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A Commonly Ignored Design Issue

Linear system: (A ∈ Rn×n, b ∈ Rn×1, c ∈ R1×n)

ẋ = Ax+ bu, y = cx,

Feedback interconnection: u = −ky

ẋ = (A− bkc)x,

+
ẋ = Ax+ bu
y = cx

−k

v(t) u(t) y(t)

+ ψ(·) ẋ = Ax+ bu
y = cx

−k

v(t) u(t) y(t)

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 6: Absolute Stability 4 / 27



A Commonly Ignored Design Issue

Linear system: (A ∈ Rn×n, b ∈ Rn×1, c ∈ R1×n)
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A Commonly Ignored Design Issue (2, Example: Pendulum)

Consider:
Linearization of the inverted pendulum in the upright
position

A =

[
0 1

9.81 −0.1

]
, b =

[
0
1

]
c =

[
1 0

]
(for given parameters)

We know that the closed loop system ẋ = A− bkc,
k = 10 is asymptotically stable (i.e., A− bkc is
Hurwitz)

However:
Any motor used to drive the cart has limited power
u ∈ [ulb, uub], ulb, uub ∈ R.

Hence,

ψ(e) =

 ulb, for e ≤ ulb,
e, for ulb ≤ e ≤ uub,

uub, for e ≥ uub,

(where e(t) = v(t)− ky(t) denotes the error variable)

Question: Is the origin of ẋ = Ax− bψ(kcx)
asymptotically stable?

+ ψ(·) ẋ = Ax+ bu
y = cx

−k

v(t) u(t) y(t)
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A Commonly Ignored Design Issue (3, Saturations)

Input saturation block diagram:

ẋ = Ax+ bu
y = cx

ũ(t) u(t) y(t)

The saturation function sat : R → [−1, 1]:

sat(y) =

 −1, for y ≤ −1,
y, for − 1 ≤ y ≤ 1,
1, for y ≥ 1.

From the normalized function a specific saturation can be obtained
through an appropriate scaling and translation.
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A Commonly Ignored Design Issue (4, Example: A servo-valve)

Piston

M , f y(t)Load

Spool position ũ(t)

return
Upper

Pressure
source

Lower
return

Raising the spool allows an inflow of pressure

Simultaneously pressure drop via the upper
return so that the piston will rise

Note the overlap near the openings

The linear dynamics are defined through the matrices

A =

[
0 1

0 − B
M

]
, b =

[
0
1

]
, c =

[
K
M

0
]
,

where K = a

∂g
∂x
∂g
∂P

and B = f +
a2

∂g
∂P

.

Here, g(x, P ) denotes the flow, a the area of the piston, P
the pressure, and f the viscous friction.

Deadzone dz : R → R:

dz(y) =

 y + 1, for y ≤ −1,
0, for − 1 ≤ y ≤ 1,

y − 1, for y ≥ 1.
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return
Upper

Pressure
source

Lower
return

Raising the spool allows an inflow of pressure

Simultaneously pressure drop via the upper
return so that the piston will rise

Note the overlap near the openings

The linear dynamics are defined through the matrices

A =

[
0 1

0 − B
M

]
, b =

[
0
1

]
, c =

[
K
M

0
]
,

where K = a

∂g
∂x
∂g
∂P

and B = f +
a2

∂g
∂P

.

Here, g(x, P ) denotes the flow, a the area of the piston, P
the pressure, and f the viscous friction.
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A Commonly Ignored Design Issue (5, The Lur’e Problem)

Consider the feedback interconnection:

ẋ = Ax+ bu
y = cx

u = −ψ(t, y)

Lur’e problem:
Which conditions on the functions ψ : R≥0 × R → R
guarantee asymptotic stability of the origin?

Note that:
The nonlinearity can be time-dependent

We assume that the reference signal v(t) is zero.

While we focus on the SISO case, many results can
be extended to the MIMO case.

Definition (Sector condition)
Let α, β ∈ R, α < β, and Ω ⊂ R. A nonlinearity
ψ : R≥0 × R → R satisfies a sector condition if

αy2 ≤ yψ(t, y) ≤ βy2

for all t ≥ 0 and for all y ∈ Ω. For Ω = R we say that the
sector condition is satisfied globally.

