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Motivation & Definition

Robust Stability:
Consider the linear system

ẋ = Ax+ Ew, x(0) = x0 ∈ Rn,

with state x, A Hurwitz, and external disturbance w
Recall the solution (x(t), t ∈ R≥0)

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Ew(τ)dτ

We can calculate/estimate the impact of the disturbance:

|x(t)| ≤
∣∣∣eAtx(0)

∣∣∣+ ∣∣∣∣∫ t

0
eA(t−τ)Ew(τ)dτ

∣∣∣∣
≤

∥∥∥eAt
∥∥∥ |x(0)|+

∫ t

0

∥∥∥eA(t−τ)
∥∥∥ ∥E∥|w(τ)|dτ

≤
∥∥∥eAt

∥∥∥|x(0)|+ (
∥E∥

∫ ∞

0

∥∥∥eAτ
∥∥∥dτ)ess sup

τ≥0
|w(τ)|

If we define γ = ∥E∥
∫∞
0

∥∥eAτ
∥∥ dτ for fixed t ∈ R≥0, then

|x(t)| ≤
∥∥∥eAt

∥∥∥ |x(0)|+ γ∥w∥L∞ .

This bound consists of two components:
a transient bound; the decaying effect of the initial
state x(0)

an estimate of the worst-case or largest input
disturbance, w, that impacts the system.

Input-to-state stability (ISS) for nonlinear systems:

ẋ = f(x,w), x(0) = x0 ∈ Rn

with w : R≥0 → Rm. The set of allowable input functions

W = {w : R≥0 → Rm| w essentially bounded}.

Definition (Input-to-state stability)
The system is said to be input-to-state stable (ISS) if there
exist β ∈ KL and γ ∈ K such that solutions satisfy

|x(t)| ≤ β(|x(0)|, t) + γ (∥w∥L∞ )

for all x ∈ Rn, w ∈ W, and t ≥ 0.

• γ ∈ K: ISS-gain; • β ∈ KL: transient bound.
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ẋ = Ax+ Ew, x(0) = x0 ∈ Rn,

with state x, A Hurwitz, and external disturbance w
Recall the solution (x(t), t ∈ R≥0)

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Ew(τ)dτ

We can calculate/estimate the impact of the disturbance:

|x(t)| ≤
∣∣∣eAtx(0)

∣∣∣+ ∣∣∣∣∫ t

0
eA(t−τ)Ew(τ)dτ

∣∣∣∣
≤

∥∥∥eAt
∥∥∥ |x(0)|+

∫ t

0

∥∥∥eA(t−τ)
∥∥∥ ∥E∥|w(τ)|dτ

≤
∥∥∥eAt

∥∥∥|x(0)|+ (
∥E∥

∫ ∞

0

∥∥∥eAτ
∥∥∥dτ)ess sup

τ≥0
|w(τ)|

If we define γ = ∥E∥
∫∞
0

∥∥eAτ
∥∥ dτ for fixed t ∈ R≥0, then

|x(t)| ≤
∥∥∥eAt

∥∥∥ |x(0)|+ γ∥w∥L∞ .

This bound consists of two components:
a transient bound; the decaying effect of the initial
state x(0)

an estimate of the worst-case or largest input
disturbance, w, that impacts the system.

Input-to-state stability (ISS) for nonlinear systems:
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An equivalent ISS inequality (β̂ ∈ KL and γ̂ ∈ K):

|x(t)| ≤ max
{
β̂(|x(0)|, t), γ̂ (∥w∥L∞ )

}
The equivalence follows from

a+ b ≤ max {2a, 2b} ≤ 2a+ 2b, ∀ a, b ∈ R≥0.

Example
Recall that (A Hurwitz)

ẋ = Ax+ Ew, x(0) = x0 ∈ Rn,

satisfies

|x(t)| ≤
∥∥∥eAt

∥∥∥|x(0)|+ (
∥E∥

∫ ∞

0

∥∥∥eAτ
∥∥∥dτ)∥w∥L∞

Then

β(s, t)
.
= s∥eAt∥; γ(s)

.
=

(
∥E∥

∫ ∞

0

∥∥∥eAτ
∥∥∥ dτ

)
s,

The ISS-gain is linear and the transient bound is given by
the product of the identity and an exponentially decaying
function of time.
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Motivation & Definition
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for all x ∈ Rn, w ∈ W, and t ≥ 0.

