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Motivation & Definition
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Motivation & Definition

Robust Stability:
Consider the linear system

= Az + Ew, z(0)=z9 € R",
with state z, A Hurwitz, and external disturbance w
Recall the solution (z(t), t € R>q)

t
z(t) = e?tz(0) +/ A7) Bw(r)dr
0
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Motivation & Definition

Robust Stability:
Consider the linear system

= Az + Ew, z(0)=z9 € R",

with state z, A Hurwitz, and external disturbance w
Recall the solution (z(t), t € R>q)

t
z(t) = eAtz(0) +/ A=) Buw(r)dr
0
We can calculate/estimate the impact of the disturbance:

[2(0)] < | (0)] + ’/t A=) Bu(r)dr
0
< Hem” |z(0)| + /Ot HerH)

< Jeleon -+ (1 [ e

1 El|w(r)|dr

dT) esssup|w(7)|
>0
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Robust Stability:
Consider the linear system

= Az + Ew, z(0)=z9 € R",
with state z, A Hurwitz, and external disturbance w
Recall the solution (z(t), t € R>q)
t
z(t) = e?tz(0) +/ A=) Buw(r)dr
0

We can calculate/estimate the impact of the disturbance:

[2(0)] < | (0)] + ’/t A=) Bu(r)dr
0
< HeAtH |z(0)] + /Ot HeA<H)

< Jeleon -+ (1 [ e

It we define v = ||E|| [5° ||e47|| dr for fixed ¢t € R0, then

1 El|w(r)|dr

dT) esssup|w(7)|
>0

(O] < [|e]| 1)) + e
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Motivation & Definition

g‘)b“?g Stibi"lei This bound consists of two components:
onsider the linear system @ atransient bound; the decaying effect of the initial
= Az + Ew, z(0)=z9 € R", state z(0)
with state =, A Hurwitz, and external disturbance w @ an estimate of the worst-case or largest input
Recall the solution (x(t), t € R>q) disturbance, w, that impacts the system.

t
z(t) = eAtx(O) +/ eA(t_T)Ew(T)dT
0
We can calculate/estimate the impact of the disturbance:
t
[2(0)] < | (0)] + ’/ A=) Bup(r)dr
0
t
< [ereflzr+ [ et
0
< Jeleon -+ (1 [ e

It we define v = ||E|| [5° ||e47|| dr for fixed ¢t € R0, then

1 El|w(r)|dr

dT) esssup|w(7)|
>0

(O] < [|e]| 1)) + e
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with state z, A Hurwitz, and external disturbance w
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t
z(t) = eAtw(O) +/ 6A(t_7—)E’u)(T)dT
0
We can calculate/estimate the impact of the disturbance:

t
/ BA(t_T)E'w(T)dT
0

< e 1zt + [ lere
< Jeleon -+ (1 [ e

It we define v = ||E|| [5° ||e47|| dr for fixed ¢t € R0, then

j2(8)] < [eAta(0)| +

1 El|w(r)|dr

dT) esssup|w(7)|
>0

(O] < [|e]| 1)) + e
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This bound consists of two components:

@ atransient bound; the decaying effect of the initial
state z(0)

@ an estimate of the worst-case or largest input
disturbance, w, that impacts the system.

Input-to-state stability (ISS) for nonlinear systems:
&= f(z,w), =(0)==z0€R"
with w : R>o — R™. The set of allowable input functions

W = {w: Rxo — R™| w essentially bounded}.

Definition (Input-to-state stability)

The system is said to be input-to-state stable (ISS) if there
exist 8 € KL and v € K such that solutions satisfy

lz(®) < B(1z(0)],t) + v (lwllco)
forallz € R™, w € W, and t > 0.

e vy € K: ISS-gain; e 8 € KL: transient bound.
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Motivation & Definition

This bound consists of two components:
@ a transient bound; the decaying effect of the initial

state z(0) 3
@ an estimate of the worst-case or largest input \ — =)
disturbance, w, that impacts the system. 2.5 \ —(llwlley) 1
Input-to-state stability (ISS) for nonlinear systems: \ — Bz, t) +v(Jwlc.)
&= f(zw), 2(0)=xo€R" 21\
with w : R>o — R™. The set of allowable input functions 15| \\ |
W = {w: R>¢ — R™| w essentially bounded}. [
1 ]
Definition (Input-to-state stability)
The system is said to be input-to-state stable (ISS) if there 05
exist 8 € KL and v € K such that solutions satisfy
le(®)] < B(2(0)],8) + 7 (lwlc..) % 5 10
forallz € R®, w € W, and t > 0. t

e vy € K: ISS-gain; e 3 € KL: transient bound.
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Motivation & Definition

This bound consists of two components: An equivalent ISS inequality (5 € KL and § € K):

@ atransient bound; the decaying effect of the initial |z(t)] < max {B(|x(0)\,t), 4 (Hngm)}
state z(0)

@ an estimate of the worst-case or largest input The equivalence follows from
disturbance, w, that impacts the system. a+b<max{2a,20} <2a+2b, Va,beRxg.

