eta\omega\beta(\gamma + j\delta)) \\ &= \operatorname{Re}(1 + \beta\gamma - \eta\omega\beta\delta + j(\beta\delta + \eta\omega\beta\gamma)) \\ &= 1 + \beta\gamma - \eta\omega\beta\delta \\ &= 1 + \beta\operatorname{Re}(G(j\omega)) - \eta\omega\beta\operatorname{Im}(G(j\omega)). \end{aligned}$$

- Hence, $\operatorname{Re}(H(j\omega)) > 0 \ \forall \ \omega \in \mathbb{R}$ is equivalent to $\frac{1}{\beta} + \operatorname{Re}(G(j\omega)) - \eta \omega \operatorname{Im}(G(j\omega)) > 0.$
- If we plot $\operatorname{Re}(G(j\omega))$ versus $\omega \operatorname{Im}(G(j\omega))$, the above inequality defines a half space on the right side of the line through $-\frac{1}{\beta}$ of slope $\frac{1}{\eta}$.
- Define the line

 $L(\beta,\eta)=\{x\in\mathbb{C}:x=(-\tfrac{1}{\beta}+j\tfrac{1}{\eta})w,\;w\in\mathbb{R}\}$

depending on $\beta > 0$ and $\eta \ge 0$.

• We refer to a plot of $\omega \operatorname{Im}(G(j\omega) \text{ versus } \operatorname{Re}(G(j\omega))$ including the line $L(\beta, \eta)$ as a *Popov plot*.

Example (Consider $G(s) = \frac{1}{s+1}$)

- G(s) is Hurwitz, i.e., the Popov Criterion is applicable.
- Absolute stability can be concluded for the sector defined through $\alpha = 0$ and $\beta = 100$.

• $G(j\omega) \in \mathbb{C}$ can be written as $\gamma + j\delta = G(j\omega)$ for $\gamma, \delta \in \mathbb{R}$ for all $\omega \in \mathbb{R}$. Then

$$\begin{aligned} \operatorname{Re}(1 + \beta G(j\omega) + j\eta\omega\beta G(j\omega)) \\ &= \operatorname{Re}(1 + \beta(\gamma + j\delta) + j\eta\omega\beta(\gamma + j\delta)) \\ &= \operatorname{Re}(1 + \beta\gamma - \eta\omega\beta\delta + j(\beta\delta + \eta\omega\beta\gamma)) \\ &= 1 + \beta\gamma - \eta\omega\beta\delta \\ &= 1 + \beta\operatorname{Re}(G(j\omega)) - \eta\omega\beta\operatorname{Im}(G(j\omega)). \end{aligned}$$

- Hence, $\operatorname{Re}(H(j\omega)) > 0 \ \forall \ \omega \in \mathbb{R}$ is equivalent to $\frac{1}{\beta} + \operatorname{Re}(G(j\omega)) - \eta \omega \operatorname{Im}(G(j\omega)) > 0.$
- If we plot $\operatorname{Re}(G(j\omega))$ versus $\omega \operatorname{Im}(G(j\omega))$, the above inequality defines a half space on the right side of the line through $-\frac{1}{\beta}$ of slope $\frac{1}{\eta}$.
- Define the line

 $L(\beta,\eta) = \{ x \in \mathbb{C} : x = \left(-\frac{1}{\beta} + j\frac{1}{\eta} \right) w, \ w \in \mathbb{R} \}$

depending on $\beta > 0$ and $\eta \ge 0$.

• We refer to a plot of $\omega \operatorname{Im}(G(j\omega))$ versus $\operatorname{Re}(G(j\omega))$ including the line $L(\beta, \eta)$ as a *Popov plot*.

Example (Consider $G(s) = \frac{1}{s^2+s+1}$)

- Two (complex) poles in the open left-half plane.
- Absolute stability can be concluded for different values of β (and $\alpha = 0$)

• $G(j\omega) \in \mathbb{C}$ can be written as $\gamma + j\delta = G(j\omega)$ for $\gamma, \delta \in \mathbb{R}$ for all $\omega \in \mathbb{R}$. Then

$$\begin{aligned} \operatorname{Re}(1+\beta G(j\omega)+j\eta\omega\beta G(j\omega))\\ &=\operatorname{Re}(1+\beta(\gamma+j\delta)+j\eta\omega\beta(\gamma+j\delta))\\ &=\operatorname{Re}(1+\beta\gamma-\eta\omega\beta\delta+j(\beta\delta+\eta\omega\beta\gamma))\\ &=1+\beta\gamma-\eta\omega\beta\delta\\ &=1+\beta\operatorname{Re}(G(j\omega))-\eta\omega\beta\operatorname{Im}(G(j\omega)). \end{aligned}$$

- Hence, $\operatorname{Re}(H(j\omega)) > 0 \ \forall \ \omega \in \mathbb{R}$ is equivalent to $\frac{1}{\beta} + \operatorname{Re}(G(j\omega)) - \eta \omega \operatorname{Im}(G(j\omega)) > 0.$
- If we plot $\operatorname{Re}(G(j\omega))$ versus $\omega \operatorname{Im}(G(j\omega))$, the above inequality defines a half space on the right side of the line through $-\frac{1}{\beta}$ of slope $\frac{1}{\eta}$.
- Define the line

 $L(\beta,\eta)=\{x\in\mathbb{C}:x=(-\tfrac{1}{\beta}+j\tfrac{1}{\eta})w,\;w\in\mathbb{R}\}$

depending on $\beta > 0$ and $\eta \ge 0$.

• We refer to a plot of $\omega \operatorname{Im}(G(j\omega))$ versus $\operatorname{Re}(G(j\omega))$ including the line $L(\beta, \eta)$ as a *Popov plot*.

P. Braun & C.M. Kellett (ANU)

Circle versus Popov Criterion

The Circle Criterion:

- The single-input single-output case discussed here, can be extended to multi-input multi-output systems.
- The Circle Criterion allows for time-varying nonlinearities.
- Checkable conditions for $\alpha \neq 0$ derived from

$$\frac{1+\beta G(s)}{1+\alpha G(s)}.$$

• If $\eta = 0$ and $\alpha = 0$ the Circle Criterion and the Popov Criterion are equivalent.

The Popov Criterion

- Can be extended to the multi-input multi-output settings, but appears to require more structure in the interconnection structure of the input-output behavior and types of nonlinearities that can be accommodated.
- Only applicable to time-invariant nonlinearities.
- Reasonable to assume G(s) that is Hurwitz and take $\alpha = 0$ (due to the factor)
- If $\eta = 0$ and $\alpha = 0$ the Circle Criterion and the Popov Criterion are equivalent.
- The freedom to choose $\eta \ge 0$ can provide a less conservative results.
- The assumption G(s) Hurwitz and $\alpha = 0$ can be accomplished through an appropriate loop transform.

Note that: The Circle Criterion and the Popov Criterion define sufficient conditions.

Introduction to Nonlinear Control

Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett School of Engineering, Australian National University, Canberra, Australia

Part I:

Chapter 6: Absolute Stability 6.1 A Commonly Ignored Design Issue 6.2 Historical Perspective on the Lur'e Problem 6.3 Sufficient Conditions for Absolute Stability