ψ(t, y)

y

αy

βy
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A Commonly Ignored Design Issue (6, The Sector Condition)

Common nonlinearities: sign : R → R,

sat(y) =

 −1, for y ≤ −1,
y, for − 1 ≤ y ≤ 1,
1, for y ≥ 1.

dz(y) =

 y + 1, for y ≤ −1,
0, for − 1 ≤ y ≤ 1,

y − 1, for y ≥ 1.

sign(y) =

 −1, for y < 0,
0, for y = 0,
1, for y > 0,

Question:
Which nonlinearity satisfies a sector condition?

Definition (Sector condition)
Let α, β ∈ R, α < β, and Ω ⊂ R. A nonlinearity
ψ : R≥0 × R → R satisfies a sector condition if

αy2 ≤ yψ(t, y) ≤ βy2

for all t ≥ 0 and for all y ∈ Ω. For Ω = R we say that the
sector condition is satisfied globally.

ψ(t, y)

y

αy

βy
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A Commonly Ignored Design Issue (7, Absolute Stability)

Definition (Sector condition)
Let α, β ∈ R, α < β, and Ω ⊂ R. A nonlinearity
ψ : R≥0 × R → R satisfies a sector condition if

αy2 ≤ yψ(t, y) ≤ βy2

for all t ≥ 0 and for all y ∈ Ω. For Ω = R we say that the
sector condition is satisfied globally.

Definition (Absolute stability)
Let α, β ∈ R, α < β, and Ω ⊂ R. The Lur’e system

ẋ = Ax− bψ(t, y)

is called absolutely stable (with respect to α, β,Ω) if the
origin is asymptotically stable for all ψ : R≥0 × R → R
satisfying the sector condition for all t ≥ 0 and for all
y0 ∈ Ω.
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Historical Perspective on the Lur’e Problem

Conjecture (Aizerman’s Conjecture (1949))
Let α, β ∈ R, α < β, and suppose the origin of the linear
system ẋ = Ax+ bu, y = cx is globally asymptotically
stable for all linear feedbacks

u = −ψ(y) = −ky, k ∈ [α, β].

Then the origin is globally asymptotically stable for all
nonlinear feedbacks in the sector

α ≤
ψ(y)

y
≤ β, y ̸= 0.

⇝ Conjecture was shown to be wrong through
counterexamples.

Conjecture (Kalman’s Conjecture (1957))
Let α, β ∈ R, α < β, and suppose the origin of the linear
system ẋ = Ax+ bu, y = cx is globally asymptotically
stable for all linear feedbacks

u = −ψ(y) = −ky, k ∈ [α, β].

Then the origin is globally asymptotically stable for all
nonlinear feedbacks belonging to the incremental sector

α ≤ ∂
∂y
ψ(y) ≤ β.

⇝ Conjecture was shown to be wrong through
counterexamples.
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Section 2

Historical Perspective on the Lur’e Problem
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Historical Perspective on the Lur’e Problem (Detour into Frequency domain)

Definition (Positive real)

A transfer function H(s) is positive real if

Re(H(s)) ≥ 0 for all s ∈ C+.

The transfer function is strictly positive real (SPR) if
H(s− ε) is positive real for some ε > 0.

Note that the strictly positive real definition above is
equivalent to the requirement that

Re(H(s)) > 0 for all s ∈ C+.

Example

Consider H(s) = 1
s

. Then

Re(H(s)) = Re
(

1
σ+jω

)
= Re

(
σ−jω
σ2+ω2

)
= σ

σ2+ω2 ≥ 0

for σ ≥ 0. So H(s) is positive real.
Consider H(s) = 1

s+1
. Then

Re(H(s))=Re
(

1
σ+jω+1

)
=Re

(
σ+1−jω

(σ+1)2+ω2

)
= σ+1

σ2+ω2 > 0

for σ ≥ 0. So H(s) is strictly positive real.

Lemma
The transfer function H(s) is strictly positive real if and only
if H(s) is Hurwitz (i.e., has all its poles in the open left-half
complex plane) and

Re(H(jω)) > 0, for all ω ∈ R.

Lemma (Kalman-Yakubovich-Popov Lemma)
Let

H(s) = c(sI −A)−1b+ d

be a transfer function where A ∈ Rn×n is Hurwitz, (A, b) is
controllable, and (A, c) is observable. Then H(s) is strictly
positive real if and only if there exist P ∈ Sn

>0, a (row)
vector L ∈ R1×n, a number w ∈ R, and positive constant
ε > 0 such that

ATP + PA = −LTL− εP,

Pb = cT − LTw,

w2 = 2d.
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Sufficient Conditions for Absolute Stability
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Sufficient Conditions for Absolute Stability

Theorem (Absolute stability)
Assume that A is Hurwitz, (A, b, c, d) is controllable and
observable, H(s) = c(sI −A)−1b+ d is strictly positive
real, and ψ(t, y) is in the sector [0,∞). Then the origin of
the Lur’e system ẋ = Ax− bψ(t, y) is globally
exponentially stable (i.e., the system is absolutely stable).