Input-to-state stability (ISS) for nonlinear systems:
z = f(z,w), =z(0)==x9 € R"
with w : R>q — R™. The set of allowable input functions
W = {w: R>o — R™| w essentially bounded}.

Definition (Input-to-state stability)

The system is said to be input-to-state stable (ISS) if there
exist 8 € KL and v € K such that solutions satisfy

[z(®)] < B(1z(0)[,t) + v (lwllzo.)
forallz € R®, w € W, and t > 0.

e vy € K: ISS-gain; e 3 € KL: transient bound.
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An equivalent ISS inequality (3 € KL and 4 € K):
()] < max {A(2(0)],1), ¥ (lwlc.) }

The equivalence follows from
a+ b < max{2a,2b} <2a+2b, Va,beRx.
Example
Recall that (A Hurwitz)
z = Az + Ew, z(0) =z9 € R",
satisfies

o)1 < [} flo@)1 + (121 [ e ) ole..
Then

pet) = sllels 2= (121 [ er]|ar) s

The ISS-gain is linear and the transient bound is given by
the product of the identity and an exponentially decaying
function of time.
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Motivation & Definition

This bound consists of two components:

@ a transient bound; the decaying effect of the initial
state z(0)

@ an estimate of the worst-case or largest input
disturbance, w, that impacts the system.

Input-to-state stability (ISS) for nonlinear systems:
z = f(z,w), =(0)=z0 € R"
with w : R>q — R™. The set of allowable input functions

For linear systems we can conclude that:
@ A Hurwitz is sufficient for the system to be ISS.

W = {w : R>o — R™| w essentially bounded}.

Definition (Input-to-state stability)

The system is said to be input-to-state stable (ISS) if there
exist 8 € KL and v € K such that solutions satisfy

[z(@®)] < B(|z(0)[,t) + v (lwllzo.)
forallz € R®, w € W, and t > 0.
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Motivation & Definition

This bound consists of two components:

@ a transient bound; the decaying effect of the initial
state z(0)

@ an estimate of the worst-case or largest input
disturbance, w, that impacts the system.

Input-to-state stability (ISS) for nonlinear systems: Example
z = f(z,w), =(0)=z0 €R"
with w : R>o — R™. The set of allowable input functions

For linear systems we can conclude that:
@ A Hurwitz is sufficient for the system to be ISS.

Consider the nonlinear/bilinear system:

T =—z+ zw.
W = {w : R>¢ — R™| w essentially bounded}.
- @ The system is 0-input globally asymptotically stable
(since w = 0 implies © = —z and so z(t) = x(0)e~?)

Definition (Input-to-state stability) @ However, consider the bounded input/disturbance

The system is said to be input-to-state stable (ISS) if there w = 2. Then & = z and s0 z(t) = z(0)e".

exist 8 € KL and v € K such that solutions satisfy @ Consequently, it is impossible to find 8 € KL and
l2()] < B(12(0)],8) + 7 ([wll 2oy ) € 18 SR

forallz € R®, w € W, and t > 0. lz(t)] = |=(0)[e* < B(1z(0)],t) +¥(2).

e vy € K: ISS-gain; e 3 € KL: transient bound.
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Section 2

Lyapunov Characterization
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Lyapunov Characterizations

Definition (Input-to-state stability)

& = f(x,w) is said to be input-to-state stable (ISS) if there
exist 8 € KL and v € K such that solutions satisfy

lz(@®)] < B(1z(0)[,t) + v (lwllzo.)
forallz € R®, w € W, and t > 0.

Theorem (ISS-Lyapunov function)

¢ = f(x,w) is ISS if and only if there exist a continuously
differentiable function V : R™ — R~ and

a1, s, a3,X € Koo such that for all x € R™ and all

w € R™

ai1(lz]) < V(z) < az(|=))
lz| 2 x(lw]) = (VV(2), f(z,w)) < —a3(|=])-
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Lyapunov Characterizations

Definition (Input-to-state stability)

& = f(x,w) is said to be input-to-state stable (ISS) if there
exist 8 € KL and v € K such that solutions satisfy

lz(@®)] < B(1z(0)[,t) + v (lwllzo.)
forallz € R®, w € W, and t > 0.

Theorem (ISS-Lyapunov function)

¢ = f(x,w) is ISS if and only if there exist a continuously
differentiable function V : R™ — R~ and

a1, s, a3,x € Koo such that for all z € R™ and all

w € R™

ai1(lz]) < V(z) < az(|=))
lz| 2 x(lw]) = (VV(2), f(z,w)) < —a3(|=])-

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

“ISS-Lyapunov function = ISS”:
@ First show that S,y = {z € R™ : |z| < x(|w|)}
is forward invariant

@ Once solutions enter Sy, they remain there V ¢ > 0.

@ The “size” of this set is dependent only on |w| scaled
via x € Keo.