• γ ∈ K: ISS-gain; • β ∈ KL: transient bound.

For linear systems we can conclude that:
A Hurwitz is sufficient for the system to be ISS.

Example
Consider the nonlinear/bilinear system:

ẋ = −x+ xw.

The system is 0-input globally asymptotically stable
(since w = 0 implies ẋ = −x and so x(t) = x(0)e−t)

However, consider the bounded input/disturbance
w = 2. Then ẋ = x and so x(t) = x(0)et.

Consequently, it is impossible to find β ∈ KL and
γ ∈ K such that

|x(t)| = |x(0)|et ≤ β(|x(0)|, t) + γ(2).
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Section 2

Lyapunov Characterization
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Lyapunov Characterizations

Definition (Input-to-state stability)
ẋ = f(x,w) is said to be input-to-state stable (ISS) if there
exist β ∈ KL and γ ∈ K such that solutions satisfy

|x(t)| ≤ β(|x(0)|, t) + γ (∥w∥L∞ )

for all x ∈ Rn, w ∈ W, and t ≥ 0.

Theorem (ISS-Lyapunov function)
ẋ = f(x,w) is ISS if and only if there exist a continuously
differentiable function V : Rn → R≥0 and
α1, α2, α3, χ ∈ K∞ such that for all x ∈ Rn and all
w ∈ Rm

α1(|x|) ≤ V (x) ≤ α2(|x|)
|x| ≥ χ(|w|) ⇒ ⟨∇V (x), f(x,w)⟩ ≤ −α3(|x|).

“ISS-Lyapunov function =⇒ ISS”:
First show that Sw = {x ∈ Rn : |x| ≤ χ(|w|)}
is forward invariant

Once solutions enter Sw they remain there ∀ t ≥ 0.

The “size” of this set is dependent only on |w| scaled
via χ ∈ K∞.

Outside the set Sw, the decrease condition holds

Apply the comparison principle to obtain a transient
bound β ∈ KL.

Combine Sw and the transient bound to derive

|x(t)| ≤ max {β(|x(0)|, t), γ (∥w∥L∞ )} .

⇝ The converse direction is significantly more difficult
(See the book for a reference)
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ẋ = f(x,w) is ISS if and only if there exist a continuously
differentiable function V : Rn → R≥0 and
α1, α2, α3, χ ∈ K∞ such that for all x ∈ Rn and all
w ∈ Rm

α1(|x|) ≤ V (x) ≤ α2(|x|)
|x| ≥ χ(|w|) ⇒ ⟨∇V (x), f(x,w)⟩ ≤ −α3(|x|).

Further comments:
The decrease condition is equivalent to (σ ∈ K∞)

⟨∇V (x), f(x,w)⟩ ≤ −α3(|x|) + σ(|w|)

(“storage function V with supply pair (α3, σ)” in some
references)

or ((exponential) dissipation-form ISS-Lyapunov
function)

⟨∇V (x), f(x,w)⟩ ≤ −V (x) + σ(|w|)

or ((exponential) implication-form ISS-Lyapunov
function)

|x| ≥ χ(|w|) ⇒ ⟨∇V (x), f(x,w)⟩ ≤ −V (x)

Note that the functions in the different representations
are not the same!
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Lyapunov Characterizations (Example & Young’s Inequality)

Example

Consider

ẋ = f(x,w) = −x− x3 + xw, x(0) = x0 ∈ R

The candidate ISS-Lyapunov function V (x) = 1
2
x2

satisfies

⟨∇V (x), f(x,w)⟩ = ⟨x,−x− x3 + xw⟩

= −x2 − x4 + x2w

≤ −x2 − x4 + 1
2
x4 + 1

2
w2

= −x2 − 1
2
x4 + 1

2
w2

Define α(s)
.
= s2 + 1

2
s4 and σ(s)

.
= 1

2
s2, Then

V̇ (x) ≤ −α(|x|) + σ(|w|)

i.e., V is an ISS-Lyapunov function and the system is ISS.