Note that:
Result is only applicable to systems with A Hurwitz

Idea: apply loop transformation to generalize the
result

If ψ(t, y) satisfies

αy2 ≤ yψ(t, y) ≤ βy2, α, β ∈ R

then ψ̂(t, y) = ψ(t, y)− γy satisfies the sector condition

α̂y2 ≤ yψ̂(t, y) ≤ β̂y2 α̂ = α− γ, β̂ = β − γ, γ ∈ R

Let γ ∈ R such that Â = A− γbc is Hurwitz.
The loop transformation satisfies the assumptions of the
Theorem as long as α̂ > 0.

ẋ = Ax+ b(−γcx+ γcx− ψ(t, y))

= (A− γbc)− b(ψ(t, y)− γy)

= Âx− bψ̂(t, y)

+
ẋ = Ax+ bu
y = cx

−γ

γ

u = −ψ(t, y)+
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Circle Criterion
Consider the Lur’e system ẋ = Ax− bψ(t, y) with

αy2 ≤ yψ(t, y) ≤ βy2, α, β ∈ R

Consider the loop transformation

ẋ = Ax+ b(−γcx+ γcx− ψ(t, y))

= (A− γbc)− b(ψ(t, y)− γy) = Âx− bψ̂(t, y)

with 0 ≤ yψ̂(t, y) ≤ β̂y2, γ = α, β̂
.
= β − α

Lemma
Consider the Lur’e system with (A, b, c) controllable and
observable, and transfer function G(s) = c(sI −A)−1b.
The system (A, b, c) is absolutely stable (with respect to
α, β ∈ R, α < β, Ω = R) if Â = A− αbc is Hurwitz, and

H(s) =
1 + βG(s)

1 + αG(s)

is strictly positive real; i.e., if

Re(H(s)) = Re

(
1 + βG(s)

1 + αG(s)

)
> 0 for all s ∈ C+.
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Circle Criterion (2)

Definitions: (Disc in the complex plane)
center σ : R\{0} × R>0 → R
radius r : R\{0} × R>0 → R
for α ̸= 0 and β > 0 we define

σ(α, β) =
1

2

(
1

α
+

1

β

)
, r(α, β) =

sign(α)

2

(
1

α
−

1

β

)
Then, the disc D(·, ·) is defined as

D(α, β) =

{x ∈ C : x = − 1
β
+ jω, ω ∈ R}, if α = 0 < β,

{x ∈ C : |x− σ(α, β)| = r(α, β)}, if 0 < α < β,
{x ∈ C : |x− σ(α, β)| = r(α, β)}, if α < 0 < β.

Note that
for α ̸= 0, D(α, β) defines a disc centered around σ(α, β) with
radius r(α, β)

for α = 0, D(0, β) defines a vertical line
-1 -0.5 0 0.5

-1

-0.5

0

0.5

1
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Circle Criterion (3), (First Case)

First case (α = 0 < β): H(s) reduces to

H(s) = 1 + βG(s)

Then
H(s) has the same poles as G(s)

According to the Lemma
G(s) (or A) needs to be Hurwitz

Re(1 + βG(jω)) > 0 ∀ ω ∈ R needs to be satisfied
Note that

since β > 0, the last item is equivalent to

Re(G(jω)) > − 1
β
, for all ω ∈ R.

this corresponds to the Nyquist plot of G(jω) being to
the right of the vertical line in the complex plane
through −1/β.

Recall the disc D(·, ·) for α = 0 < β:

D(α, β) = {x ∈ C : x = − 1
β
+ jω, ω ∈ R}

Lemma
Consider the Lur’e system with (A, b, c) controllable and
observable, and transfer function G(s) = c(sI −A)−1b.
The system (A, b, c) is absolutely stable (with respect to
α, β ∈ R, α < β, Ω = R) if Â = A− αbc is Hurwitz, and

H(s) =
1 + βG(s)

1 + αG(s)
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(
1 + βG(s)

1 + αG(s)

)
> 0 for all s ∈ C+.
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Circle Criterion (3), (First Case)
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β
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β
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Circle Criterion (4), (Second Case)

Second case (0 < α < β): H(s) is strictly positive real if

Re(H(s)) = Re

(
1 + βG(jω)

1 + αG(jω)

)
> 0 for all ω ∈ R

Let q = G(jω̂) and choose the polar coordinates

r1, r2 > 0 and θ1, θ2 ∈ (−π, π) so that
1
β
+ q = r1e

jθ1 and 1
α
+ q = r2e

jθ2 .