@ Outside the set S, the decrease condition holds

@ Apply the comparison principle to obtain a transient
bound 5 € KL.

@ Combine S,, and the transient bound to derive
lz(t)| < max {B(|z(0)|, 1),y (lwllc)} -

~~ The converse direction is significantly more difficult
(See the book for a reference)
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Lyapunov Characterizations

Definition (Input-to-state stability)

& = f(x,w) is said to be input-to-state stable (ISS) if there
exist 8 € KL and v € K such that solutions satisfy

lz(@®)] < B(1z(0)[,t) + v (lwllzo.)
forallz € R®, w € W, and t > 0.

Theorem (ISS-Lyapunov function)

¢ = f(x,w) is ISS if and only if there exist a continuously
differentiable function V : R™ — R~ and

a1, s, a3,x € Koo such that for all z € R™ and all

w € R™

ai1(lz]) < V(z) < az(|=))
lz| 2 x(lw]) = (VV(2), f(z,w)) < —a3(|=])-
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Further comments:
@ The decrease condition is equivalent to (o € K)
(VV(2), f(z,w)) < —as(|z]) + o(lw])

(“storage function V' with supply pair (a3, o)” in some
references)

@ or ((exponential) dissipation-form ISS-Lyapunov
function)

(VV(2), f(z,w)) < =V (z) + o(Jw])

@ or ((exponential) implication-form ISS-Lyapunov
function)
lz| > x(lwl) = (VV(2), f(z,w)) < -V (x)

@ Note that the functions in the different representations
are not the same!
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Lyapunov Characterizations (Example & Young’s Inequality)

Example

Consider
&= f(z,w) = -z —a° +zw, z(0)==z0€R
The candidate ISS-Lyapunov function V' (z) = %xz
satisfies
(VV(z), f(z,w)) = (&, —z — &® + zw)

=—2? — o2 + 22w
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Lyapunov Characterizations (Example & Young’s Inequality)

Example

Consider

&= f(zx,w) = -z —z> +zw, x(0)=2z9€R Detour....

The candidate ISS-Lyapunov function V' (z) = %x2
satisfies
(VV (@), f(z,w)) = (&, ~x — 2° + 2w)

=—z2—z* -I—:rQw

Lemma (Young’s inequality)

Letp,q € Rsg such that% + % = 1. Then for any
z,y € R™ the inequality
T 1P o+ Lyla
2Ty < Lol + Lpy|

is satisfied.

Application: Let p = g = 2, > 0, a,b € R™. Then

2
ab= (sa)T(%b) < %\a|2 + 2%2|b|2
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Lyapunov Characterizations (Example & Young’s Inequality)

Example
Consider
&= f(zx,w) = -z —z> +zw, x(0)=2z9€R Detour....
The candidate ISS-Lyapunov function V' (z) = %x2 Lemma (Young's inequality)
satisfies

Letp,q € R>g such that% + % = 1. Then for any
z,y € R™ the inequality

2Ty < Ljal? + Ljy|s

(VV(2), f(z,w)) = (z, ~z — 2° + zw)

=—z2—z* -I—:rQw

IN

—x? gty 1ty 1,2
2 2
2 1,2

— _p2_ 1,4, 1
= =4 2m+2w

is satisfied.

Application: Let p = g = 2, > 0, a,b € R™. Then
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Lyapunov Characterizations (Example & Young’s Inequality)

Example

Consider
&= f(z,w) = -z —a° +zw, z(0)==z0€R
The candidate ISS-Lyapunov function V' (z) = %xz
satisfies
(VV(z), f(z,w)) = (&, —z — &® + zw)

=—z2—z* +12w

IN

—x2—w4+%x4+%w2
_ 2 1.4 ,1,2
=—x" — 3z + 5w

Define a(s) = 52 + 1s% and o(s) = 152, Then

2

V(z) < —af|zl) + o (lw])

i.e., V is an ISS-Lyapunov function and the system is ISS.
v

Detour....
Lemma (Young’s inequality)

Letp,q € R>g such that% + % = 1. Then for any
z,y € R™ the inequality
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2Ty < LjlP + Liy|
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Lyapunov Characterizations (Example & Young’s Inequality)

Example

Consider
&= f(z,w) = -z —a° +zw, z(0)==z0€R
The candidate ISS-Lyapunov function V' (z) = %xz
satisfies
(VV(z), f(z,w)) = (&, —z — &® + zw)

=—2? — o2 + 22w

IN

—a? — ot 4 Lot 4 Ly?
2 1,4, 1,2
=—z° — 5% +2w

Define a(s) = s2 + 1s% and o(s) = 152, Then

2

V(z) < —af|zl) + o (lw])

i.e., V is an ISS-Lyapunov function and the system is ISS. )

~ Observe that ¢ = —z — 23 + zw is ISS while
& = —x + zw is not ISS (even though the linearizations are
the same)

Detour....
Lemma (Young’s inequality)

Letp,q € R such that% + % = 1. Then for any
z,y € R™ the inequality
T 1.0 o 109
2Ty < LjlP + Liy|

is satisfied.