⇝ Observe that ẋ = −x− x3 + xw is ISS while
ẋ = −x+ xw is not ISS (even though the linearizations are

the same)

Detour....

Lemma (Young’s inequality)

Let p, q ∈ R>0 such that 1
p
+ 1

q
= 1. Then for any

x, y ∈ Rn the inequality

xT y ≤ 1
p
|x|p + 1

q
|y|q

is satisfied.

Application: Let p = q = 2, ε > 0, a, b ∈ Rn. Then

aT b = (εa)T ( 1
ε
b) ≤ ε2

2
|a|2 + 1

2ε2
|b|2
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Example

Consider

ẋ = f(x,w) = −x− x3 + xw, x(0) = x0 ∈ R

The candidate ISS-Lyapunov function V (x) = 1
2
x2

satisfies

⟨∇V (x), f(x,w)⟩ = ⟨x,−x− x3 + xw⟩

= −x2 − x4 + x2w

≤ −x2 − x4 + 1
2
x4 + 1

2
w2

= −x2 − 1
2
x4 + 1

2
w2

Define α(s)
.
= s2 + 1

2
s4 and σ(s)

.
= 1

2
s2, Then

V̇ (x) ≤ −α(|x|) + σ(|w|)

i.e., V is an ISS-Lyapunov function and the system is ISS.

⇝ Observe that ẋ = −x− x3 + xw is ISS while
ẋ = −x+ xw is not ISS (even though the linearizations are

the same)

Detour....

Lemma (Young’s inequality)

Let p, q ∈ R>0 such that 1
p
+ 1

q
= 1. Then for any

x, y ∈ Rn the inequality

xT y ≤ 1
p
|x|p + 1

q
|y|q

is satisfied.

Application: Let p = q = 2, ε > 0, a, b ∈ Rn. Then

aT b = (εa)T ( 1
ε
b) ≤ ε2

2
|a|2 + 1

2ε2
|b|2
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Lyapunov Characterizations (Another Example)

• Consider

ẋ1 = −x1 + w
ẋ2 = −x3

2 + x1x2

• Candidate ISS-Lyapunov function

V (x) = 1
2
x2
1 + 1

2
x2
2.

• Then ( 1
2
|x|2 ≤ V (x) ≤ 1

2
|x|2 and)

⟨∇V (x), f(x,w)⟩ =
〈[

x1

x2

]
,

[
−x1 + w

−x3
2 + x1x2

]〉
= −x2

1 + x1w − x4
2 + x2

2x1

≤ −x2
1 + 1

4
x2
1 + w2 − x4

2 + 1
2
x4
2 + 1

2
x2
1

= − 1
4
x2
1 − 1

2
x4
2 + w2.

[Young’s inequality applied to the terms x1w and x2
2x1.]

• Define

α(s)
.
=

{ 1
8
s4, s ≤ 1

1
8
s2, s > 1

and σ(s)
.
= s2

• Then V̇ (x) ≤ −α(|x|) + σ(|w|)⇝ the system is ISS.
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Section 3

System Interconnection
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System Interconnection

Consider

ẋ1 = f1(x1, w1)

ẋ2 = f2(x2, w2)

Note that:
We don’t specify the dimensions but assume that the
dimensions match in the following!

If system 1 and system 2 are ISS
is the cascade interconnection ISS?

is the feedback interconnetion ISS?

ẋ1 = f1(x1, w1) ẋ2 = f2(x2, w2)
w1 w2 = x1 x2

ẋ1 = f1(x1, w1) ẋ2 = f2(x2, w2)

k(x2)

w1 = k(x2) w2 = x1 x2
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Cascade Interconnection

[
ẋ1

ẋ2

]
=

[
f1(x1, w1)
f2(x2, x1)

]
ẋ1 = f1(x1, w1) ẋ2 = f2(x2, w2)

w1 w2 = x1 x2

Definition (Big O notation)
Consider two positive functions ρ1, ρ2 ∈ P and let
c ∈ R≥0 ∪ {∞}. We say that ρ1(s) = O[ρ2(s)] as s → c if
and only if

lim sup
s→c

∣∣∣∣ρ1(s)ρ2(s)

∣∣∣∣ < ∞.