Then we can rewrite

0 < Re

( 1
β
+G(jω)

1
α
+G(jω)

)
= Re

(
r1ejθ1

r2ejθ2

)
= Re

(
r1
r2
ej(θ1−θ2)

)
= r1

r2
Re(cos(θ1 − θ2) + j sin(θ1 − θ2)) =

r1
r2

cos(θ1 − θ2)

⇝ |θ1 − θ2| < π
2

⇝ Re(H(s)) > 0 ∀ ω ∈ R ⇝ Nyquist plot lies entirely
outside the disc.

Note that:
H(s) needs to be Hurwitz

Poles: 0 = 1 + αG(jω)

the Nyquist plot needs to encircle
the point −1/α as many times as
there are right-half plane poles of
G(s).

Absolute stability:
The Nyquist plot does not enter the disc
and encircles the disc as many times as
there are right-half plane poles of G(s).

q

q

Im(x) Im(x)

Re(x)Re(x)− 1
α

− 1
β

− 1
α

− 1
β

θ2 θ1
θ2 θ1

θ3

θ3

θ3 = θ1 − θ2

θ3 = θ2 − θ1

D(α, β) D(α, β)
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Circle Criterion (5), (Third Case)

Third case (α < 0 < β): H(s) is strictly positive real if

Re(H(s)) = Re

(
1 + βG(jω)

1 + αG(jω)

)
> 0 for all ω ∈ R

Let q = G(jω̂) and choose the polar coordinates

r1, r2 > 0 and θ1, θ2 ∈ (−π, π) so that
1
β
+ q = r1e

jθ1 and 1
α
+ q = r2e

jθ2 .

Then we can rewrite

0 > Re

( 1
β
+G(jω)

1
α
+G(jω)

)
= Re

(
r1ejθ1

r2ejθ2

)
= Re

(
r1
r2
ej(θ1−θ2)

)
= r1

r2
Re(cos(θ1 − θ2) + j sin(θ1 − θ2)) =

r1
r2

cos(θ1 − θ2)

⇝ |θ1 − θ2| > π
2

⇝ Re(H(s)) > 0 ∀ ω ∈ R⇝ Nyquist plot lies entirely inside
the disc.

Note that:
Since the Nyquist plot cannot leave
the disc, it cannot encircle the point
−1/α

G(s) cannot have any right-half
plane poles, (i.e., G(s) is Hurwitz)

Absolute stability:
The Nyquist plot lies entirely inside the
disc.

q

q

Im(x) Im(x)

Re(x)Re(x)− 1
α

− 1
β

− 1
α

− 1
β

θ2 θ1
θ2 θ1

θ3

θ3

θ3 = θ1 − θ2

θ3 = θ2 − θ1

D(α, β) D(α, β)
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Circle Criterion (6), (Theorem)

Theorem (Circle Criterion)
Suppose (A, b, c) is a minimal realization of G(s) and
ψ(t, y) satisfies the sector condition

αy2 ≤ yψ(t, y) ≤ βy2

globally. Then the system is absolutely stable if:
1 α = 0 < β, the Nyquist plot is to the right of the line

Re(s) = − 1
β

, (i.e., to the right of D(0, β)) and G(s) is
Hurwitz;

2 0 < α < β, the Nyquist plot does not enter the disk
D(α, β), and encircles it in the counter-clockwise
direction as many times, N , as there are right-half
plane poles of G(s); or

3 α < 0 < β, the Nyquist plot lies in the interior of the
disk D(α, β), and G(s) is Hurwitz.

Example: Consider

G(s) =
1

s+ 1
with pole s = −1

(G(s) is Hurwitz, i.e., three items are potentially applicable.)