Application: Letp = ¢ =2, > 0, a,b € R™. Then

2
ab= (sa)T(%b) < 57\a|2 + 2%2|b|2
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Lyapunov Characterizations (Another Example)

e Consider

—x1 +w
—:rg + x1x2

T, =

To =

e Candidate ISS-Lyapunov function
V(z) = %x% + %z%

e Then (%|ac|2 <V(z) < %|z|2 and)

(] l)

2 4 2
= —x] + 1w — T5 + X577

2,12 2 4, 1.4, 1.2
—r7 + 727 +w® — 2y + 502 + 527

(VV(2), f(z,w))

IN

2 4 2
=—im1 —%$2+'LU .

[Young's inequality applied to the terms z1w and z3z1.]
o Define

a(s) = {

e Then V(z) < —a(|z|) + o(Jw|) ~ the system is ISS.

1
8 N and o(s) = s>
%sz, s>1
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Section 3

System Interconnection
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System Interconnection

Consider

&1 = fi(z1,w1)
&2 = fa(z2,w2)

Note that:

@ We don't specify the dimensions but assume that the

dimensions match in the following!

w1

—»

&1 = fi(z1,wr) f——————P

wy = k(x2)

&1 = fi(z1,w1)

If system 1 and system 2 are ISS
@ is the cascade interconnection ISS?

@ is the feedback interconnetion ISS?

<

€2

&y = fa(w2,w2) P>

| i2 = f2($21w2)

€2

P. Braun & C.M. Kellett (ANU)

k(z2)
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Cascade Interconnection

w1 w2 = T1 2

&1 | _ | fi(w1, w1) —P| i1 = fi(z1, W) f————P| &2 = fo(z2, w2) —— P>
o fa(z2,z1)

Definition (Big O notation)

Consider two positive functions p1, p2 € P and let
c € R>o U {oco}. We say that p;1(s) = O[p2(s)] as s — cif
and only if

pi(s) <o

lim sup .
p2(s)

s—cC
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Cascade Interconnection

. w1 wo = 1 2
[xl] _ {fl(ﬂflvwl)] — P i1 = fi(rr, w1) f———————P| @2 = fo(x2, w2) ——— P

o fa(z2,z1)

Definition (Big O notation)

Consider two positive functions p1, p2 € P and let

c € R>o U {oco}. We say that p;1(s) = O[p2(s)] as s — cif
and only if

pr(s)|

lim sup .
p2(s)

s—cC

Example: a1, a2 € Koo,

42 _J 5 s<1,
a1(s) =4s® and wa(s) = { st s>1
Then
2
lim sup a1(s) = lim sup — | = limsup4 =4 < o0
s—0 QQ(S) s—0 S s—0

i.e., ai(s) = Olaz(s)]as s — 0.
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Cascade Interconnection

w1

G =[haw]  —— s

Definition (Big O notation)

Consider two positive functions p1, p2 € P and let

c € R>o U {oco}. We say that p;1(s) = O[p2(s)] as s — cif
and only if

pr(s)|

lim sup .
p2(s)

s—cC

Example: a1, a2 € Koo,
<
ai(s) =4s®> and az(s) = { 5y z >

Then
ai1(s) 452

as(s)

i.e., ai(s) = Olaz(s)]as s — 0.

e Similarly a1 (s) = Olaa(s)] as s — oo.

e The converse, namely a2(s) = Olai(s)]as s = ¢, ¢ €
{0, oo}, does not need to be true, in general.

lim sup
s—0

= lim sup
s—0

=limsup4 =4 < oo
s—0

s2

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control

wa = 1

x2

&2 = fo(z2, w2) F——P
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Cascade Interconnection

&1| _ [ fi(zr,wr) *il:f1($17w1)%w’2:f2(x27w2)$>

o fa(z2,z1)
Definition (Big O notation) Theorem (Changing supply pairs)
Consider two positive functions p1, p2 € P and let Consider two systems, [zT, 2217 € R™, with the cascade
c € R>o U {oco}. We say that p;1(s) = O[p2(s)] as s — cif interconnection wy = x1. Assume that V' : R™ — Rxq and
and only if o,a3 € Ko satisfy

e pl@‘ <. (VV (@), (@, w1)) < —as(ja))+o(lwr)
s—c | p2(s) @ Suppose that & € Koo satisfies o(r) = O[5(r)] as

. Then there exists a Koo SO that (¢, &
Example: a1, as € Koo, r—> 0 Xists a3 € Koo (5,a3)

5 2 s<1 satisfy _

o =12 and aals) = { % 05 ) (VT (@), £(@,w)) < —Ga () +5(wi])