Example: α1, α2 ∈ K∞,
α1(s) = 4s2 and α2(s) =

{
s2, s ≤ 1,
s4, s > 1.

Then

lim sup
s→0

∣∣∣∣α1(s)

α2(s)

∣∣∣∣ = lim sup
s→0

∣∣∣∣4s2s2

∣∣∣∣ = lim sup
s→0

4 = 4 < ∞

i.e., α1(s) = O[α2(s)] as s → 0.
• Similarly α1(s) = O[α2(s)] as s → ∞.
• The converse, namely α2(s) = O[α1(s)] as s → c, c ∈
{0,∞}, does not need to be true, in general.

Theorem (Changing supply pairs)

Consider two systems, [xT
1 , xT

2 ]T ∈ Rn, with the cascade
interconnection w2 = x1. Assume that V : Rn → R≥0 and
σ, α3 ∈ K∞ satisfy
⟨∇V (x), f(x,w1)⟩≤−α3(|x|)+σ(|w1|)

1 Suppose that σ̃ ∈ K∞ satisfies σ(r) = O[σ̃(r)] as
r → ∞. Then there exists α̃3 ∈ K∞ so that (σ̃, α̃3)
satisfy

⟨∇Ṽ (x), f(x,w1)⟩≤−α̃3(|x|)+σ̃(|w1|)

for some Ṽ : Rn → R≥0.

2 Suppose that α̃3 ∈ K∞ satisfies α̃3(r) = O[α3(r)] as
r → 0. Then there exists a σ̃ ∈ K∞ so that (σ̃, α̃3)
satisfies

⟨∇Ṽ (x), f(x,w1)⟩≤−α̃3(|x|)+σ̃(|w1|)

for some Ṽ : Rn → R≥0.
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⟨∇Ṽ (x), f(x,w1)⟩≤−α̃3(|x|)+σ̃(|w1|)

for some Ṽ : Rn → R≥0.

We can freely choose the gain σ for small arguments or we
can freely choose the decrease α3 for large arguments:

lim sup
s→∞

∣∣∣∣σ(s)σ̃(s)

∣∣∣∣ < ∞, and lim sup
s→0

∣∣∣∣ α̃3(s)

α3(s)

∣∣∣∣ < ∞.

(We cannot modify the gain σ for large arguments or the
decrease rate α3 for small arguments.)

Theorem (ISS Cascade)

Consider the system with [x1, x2]T ∈ Rn, w2 = x1. If each
of the subsystems are ISS, then the cascade
interconnection is ISS with w1 as input and x as state.

Proof relies on:
V̇1(x1) ≤ −α3,1(|x1|) + σ1(|w1|)

V̇2(x2) ≤ −α3,2(|x2|) + σ2(|w2|)

φ(s) =

{
O[α3,1(s)], as s → 0
O[2σ2(s)], as s → ∞
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⟨∇Ṽ (x), f(x,w1)⟩≤−α̃3(|x|)+σ̃(|w1|)
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Cascade Interconnection

[
ẋ1

ẋ2

]
=

[
f1(x1, w1)
f2(x2, x1)

]
ẋ1 = f1(x1, w1) ẋ2 = f2(x2, w2)

w1 w2 = x1 x2

Example

Consider

ẋ1 = −x1 + w1

ẋ2 = −x3
2 + x2w2

Two Lyapunov functions V1(x1) =
1
2
x2
1 and V2(x2) =

1
2
x2
2 satisfy:

V̇1(x1) = −x2
1 + x1w1 ≤ −x2

1 + 1
2
x2
1 + 1

2
w2

1 = − 1
2
x2
1 + 1

2
w2

1

V̇2(x2) = −x4
2 + x2

2w2 ≤ −x4
2 + 1

2
x4
2 + 1

2
w2

2 = − 1
2
x4
2 + 1

2
w2

2

⇝ The two systems are ISS

The input and state dimensions match

⇝ The cascade interconnection w2 = x1 is ISS

⇝ The cascade interconnection w1 = x2 is ISS
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Feedback Interconnection