Item 1 (α = 0 and β = 10): the Nyquist plot is to the
right of the line D(0, 10)⇝ G(s) is absolutely stable

Item 2 (α = 1 and β = 10): the Nyquist plot is outside
the disc D(1, 10) and encircles it zero times⇝ G(s)
is absolutely stable

Item 3 (α = 1 and β = 10): the Nyquist is inside the
disc D(−0.9, 10)⇝ G(s) is absolutely stable
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Circle Criterion (7), (Examples)

Theorem (Circle Criterion)
Suppose (A, b, c) is a minimal realization of G(s) and
ψ(t, y) satisfies the sector condition

αy2 ≤ yψ(t, y) ≤ βy2

globally. Then the system is absolutely stable if:
1 α = 0 < β, the Nyquist plot is to the right of the line

Re(s) = − 1
β

, (i.e., to the right of D(0, β)) and G(s) is
Hurwitz;

2 0 < α < β, the Nyquist plot does not enter the disk
D(α, β), and encircles it in the counter-clockwise
direction as many times, N , as there are right-half
plane poles of G(s); or

3 α < 0 < β, the Nyquist plot lies in the interior of the
disk D(α, β), and G(s) is Hurwitz.

Example (Consider G(s) = 1
s−1 )
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G(s) not Hurwitz; one pole in the right-half plane

D(1.01, 100) encircles the Nyquist plot exactly once in
the counter-clockwise direction

Absolute stability follows (Item 2)
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Circle Criterion (8), (Examples)

Theorem (Circle Criterion)
Suppose (A, b, c) is a minimal realization of G(s) and
ψ(t, y) satisfies the sector condition

αy2 ≤ yψ(t, y) ≤ βy2

globally. Then the system is absolutely stable if:
1 α = 0 < β, the Nyquist plot is to the right of the line

Re(s) = − 1
β

, (i.e., to the right of D(0, β)) and G(s) is
Hurwitz;

2 0 < α < β, the Nyquist plot does not enter the disk
D(α, β), and encircles it in the counter-clockwise
direction as many times, N , as there are right-half
plane poles of G(s); or

3 α < 0 < β, the Nyquist plot lies in the interior of the
disk D(α, β), and G(s) is Hurwitz.

Example
Consider the transfer function

G(s) =
s+ 1

s2 − 2s+ 2
=

s+ 1

(s− 1 + j)(s− 1− j)

Two poles in right-half plane⇝ absolute stability (Item 2)
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Circle Criterion (9), (Examples)

Consider the transfer function

G(s) =
s+ 1

s2 + 2s+ 2

=
s+ 1

(s+ 1 + j)(s+ 1− j)
.

G(s) is Hurwitz

Item 3: Absolute stability
for (α, β) = (−1.5, 3.5)
and for (α, β) = (−1, 100)
but not for
(α, β) = (−1.5, 100).

Item 1: β can be selected
arbitrarily large if α = 0.
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Popov Criterion

Theorem (Popov Criterion)
Suppose A is Hurwitz, (A, b) is controllable, (A, c) is
observable, and ψ(y) satisfies the sector condition

0 ≤ yψ(y) ≤ βy2 (1)

for all y ∈ R. Then the Lur’e system with
G(s) = c(sI −A)−1b is absolutely stable if there is an
η ≥ 0 with − 1

η
not an eigenvalue of A such that

H(s) = 1 + (1 + ηs)βG(s)

is strictly positive real.
If ψ only satisfies the sector condition (1) for y ∈ Ω ⊂ R,
then the system is absolutely stable with a finite domain.

Note that:
G(s) needs to be Hurwitz

α = 0

ψ is memoryless, i.e., ψ(t, y) = ψ(y)

Proof.
Assume there exists η ≥ 0 such that − 1

η
is not an

eigenvalue of A and H(s) is strictly positive real. Then

H(s) = 1 + (1 + ηs)βG(s)

= 1 + ηβcb+ c (βI + ηβA) (sI −A)−1b

= d+ ĉ(sI −A)−1b

where d = 1 + ηβcb and ĉ = c (βI + ηβA).
The condition on − 1

η
ensures that ĉ ̸= 0 whenever c ̸= 0.

Since H(s) is strictly positive real by assumption there
exist P > 0, L, ε and w satisfying the KYP-equations.
Consider the candidate Lyapunov function

V (x) = xTPx+ 2ηβ

∫ y

0
ψ(r)dr.