Then for some V : R® — Rsg.
) >
lim sup a1 (s) = limsup |—-| = limsup4 = 4 < oo @ Suppose that a3 € Ko satisfies a3(r) = Olag(r)] as
s=0 |az(s) 520 |§ 50 r — 0. Then there exists a & € Koo SO that (&, &3)

i.e., a1(s) = Olaz(s)] as s — 0. satisfies 5 )
e Similarly a1 (s) = Olaa(s)] as s — oo. (VV (), f(z,w1)) < —as(|z])+6(Jw])

e The converse, namely a2(s) = Olai(s)]as s = ¢, ¢ €
{0, oo}, does not need to be true, in general.

for some V : R™ — R>.
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Cascade Interconnection

w2 = T 2

#1] _ [fi(er,w) —— i = e, wn) iy = fa(wa, wa)
o fa(z2,z1)

Theorem (Changing supply pairs)

Consider two systems, [zT, 21T € R™, with the cascade
interconnection wa = x1. Assume thatV : R™ — R~ and
o,a3 € Koo satisfy B
(VV (), f(z,w1)) < —as(|z])+o(|wi])
@ Suppose that & € Koo satisfies o(r) = O[(r)] as
r — oco. Then there exists a3 € K S0 that (5, a3)
satisfy

(VV (@), f(z,w1)) < —as(|e])+6(wi])

for some V : R* — R>g.

© Suppose that as € Koo satisfies as(r) = Olas(r)] as

(e
r — 0. Then there exists a ¢ € Ko so that (¢, &3)
satisfies _
(VV(2), f(z,w1)) < —as(|z])+5 (Jwil])

for some V : R — Rx.

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

We can freely choose the gain o for small arguments or we
can freely choose the decrease a3 for large arguments:

a(s) a3(s)

limsup | —=
as3(s)

5—>00

< 00

‘ < oo, and limsup'

s—0

5(s)
(We cannot modify the gain o for large arguments or the
decrease rate a3 for small arguments.)
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Cascade Interconnection

(2] =[]

Theorem (Changing supply pairs)

w1

Consider two systems, [zT,z1]T € R",

—>

#1 = fi(z1,w1)

2

———»

B2 = fa(z2,w2)

with the cascade

interconnection we = x1. Assume that V : R™ — R>q and

o,as3 € Koo satisfy
(VV(z), f(z,w1)) < —as(|z])+o(Jwi])

@ Suppose that & € Koo satisfies o (r) = r)
r — oo. Then there exists a3 € Koo S0 that (&

satisfy

O[a(r)]

as
a3)

(VV (), f(z,w1)) < —as(jz])+&(|lwi])

for some V : R* — R>g.

@ Suppose that a3 € Koo satisfies as(r) =

r — 0. Then there exists a¢ € Koo So that (

satisfies

Olas(r)] as
G,a3)

(VV (), f(z,w1)) < —as(jz])+&(lwi])

for some V : R — Rx.

V.

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

We can freely choose the gain o for small arguments or we
can freely choose the decrease a3 for large arguments:
o(s) as(s)| _
5(s) ass)| =
(We cannot modify the gain o for large arguments or the
decrease rate a3 for small arguments.)

Theorem (ISS Cascade)

Consider the system with [x1, x2]T € R™, wy = 1. If each
of the subsystems are ISS, then the cascade
interconnection is ISS with w1 as input and x as state.

lim sup
§—> 00

‘ < oo, and limsup)

s—0

Proof relies on:

Vi(z1) < —aza([z1]) + o1 (wi])
Va(z2) < —az,a2(|z2]) + o2(|wa)
« s as s 0
w(s) = { 0[[2:;;%5% as s : 00
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Cascade Interconnection

a1 _ | Sz ) $>¢1=f1(x1,w1)%
) fa(z2,21)
Example
Consider
1 = —x1 +w
2 = —a3 + z2w2

Two Lyapunov functions Vi (z1) = 122 and Va(z2) = 123 satisfy:
Vi(z1) = —22 + sywy < —a3 + %w% + %w% = —%x% aF %w%
Va(z2) = —a§ +efwa < —af + 525 + gwi = —325 + Jwj

~+ The two systems are ISS

@ The input and state dimensions match

~» The cascade interconnection ws = z1 is ISS
~» The cascade interconnection w; = z2 is ISS

v

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control

2

&2 = fo(z2,w2) ——""P

Ch. 7: Input-to-State Stability

16/25



Feedback Interconnection

wi = k(x2)

] = [y

&1 = fi(z1,w1) ———P

Consider matched ISS-Lyapunov functions satisfying
Vi(z1) < —¢(|z1]) + o1 (Jwi )
Va(z2) < —aza(|z2]) + ep(jwa|),  [e € (0,1)]
Here, matched refers to

wo={ ool 212

Define: V(z) = Vi(z1) + Va(x2). Then
V(x) = Vi(z1) + Va(z2)
< —p(l@1]) + o1 (|k(z2)]) — as2(|z2]) + ep(|z1])
—(1 = )e(z1]) — asz2(|z2]) + o1 (|k(z2))

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control

2

&2 = fa(z2,w2)

k(z2) |«

Ch. 7: Input-to-State Stability
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Feedback Interconnection

w1 = k(xQ) w2 = T1 o

&1 = f1(z1, wr) f—| &2 = fa(w2,w2)

