Introduction to Nonlinear Control

Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett School of Engineering, Australian National University, Canberra, Australia

Part I:

- Chapter 7: Input-to-State Stability
	- 7.1 Motivation & Definition
	- 7.2 Lyapunov Characterization
	- 7.3 System Interconnection
	- 7.4 Integral-to-Integral Estimates and \mathcal{L}_2 -gain

² [Lyapunov Characterization](#page-13-0)

³ [System Interconnection](#page-23-0)

- **[Casade Interconnection](#page-24-0)**
- [Feedback Interconnection](#page-24-0)

• [System Interconnection](#page-39-0)

Section 1

[Motivation & Definition](#page-2-0)

Robust Stability: Consider the linear system

 $\dot{x} = Ax + Ew, \quad x(0) = x_0 \in \mathbb{R}^n,$

with state x , A Hurwitz, and external disturbance w Recall the solution $(x(t), t \in \mathbb{R}_{\geq 0})$

$$
x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)} Ew(\tau)d\tau
$$

Robust Stability:

Consider the linear system

 $\dot{x} = Ax + Ew, \quad x(0) = x_0 \in \mathbb{R}^n,$

with state x , A Hurwitz, and external disturbance w Recall the solution $(x(t), t \in \mathbb{R}_{\geq 0})$

$$
x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)} E w(\tau) d\tau
$$

We can calculate/estimate the impact of the disturbance:

$$
|x(t)| \leq |e^{At}x(0)| + \left| \int_0^t e^{A(t-\tau)} Ew(\tau) d\tau \right|
$$

\n
$$
\leq |e^{At}| ||x(0)| + \int_0^t ||e^{A(t-\tau)}|| ||E|| |w(\tau)| d\tau
$$

\n
$$
\leq |e^{At}| ||x(0)| + (||E||) \int_0^\infty ||e^{A\tau}|| d\tau \Big) \underset{\tau \geq 0}{\text{ess sup}} |w(\tau)|
$$

Robust Stability:

Consider the linear system

 $\dot{x} = Ax + Ew, \quad x(0) = x_0 \in \mathbb{R}^n,$

with state x , A Hurwitz, and external disturbance w Recall the solution $(x(t), t \in \mathbb{R}_{\geq 0})$

$$
x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)} E w(\tau) d\tau
$$

We can calculate/estimate the impact of the disturbance:

$$
|x(t)| \leq |e^{At}x(0)| + \left| \int_0^t e^{A(t-\tau)} Ew(\tau) d\tau \right|
$$

\n
$$
\leq |e^{At}| |x(0)| + \int_0^t |e^{A(t-\tau)}| |E||w(\tau)| d\tau
$$

\n
$$
\leq |e^{At}| |x(0)| + (|E||\int_0^\infty ||e^{A\tau}|| d\tau) \operatorname{ess} \sup_{\tau \geq 0} |w(\tau)|
$$

If we define $\gamma = \|E\| \int_0^\infty \|e^{A\tau}\| d\tau$ for fixed $t \in \mathbb{R}_{\geq 0}$, then

$$
|x(t)| \leq \left\| e^{At} \right\| |x(0)| + \gamma \|w\|_{\mathcal{L}_{\infty}}.
$$

Robust Stability: Consider the linear system

 $\dot{x} = Ax + Ew, \quad x(0) = x_0 \in \mathbb{R}^n,$

with state x , A Hurwitz, and external disturbance w Recall the solution $(x(t), t \in \mathbb{R}_{\geq 0})$

$$
x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)} Ew(\tau)d\tau
$$

We can calculate/estimate the impact of the disturbance:

$$
|x(t)| \leq |e^{At}x(0)| + \left| \int_0^t e^{A(t-\tau)} Ew(\tau) d\tau \right|
$$

\n
$$
\leq |e^{At}| ||x(0)| + \int_0^t ||e^{A(t-\tau)}|| ||E|| ||w(\tau)|| d\tau
$$

\n
$$
\leq |e^{At}| ||x(0)| + (||E||) \int_0^\infty ||e^{A\tau} || d\tau \Big) \underset{\tau \geq 0}{\text{ess sup}} |w(\tau)|
$$

If we define $\gamma = \|E\| \int_0^\infty \|e^{A\tau}\| d\tau$ for fixed $t \in \mathbb{R}_{\geq 0}$, then

$$
|x(t)| \leq \left\| e^{At} \right\| |x(0)| + \gamma \|w\|_{\mathcal{L}_{\infty}}.
$$

This bound consists of two components:

- a transient bound; the decaying effect of the initial state $x(0)$
- an estimate of the worst-case or largest input disturbance, w , that impacts the system.