[
ẋ1

ẋ2

]
=

[
f1(x1, k(x2))
f2(x2, x1)

]
ẋ1 = f1(x1, w1) ẋ2 = f2(x2, w2)

k(x2)

w1 = k(x2) w2 = x1 x2

Consider matched ISS-Lyapunov functions satisfying

V̇1(x1) ≤ −φ(|x1|) + σ1(|w1|)

V̇2(x2) ≤ −α3,2(|x2|) + εφ(|w2|), [ε ∈ (0, 1)]

Here, matched refers to

φ(s) =

{
O[α3,1(s)], as s → 0

O
[
1
ε
σ2(s)

]
, as s → ∞

Define: V (x) = V1(x1) + V2(x2). Then
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ẋ2

]
=

[
f1(x1, k(x2))
f2(x2, x1)

]
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Note that:
The condition

|k(x2)| ≤ σ−1
1 ((1− ε̄)α3,2(|x2|))

is called small-gain condition

Small-gain theorems place limits on the loop-gain of a
feedback system so that signals are not amplified as
they traverse the feedback loop.

Small-gain theorems present sufficient conditions (not
necessary conditions)

Theorem
Consider the feedback interconnection with w2, x1 ∈ Rn1

and w1, x2 ∈ Rn2 and w1 = k(x2) = x2 and w2 = x1. If
each of the systems is ISS with ISS-Lyapunov functions

V̇1(x1) ≤ −α3,1(V1(x1)) + σ1(V2(x2))

V̇2(x2) ≤ −α3,2(V2(x2)) + σ2(V1(x1))

(and α3,1, α3,2, σ1, σ2 ∈ K∞) and if, for all s ≥ 0,

α−1
3,1 ◦ σ2(s) < s, α−1

3,2 ◦ σ1(s) < s

then the origin of the feedback interconnection is
asymptotically stable.
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Feedback Interconnection

[
ẋ1

ẋ2

]
=

[
f1(x1, k(x2))
f2(x2, x1)

]
ẋ1 = f1(x1, w1) ẋ2 = f2(x2, w2)

k(x2)

w1 = k(x2) w2 = x1 x2

Example: Consider

ẋ1 = −x1 + w1

ẋ2 = −x3
2 + x2w2

Consider V1(x1) =
ε
2
x2
1 for ε ∈ (0, 1) and V2(x2) =

1
2
x2
2.

With α3,1(s) = ε
2
s4, σ2(s) = 1

2
s2 and φ(s) = 1

2
s2 it holds

that (verify!)

V̇2(x2) ≤ −φ(|x2|) + σ2(|w2|)

V̇1(x1) ≤ −α3,1(|x1|) + εφ(|w1|)

Feedback interconnection w2 = k(x1), w1 = x2

To conclude asymptotic stability the condition

|k(x1)| ≤
√

2(1− ε̄)
ε

2
|x1|4 =

√
(1− ε̄)εx2

1

needs to be satisfied. (Here σ−1
2 (s) =

√
2s.)

Since in this example the selection of ε ∈ (0, 1) in the ISS-
Lyapunov function as well as ε̄ ∈ (0, 1) in the Theorem are
arbitrary, all of the feedback functions

k(x1) =
1
2
x2
1, k(x1) =

1
2
sign(x1)x2

1, k(x1) =
1
2
sat(x2

1)

satisfy the condition for ε = ε̄ = 1
2

.

Note that: For w1 = k(x2), w2 = x1, the Lyapunov functi-
ons V1 and V2 are not matched.
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Feedback Interconnection

[
ẋ1

ẋ2

]
=

[
f1(x1, k(x2))
f2(x2, x1)

]
ẋ1 = f1(x1, w1) ẋ2 = f2(x2, w2)

k(x2)

w1 = k(x2) w2 = x1 x2

Example: Consider the dynamical system

ẋ1 = −x3
1 + x1w1,

ẋ2 = −x2 + 1
2
w2

2 .