[7'31} _ {fl(l”l:k(m))}

&2 fo(z2, 1)

k(z2) |«

Consider matched ISS-Lyapunov functions satisfying

Vi(z1) < —¢(|z1]) + o1 (Jwi])

Asymptotic stability of the origin?
o1(k(z2)]) < (1 = &asz(lz2]) = V(z(t)) <0Va(t) #0

Va(w2) < —az2(|z2]) +ep(lwa]),  [e € (0,1)] (for £ € (0, 1))
Here, matched refers to
ole) = { 0[33,1(8)], as s — 0 Theorem (ISS small-gain)
o [502(3)] y a8 — 00 Consider the feedback interconnection. Suppose we have
Define: V() = Vi(z1) + Va(z2). Then matched ISS-Lyapunov functions for the subsystems. If the

nonlinear function k : R™1 — R™2 satisfies
V(@) = Vi(@1) + Va(a2) lk(z2)] < o7 (1 = &)as 2(lz21)

< — k —
< —ellzal) + or([k(@2)]) = as 2(|jw2]) + o(l21]) for some £ € (0, 1), then the origin of the closed-loop
= -1 =e)¢(lz1]) — az,2(|z2]) + o1 (k(z2)]) system is asymptotically stable.
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Feedback Interconnection

w1 = k(xg) w2 = T1

[7'31} _ {fl(l”l:k(m))}

&2 fo(z2, 1)

k(z2) |«

&1 = fi(z1,w1) ———P

2

&2 = fa(z2,w2)

Note that:
@ The condition
lk(z2)] < o7 ' (1 = &)asz,a(|z2])
is called small-gain condition

@ Small-gain theorems place limits on the loop-gain of a
feedback system so that signals are not amplified as
they traverse the feedback loop.

@ Small-gain theorems present sufficient conditions (not
necessary conditions)

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control
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Feedback Interconnection

wi = k(x2)

&1 = f1(z1, wr) f—| &2 = fa(w2,w2)

[il} _ {fl(l”l:k(m))}

&2 fo(z2, 1)

Note that:
@ The condition
lk(z2)] < o7 ' (1 = &)asz,a(|z2])
is called small-gain condition

@ Small-gain theorems place limits on the loop-gain of a
feedback system so that signals are not amplified as
they traverse the feedback loop.

@ Small-gain theorems present sufficient conditions (not
necessary conditions)

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

k(z2) |«

Theorem

Consider the feedback interconnection with wy, 1 € R™1
andwi,xz2 € R"2 and w; = k(z2) = z9 and wa = x1. If
each of the systems is ISS with ISS-Lyapunov functions

Vi(z1) < —as1(Vi(21)) + o1(Va(z2))

Va(z2) < —asz2(Va(za)) + o2(Va(z1))

(and o3,1,03,2,01,02 € Koo) and if, for all s > 0,
a;}oag(s)<s, a;éoal(s)<s

then the origin of the feedback interconnection is
asymptotically stable.
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Feedback Interconnection

z1 = fi(z, w1) —————P &2 = fo(x2,w2)

w1 = k(z2)
fi(z1, k(22))
w'z fa(za, 1)
Example: Consider
T1 = —x1 +w;
To = 717% —+ xowo

Consider V3 (z1) = % z2 fore € (0,1) and Vg(azg)

With a3,1(s) = 554, 02(s) = 252 and ¢(s) = 2
that (verify!)

Va(z2) < —@(|z2|) + o2(|wa])
Vi(z1) < —aga(|z1]) + ee(lwi])
Feedback interconnection wy = k(z1), w1 = x2

P. Braun & C.M. Kellett (ANU)

1.2
§I2.

2 it holds

k(z2) |«

To conclude asymptotic stability the condition

Ik(@1)] < /201 =)ot = V(T = D)eat

needs to be satisfied. (Here o ' (s) = v/2s.)

Since in this example the selection of ¢ € (0, 1) in the ISS-
Lyapunov function as well as € € (0, 1) in the Theorem are
arbitrary, all of the feedback functions

k(z1) = %x%, k(z1) = %sign(ml)mf, k(z1) = %sat(m%)

satisfy the condition for e = & = 1.
Note that: For w1 = k(z2), w2 = =1, the Lyapunov functi-
ons Vi and V, are not matched.
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Feedback Interconnection

w1 = k(z2) . w2 = T1 . T2
&1 = fi(z1,w1) ———P| i2 = fo(z2,w2)
o1 fi(z1, k(z2))
& Ja(z2,21)
k(z2) |«
Example: Consider the dynamical system It holds that
. _ .3 .
o1 =~y + T1w, Vi(z1) < —as1(Vi(z1)) + o1 (Va(2))
o = —x9 + L2 .
272 Va(z2) < —a3,2(Va(z2)) + 02(Vi(z1))
The functions Vi (z1) = 22 and Va(z2) = $23 satisfy the estimates and
Vi(e1) = —2f + 23wy < —af + Lot + Jw? = —2Vi(21)? + Va(w1), %:1 ooa(s) <s
Vz(xg) = —x% + %zzwg < —xg + %x% + %w% = —%Vz(xg) + Vl(w1)2.
Define

a;éom(s) <s

~~ The origin of the feedback
1 interconnection (w1 = x2, w2 = x1) is
a3,1(s) = 252, o1(s) = =s, s, o2(s) = s?

asymptotically stable.