Robust Stability: Consider the linear system

 $\dot{x} = Ax + Ew, \quad x(0) = x_0 \in \mathbb{R}^n,$

with state x , A Hurwitz, and external disturbance w Recall the solution $(x(t), t \in \mathbb{R}_{\geq 0})$

$$
x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Ew(\tau)d\tau
$$

We can calculate/estimate the impact of the disturbance:

$$
|x(t)| \leq |e^{At}x(0)| + \left| \int_0^t e^{A(t-\tau)} Ew(\tau) d\tau \right|
$$

\n
$$
\leq |e^{At}| ||x(0)| + \int_0^t ||e^{A(t-\tau)}|| ||E|| |w(\tau) | d\tau
$$

\n
$$
\leq |e^{At}| ||x(0)| + (||E|| \int_0^\infty ||e^{A\tau} || d\tau) \operatorname{ess} \sup_{\tau \geq 0} |w(\tau)|
$$

\nIf we define $\gamma = ||E|| \int_0^\infty ||e^{A\tau}|| d\tau$ for fixed $t \in \mathbb{R}_{\geq 0}$, then

$$
|x(t)| \leq \left\| e^{At} \right\| |x(0)| + \gamma \|w\|_{\mathcal{L}_{\infty}}.
$$

This bound consists of two components:

- a transient bound; the decaying effect of the initial state $x(0)$
- an estimate of the worst-case or largest input disturbance, w , that impacts the system.

Input-to-state stability (ISS) for nonlinear systems:

 $\dot{x} = f(x, w), \quad x(0) = x_0 \in \mathbb{R}^n$

with $w : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$. The set of allowable input functions

 $\mathcal{W} = \{w : \mathbb{R}_{\geq 0} \to \mathbb{R}^m | w \text{ essentially bounded}\}.$

Definition (Input-to-state stability)

The system is said to be *input-to-state stable (ISS)* if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that solutions satisfy

 $|x(t)| \leq \beta(|x(0)|, t) + \gamma(||w||_{\mathcal{L}_{\infty}})$

for all $x \in \mathbb{R}^n$, $w \in \mathcal{W}$, and $t \geq 0$.

• γ ∈ K: *ISS-gain*; • β ∈ KL: *transient bound*.

This bound consists of two components:

- a transient bound; the decaying effect of the initial state $x(0)$
- an estimate of the worst-case or largest input disturbance, w , that impacts the system.

Input-to-state stability (ISS) for nonlinear systems:

 $\dot{x} = f(x, w), \quad x(0) = x_0 \in \mathbb{R}^n$

with $w : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$. The set of allowable input functions $\mathcal{W} = \{w : \mathbb{R}_{\geq 0} \to \mathbb{R}^m | w \text{ essentially bounded}\}.$

Definition (Input-to-state stability)

The system is said to be *input-to-state stable (ISS)* if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that solutions satisfy

 $|x(t)| \leq \beta(|x(0)|, t) + \gamma(||w||_{\mathcal{L}_{\infty}})$

for all $x \in \mathbb{R}^n$, $w \in \mathcal{W}$, and $t \geq 0$.

 $\bullet \gamma \in \mathcal{K}$: *ISS-gain*; $\bullet \beta \in \mathcal{KL}$: *transient bound.*

This bound consists of two components:

- a transient bound; the decaying effect of the initial state $x(0)$
- an estimate of the worst-case or largest input disturbance, w , that impacts the system.

Input-to-state stability (ISS) for nonlinear systems:

 $\dot{x} = f(x, w), \quad x(0) = x_0 \in \mathbb{R}^n$

with $w : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$. The set of allowable input functions $\mathcal{W} = \{w : \mathbb{R}_{\geq 0} \to \mathbb{R}^m | w \text{ essentially bounded}\}.$

Definition (Input-to-state stability)

The system is said to be *input-to-state stable (ISS)* if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that solutions satisfy

 $|x(t)| \leq \beta(|x(0)|, t) + \gamma(||w||_{\mathcal{L}_{\infty}})$

for all $x \in \mathbb{R}^n$, $w \in \mathcal{W}$, and $t \geq 0$.

• γ ∈ K: *ISS-gain*; • β ∈ KL: *transient bound*.