The functions V1(x1) =
1
2
x2
1 and V2(x2) =

1
2
x2
2 satisfy the estimates

V̇1(x1) = −x4
1 + x2

1w1 ≤ −x4
1 + 1

2
x4
1 + 1

2
w2

1 = −2V1(x1)2 + V2(w1),

V̇2(x2) = −x2
2 + 1

2
x2w2

2 ≤ −x2
2 + 1

4
x2
2 + 1

4
w4

2 = − 3
2
V2(x2) + V1(w1)2.

Define

α3,1(s) = 2s2, σ1(s) =
1

2
s, α3,2(s) =

3

2
s, σ2(s) = s2

It holds that

V̇1(x1) ≤ −α3,1(V1(x1)) + σ1(V2(x2))

V̇2(x2) ≤ −α3,2(V2(x2)) + σ2(V1(x1))

and

α−1
3,1 ◦ σ2(s) < s

α−1
3,2 ◦ σ1(s) < s

⇝ The origin of the feedback
interconnection (w1 = x2, w2 = x1) is

asymptotically stable.
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Section 4

Integral-to-Integral Estimates and L2-gain
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Integral-to-Integral Estimates and L2-gain

Derivation of an alternate ISS estimate:
Recall: Dissipation-form ISS-Lyapunov function

d
dt
V (x(t)) = ⟨∇V (x(t)), f(x(t), w(t))⟩

≤ −α3(|x(t)|) + σ(|w(t)|)

Integration

V (x(t))− V (x(0)) ≤ −
∫ t

0
α3(|x(τ)|)dτ

+

∫ t

0
σ(|w(τ)|)dτ.

Rearrange terms (and V (x) ≤ α2(|x|)):∫ t

0
α3(|x(τ)|)dτ ≤

∫ t

0
α3(|x(τ)|)dτ + V (x(t))

≤ V (x(0)) +

∫ t

0
σ(|w(τ)|)dτ

≤ α2(|x(0)|) +
∫ t

0
σ(|w(τ)|)dτ (1)

Lemma
Consider the nonlinear system ẋ = f(x,w). If the system
is ISS, then there exist α2, α3, σ ∈ K∞ such that (1) is
satisfied for all t ≥ 0. Conversely, if ẋ = f(x,w) is forward
complete and satisfies (1) for α2, α3, σ ∈ K∞ for all t ≥ 0,
then the system is ISS.

Consider ẋ = Ax+ Ew; A Hurwitz.
Consider V (x) = xTPx, P positive definite, defined
through

ATP + PA = −2I.

It holds that (Cauchy-Schwarz and Young’s inequality)

V̇ (x) = xTATPx+ wTETPx+ xTPAx+ xTPEw

= −2xT x+ 2xTPEw ≤ −2xT x+ 2|x| |w| ∥PE∥

≤ −2xT x+ xT x+ ∥PE∥2wTw = −xT x+ ∥PE∥2wTw

Integrate and rearrange∫ t

0
|x(τ)|2dτ ≤ λmax(P )|x(0)|2 + ∥PE∥2

∫ t

0
|w(τ)|2dτ
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Integral-to-Integral Estimates and L2-gain (2)

Consider ẋ = Ax+ Ew; A Hurwitz.
Consider V (x) = xTPx, P positive definite, defined
through

ATP + PA = −2I.

It holds that (Cauchy-Schwarz and Young’s inequality)

V̇ (x) = xTATPx+ wTETPx+ xTPAx+ xTPEw

= −2xT x+ 2xTPEw ≤ −2xT x+ 2|x| |w| ∥PE∥

≤ −2xT x+ xT x+ ∥PE∥2wTw=−xTx+∥PE∥2wTw

Integrate and rearrange∫ t

0
|x(τ)|2dτ ≤ λmax(P )|x(0)|2 + ∥PE∥2

∫ t

0
|w(τ)|2dτ

With α3(s) = s2, α2(s) = λmaxs2 and σ(s) = ∥PE∥2s2:∫ t

0
α3(|x(t)|)dτ ≤ α2(|x(0)|) +

∫ t

0
σ(|w(τ)|)dτ

Alternatively using the L2-norm:

∥x∥2L2
≤ λmax(P )|x(0)|2 + γ2∥w∥2L2

Definition (L2-stability)
The system ẋ = f(x,w) is said to be L2-stable or to have
finite L2-gain if there exist constants κ, γ > 0 so that

∥x∥2L2
≤ κ|x(0)|2 + γ2∥w∥2L2

for all w ∈ W.