It can be shown that

V̇ (x) ≤ −εxTPx.

which shows absolute stability of the system.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 6: Absolute Stability 25 / 27



Popov Criterion

Theorem (Popov Criterion)
Suppose A is Hurwitz, (A, b) is controllable, (A, c) is
observable, and ψ(y) satisfies the sector condition

0 ≤ yψ(y) ≤ βy2

for all y ∈ R. Then the Lur’e system with
G(s) = c(sI −A)−1b is absolutely stable if there is an
η ≥ 0 with − 1

η
not an eigenvalue of A such that

H(s) = 1 + (1 + ηs)βG(s)

is strictly positive real.

Development of a graphical interpretation:
Recall: H(s) is strictly positive real if and only if H(s)
is Hurwitz and

Re(1 + (1 + jηω)βG(jω)) > 0 for all ω ∈ R.

H(s) has the same poles as G(s) since −1/η is not
an eigenvalue of A.

G(jω) ∈ C can be written as γ + jδ = G(jω) for
γ, δ ∈ R for all ω ∈ R. Then

Re(1+βG(jω) + jηωβG(jω))

= Re(1 + β(γ + jδ) + jηωβ(γ + jδ))

= Re(1 + βγ − ηωβδ + j(βδ + ηωβγ))

= 1 + βγ − ηωβδ

= 1 + β Re(G(jω))− ηωβ Im(G(jω)).

Hence, Re(H(jω)) > 0 ∀ ω ∈ R is equivalent to
1
β
+Re(G(jω))− ηω Im(G(jω)) > 0.

If we plot Re(G(jω)) versus ω Im(G(jω)), the above
inequality defines a half space on the right side of the
line through − 1

β
of slope 1

η
.

Define the line

L(β, η) = {x ∈ C : x = (− 1
β
+ j 1

η
)w, w ∈ R}

depending on β > 0 and η ≥ 0.

We refer to a plot of ω Im(G(jω) versus Re(G(jω))
including the line L(β, η) as a Popov plot.
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Popov Criterion

Example (Consider G(s) = 1
s+1 )

G(s) is Hurwitz, i.e., the Popov Criterion is applicable.

Absolute stability can be concluded for the sector
defined through α = 0 and β = 100.

-2 -1 0 1 2

-2

-1

0

1

2

G(jω) ∈ C can be written as γ + jδ = G(jω) for
γ, δ ∈ R for all ω ∈ R. Then

Re(1+βG(jω) + jηωβG(jω))

= Re(1 + β(γ + jδ) + jηωβ(γ + jδ))

= Re(1 + βγ − ηωβδ + j(βδ + ηωβγ))

= 1 + βγ − ηωβδ

= 1 + β Re(G(jω))− ηωβ Im(G(jω)).

Hence, Re(H(jω)) > 0 ∀ ω ∈ R is equivalent to
1
β
+Re(G(jω))− ηω Im(G(jω)) > 0.

If we plot Re(G(jω)) versus ω Im(G(jω)), the above
inequality defines a half space on the right side of the
line through − 1

β
of slope 1

η
.

Define the line

L(β, η) = {x ∈ C : x = (− 1
β
+ j 1

η
)w, w ∈ R}

depending on β > 0 and η ≥ 0.

We refer to a plot of ω Im(G(jω) versus Re(G(jω))
including the line L(β, η) as a Popov plot.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 6: Absolute Stability 26 / 27



Popov Criterion

Example (Consider G(s) = 1
s2+s+1 )

Two (complex) poles in the open left-half plane.

Absolute stability can be concluded for different
values of β (and α = 0)
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γ, δ ∈ R for all ω ∈ R. Then
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Circle versus Popov Criterion

The Circle Criterion:
The single-input single-output case discussed here,
can be extended to multi-input multi-output systems.

The Circle Criterion allows for time-varying
nonlinearities.

Checkable conditions for α ̸= 0 derived from

1 + βG(s)

1 + αG(s)
.

If η = 0 and α = 0 the Circle Criterion and the Popov
Criterion are equivalent.

The Popov Criterion
Can be extended to the multi-input multi-output
settings, but appears to require more structure in the
interconnection structure of the input-output behavior
and types of nonlinearities that can be
accommodated.

Only applicable to time-invariant nonlinearities.

Reasonable to assume G(s) that is Hurwitz and take
α = 0 (due to the factor)

If η = 0 and α = 0 the Circle Criterion and the Popov
Criterion are equivalent.

The freedom to choose η ≥ 0 can provide a less
conservative results.

The assumption G(s) Hurwitz and α = 0 can be
accomplished through an appropriate loop transform.

Note that: The Circle Criterion and the Popov Criterion define sufficient conditions.
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