()=
a3z 2(s) = =
2
P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control
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Section 4

Integral-to-Integral Estimates and £5-gain
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Integral-to-Integral Estimates and £5-gain

Derivation of an alternate ISS estimate:
@ Recall: Dissipation-form ISS-Lyapunov function
LV (2(t)) = (VV(2()), f(=(t), w(t)))
< —as(|lz@®)]) + o(lw(@®)))

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control
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Integral-to-Integral Estimates and £5-gain

Derivation of an alternate ISS estimate:
@ Recall: Dissipation-form ISS-Lyapunov function

V() = (VV (1), f(2(t), w(t)))
< —ag(z@®)]) + o (jw(®)])

@ Integration
t
V(z(t)) — V(x(0)) < —/O az(|z(r)dr
t
+/O o(Jw(r)])dr.
@ Rearrange terms (and V (z) < as(|z|)):
t t
/as(lw(f)\)dTS/ as(|z(r))dr + V(2(t))
0 0
t
<Ve)+ [ oluhar

t
Ssz(Ifr(O)IH-/0 o(jw(r)))dr M

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control
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Integral-to-Integral Estimates and £5-gain

Derivation of an alternate ISS estimate:
@ Recall: Dissipation-form ISS-Lyapunov function

GV (@(1) = (VV (1)), f(2(t), w(®)))
< —ag(z@®)]) + o (jw(®)])

@ Integration
t
V(z(t)) — V(x(0)) < —/O az(|z(r)dr
t
+/0 o(Jw(r)])dr.
@ Rearrange terms (and V (z) < as(|z|)):
t t
/as(lw(T)\)dTS/ as(|z(r))dr + V(2(t))
0 0
t
< T o(|w(T T
<VEO)+ [ alu@)a

t
< as(2(0)]) + /0 o (fw(r)|)dr

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

Lemma

Consider the nonlinear system & = f(z,w). If the system
is ISS, then there exist aa, as, o € Koo such that (1) is
satisfied for allt > 0. Conversely, if & = f(z,w) is forward
complete and satisfies (1) for aa, a3, 0 € Koo forallt > 0,
then the system is ISS.
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Integral-to-Integral Estimates and £,-gain

Derivation of an alternate ISS estimate:
@ Recall: Dissipation-form ISS-Lyapunov function

GV (@(1) = (VV (1)), f(2(t), w(®)))
< —ag(z@®)]) + o (jw(®)])

@ Integration
t
V(z(t)) — V(x(0)) < —/O az(|z(r)dr
t
+/0 o(Jw(r)])dr.
@ Rearrange terms (and V (z) < as(|z|)):
t t
/as(lx(f)\)dfﬁ/ as(|z(r))dr + V(2(t))
0 0
t
< T o(|w(T T
<VEO)+ [ alu@)a

t
< as(2(0)]) + /O o (fw(r)|)dr

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

Lemma

Consider the nonlinear system & = f(z,w). If the system
is ISS, then there exist aa, as, o € Koo such that (1) is
satisfied for allt > 0. Conversely, if & = f(z,w) is forward
complete and satisfies (1) for aa, a3, 0 € Koo forallt > 0,
then the system is ISS.

Consider + = Ax + Fw; A Hurwitz.
Consider V(z) = 2T Pz, P positive definite, defined
through

ATP+ PA=-2I
It holds that (Cauchy-Schwarz and Young’s inequality)
V(z) =aT AT Pz + wT ET Pe + 2T PAx + «T PEw
=227z + 2¢T PEw < —22T 2 + 2|z| |w| | PE||
< —20Tz + 272+ |PE|?wTw = —2Tax + | PE|?wTw

Integrate and rearrange

t t
) [ ) Par < A )P + IPEIP [ fu(r)Par
0 0
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Integral-to-Integral Estimates and £»-gain (2)

Consider ¢ = Az + Fw; A Hurwitz.
Consider V(z) = 27 Pz, P positive definite, defined
through

ATP+PA=-2I.