Note that:
It is common to assume x(0) = 0 and hence the
above definition is frequently written simply as

∥x∥2L2
≤ γ2∥w∥2L2

.
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Integral-to-Integral Estimates and L2-gain (3)

Definition (L2-stability)
The system ẋ = f(x,w) is said to be L2-stable or to have
finite L2-gain if there exist constants κ, γ > 0 so that

∥x∥2L2
≤ κ|x(0)|2 + γ2∥w∥2L2

for all w ∈ W.

Note that:
It is common to assume x(0) = 0 and hence the
above definition is frequently written simply as

∥x∥2L2
≤ γ2∥w∥2L2

.

Connection between input-output L2-stability and the Bode
Plot for linear systems:

ẋ = Ax+ Ew, y = Cx

and its representation in the frequency domain

ŷ(s) = G(s)ŵ(s), G(s) = C(sI −A)−1E.

Recall Parseval’s relation:

∥y∥2L2
=

∫ ∞

0
|y(τ)|2 dτ =

1

2π

∫ ∞

−∞
|ŷ(jw)|2 dw

This can be further rewritten

∥y∥2L2
≤

1

2π

∫ ∞

−∞
|G(jw)|2|ŵ(jω)|2 dω

≤ ess sup
ω

|G(jω)|2
1

2π

∫ ∞

−∞
|ŵ(jω)|2 dω

= ∥G∥2∞
∫ ∞

0
|w(τ)|2 dτ

= ∥G∥2∞∥w∥2L2
.

⇝With γ = ∥G∥∞ the L2-gain of a linear system is the
peak magnitude of the transfer function and can be read off

from the Bode Plot.
Note that:

The estimate also holds for multi-input, multi-output
systems. However, in this case the definition of the
H∞-norm for multi-input, multi-output systems has to
be used.
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System Interconnections

We assume that:

x(0) = 0

It holds that:

∥v1 + v2∥2L2
≤ ∥v1∥2L2

+ ∥v2∥2L2
,

Closed loop system[
ẋ1

ẋ2

]
=

[
f1(x1, x2 + w̃1)
f2(x2, x1 + w̃2)

]

+ ẋ1 = f1(x1, w1)

ẋ2 = f2(x2, w2) +

w̃1 x1

w̃2x2

Theorem (L2 small-gain)
Consider the closed loop system. If each of the
subsystems is L2-stable with gains γ1, γ2 > 0, then closed
loop system with w1 = x2 + w̃1 and w2 = x1 + w̃2 is
L2-stable if γ1γ2 < 1.

Proof: L2-stability implies

∥x1∥2L2
≤ γ2

1∥w1∥2L2
= γ2

1∥w̃1 + x2∥2L2

≤ γ2
1∥w̃1∥2L2

+ γ2
1γ

2
2∥w̃2∥2L2

+ γ2
1γ

2
2∥x1∥2L2

Then

∥x1∥2L2
(1− γ2

1γ
2
2) ≤ γ2

1∥w̃1∥2L2
+ γ2

1γ
2
2∥w̃2∥2L2

.

If γ1γ2 < 1 then γ2
1γ

2
2 < 1 and

∥x1∥2L2
≤

1

1− γ2
1γ

2
2

(
γ2
1∥w̃1∥2L2

+ γ2
1γ

2
2∥w̃2∥2L2

)
Same bound on the L2-norm of x2 can be derived
The bounds on x1 and x2 can be combined as

∥x∥2L2
= ∥x1∥2L2

+ ∥x2∥2L2

≤ 1
1−γ2

1γ
2
2
(γ2

1∥w̃1∥2L2
+γ2

2∥w̃2∥2L2
+γ2

1γ
2
2(∥w̃1∥2L2

+∥w̃2∥2L2
))
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