It holds that (Cauchy-Schwarz and Young’s inequality)

V(z) = 2T AT Pz + wTET Pz + 2T PAz 4+ 2T PEw
=—20Tz + 2T PEw < —2zT 2 4 2|z| |w| || PE||
<2272+ 27z + ||PE| 2w w= -T2 +| PE||ww

Integrate and rearrange

t t
[ 18P ar < Amae |a(O) + [PEI [ fu(r)Par
0 0
With a3 (s) = s2, aa(s) = Amaxs? and o(s) = || PE||?s?:
t t
| astlahir < cxlla©) + [ oum)ar
Alternatively using the £2-norm:
‘2

217y < Amax(p)|2(0)1* + 72 [lwlZ,
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Integral-to-Integral Estimates and £,-gain (2)

Consider & = Az + Ew; A Hurwitz.
Consider V(z) = zTPxz, P positive definite, defined — -
through Definition (£,-stability)

ATpP 4+ PA=—2I. The system & = f(z, w) is said to be L2 -stable or to have
finite L2-gain if there exist constants «,~y > 0 so that

It holds that (Cauchy-Schwarz and Young’s inequality) ) ) ) )
lzllz, <&lz(0)+ v llwlz,

V(z) = 2T AT Pz + wTET Pz + 2T PAz 4+ 2T PEw

for all w € W.
=—20Tz + 2T PEw < —2zT 2 4 2|z| |w| || PE||
<2272+ 27z + ||PE| 2w w= -T2 +| PE||ww
Integrate and rearrange Note that:
. : @ It is common to assume z(0) = 0 and hence the
/ lz()2dr < )\max(P)|x(0)‘2 + ||pE||2/ |w(7)|?dr above definition is frequently written simply as
0 0

=z, <~¥*lwlZ,-
With as(s) = 52, a2(s) = Amaxs? and o(s) = || PE||2s2: 2 2

t t
[ astiair < as(a©D) + | a(uir)ar
0 0

Alternatively using the £o-norm:
2112, < Amax(p)l2(0)* + 2 [lwlZ,
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Integral-to-Integral Estimates and £»-gain (3)

Definition (£»-stability)

The system ¢ = f(x,w) is said to be L2 -stable or to have
finite Lo-gain if there exist constants x, v > 0 so that

lllZ, < lz(0)]* +*[lwlZ,

for all w € W.

Note that:

@ |tis common to assume z(0) = 0 and hence the
above definition is frequently written simply as

2 20, 112
lzliz, < llwllz,-

Connection between input-output £2-stability and the Bode
Plot for linear systems:

& = Az + FEw, y=Cz
and its representation in the frequency domain
9(s) = G(s)w(s), G(s)=C(sI — A)7'E.
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Integral-to-Integral Estimates and £»-gain (3)

Definition (L£2-stability)

The system ¢ = f(x,w) is said to be L2 -stable or to have
finite Lo-gain if there exist constants x, v > 0 so that

lllZ, < lz(0)]* +*[lwlZ,

for all w € W.

Note that:

@ It is common to assume z(0) = 0 and hence the
above definition is frequently written simply as

2 2100112
lzliz, < llwllz,-

Connection between input-output £2-stability and the Bode
Plot for linear systems:

& = Az + FEw, y=Cz
and its representation in the frequency domain

9(s) = G(s)w(s), G(s)=C(sI — A)7'E.

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

Recall Parseval’s relation:
2 e 2 1 R 2
o, = [ WP dr = o [ laGe)P de
0 T J—oco

This can be further rewritten

1 > . .
i < o [ IGGuIPlaGW)? do
™ — 00
1 o0
< esssup |Gl o [ fie) P do
w T J -0

HGHiO/O ()| dr
— IGII2 [wll2,.

~ With v = |G| the L2-gain of a linear system is the
peak magnitude of the transfer function and can be read off
from the Bode Plot.
Note that:

@ The estimate also holds for multi-input, multi-output
systems. However, in this case the definition of the
Hoo-norm for multi-input, multi-output systems has to
be used.
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System Interconnections

We assume that: w1 T1

z(0) =0 V@ P 1 = f1(z1,wr)
It holds that:

o1 +vallZ, < llv1llZ, + llv2llZ,,

Closed loop system

) w2
#ul | filen,zedd) t2 = fo(w2, w2 <—®
[ &2 ] - [ f2(z2, 1 + W2) } ( )
Then

Theorem (£, small-gain) 2117, (1 =~F93) < Allanllz, +iv3 w212,
Consider the closed loop system. If each of the If y172 < 1then 47~3 < 1and
subsystems is L-stable with gains v1,~v2 > 0, then closed

; £ = 2 1 205 112 2_2) - 12
loop system with wy = x5 + w1 andwy = x1 + s i lerl2, < T3 (Rlnl12, + 423 lal12, )
Lo-stable if y1y2 < 1. -7

Same bound on the £3-norm of z2 can be derived

Proof: L3-stability implies The bounds on z; and z2 can be combined as
2 2 2 20,7 2
||$1||1;2 < lenﬁz =7illdr + ]}2"52 HIH%Z = H‘Tl“%:z + Hz2||%2
AT 2 2_ 21, 2 2_ 2 2 - - ~ ~
<oz, + vz llozlz, +vivzllzllz, < ﬁ(’ﬁ”wl||2g5|“7§||w2||3;5f’7f7§(\\w1||2z:5*'Hw2||?:2))
172
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