An equivalent ISS inequality ($\hat{\beta} \in \mathcal{KL}$ and $\hat{\gamma} \in \mathcal{K}$): $|x(t)| \leq \max \left\{ \hat{\beta}(|x(0)|, t), \hat{\gamma}(|w||_{\mathcal{L}_{\infty}}) \right\}$

The equivalence follows from

 $a + b \le \max\{2a, 2b\} \le 2a + 2b, \quad \forall \ a, b \in \mathbb{R}_{\ge 0}.$

This bound consists of two components:

- a transient bound; the decaying effect of the initial state $x(0)$
- an estimate of the worst-case or largest input disturbance, w , that impacts the system.

Input-to-state stability (ISS) for nonlinear systems:

 $\dot{x} = f(x, w), \quad x(0) = x_0 \in \mathbb{R}^n$

with $w : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$. The set of allowable input functions $\mathcal{W} = \{w : \mathbb{R}_{\geq 0} \to \mathbb{R}^m | w \text{ essentially bounded}\}.$

Definition (Input-to-state stability)

The system is said to be *input-to-state stable (ISS)* if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that solutions satisfy

 $|x(t)| \leq \beta(|x(0)|, t) + \gamma(||w||_{\mathcal{L}_{\infty}})$

for all $x \in \mathbb{R}^n$, $w \in \mathcal{W}$, and $t \geq 0$.

• γ ∈ K: *ISS-gain*; • β ∈ KL: *transient bound*.

An equivalent ISS inequality ($\hat{\beta} \in \mathcal{KL}$ and $\hat{\gamma} \in \mathcal{K}$):

$$
|x(t)| \le \max\left\{\hat{\beta}(|x(0)|, t), \ \hat{\gamma}(\|w\|_{\mathcal{L}_{\infty}})\right\}
$$

The equivalence follows from

 $a + b \le \max\{2a, 2b\} \le 2a + 2b, \quad \forall \ a, b \in \mathbb{R}_{\ge 0}.$

Example

Recall that (A Hurwitz)

$$
\dot{x} = Ax + Ew, \quad x(0) = x_0 \in \mathbb{R}^n,
$$

satisfies

$$
|x(t)|\leq \Big\|e^{At}\Big\||x(0)|+\bigg(\|E\|\!\int_0^\infty\!\Big\|e^{A\tau}\Big\|d\tau\bigg)\|w\|_{\mathcal{L}_\infty}
$$

Then

$$
\beta(s,t) \doteq s \|e^{At}\|; \quad \gamma(s) \doteq \left(\|E\|\int_0^\infty \left\|e^{A\tau}\right\|d\tau\right)s,
$$

The ISS-gain is linear and the transient bound is given by the product of the identity and an exponentially decaying function of time.

This bound consists of two components:

- a transient bound; the decaying effect of the initial state $x(0)$
- an estimate of the worst-case or largest input disturbance, w , that impacts the system.

Input-to-state stability (ISS) for nonlinear systems:

 $\dot{x} = f(x, w), \quad x(0) = x_0 \in \mathbb{R}^n$

with $w: \mathbb{R}_{\geq 0} \to \mathbb{R}^m$. The set of allowable input functions $\mathcal{W} = \{w : \mathbb{R}_{\geq 0} \to \mathbb{R}^m | w \text{ essentially bounded}\}.$

Definition (Input-to-state stability)

The system is said to be *input-to-state stable (ISS)* if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that solutions satisfy

 $|x(t)| \leq \beta(|x(0)|, t) + \gamma(||w||_{\mathcal{L}_{\infty}})$

for all $x \in \mathbb{R}^n$, $w \in \mathcal{W}$, and $t \geq 0$.

 $\bullet \gamma \in \mathcal{K}$: *ISS-gain*; $\bullet \beta \in \mathcal{KL}$: *transient bound.*

For linear systems we can conclude that:

 \bullet A Hurwitz is sufficient for the system to be ISS.

This bound consists of two components:

- a transient bound; the decaying effect of the initial state $x(0)$
- an estimate of the worst-case or largest input disturbance, w , that impacts the system.

Input-to-state stability (ISS) for nonlinear systems:

 $\dot{x} = f(x, w), \quad x(0) = x_0 \in \mathbb{R}^n$

with $w : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$. The set of allowable input functions $\mathcal{W} = \{w : \mathbb{R}_{\geq 0} \to \mathbb{R}^m | w \text{ essentially bounded}\}.$

Definition (Input-to-state stability)

The system is said to be *input-to-state stable (ISS)* if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that solutions satisfy

 $|x(t)| \leq \beta(|x(0)|, t) + \gamma(||w||_{\mathcal{L}_{\infty}})$

for all $x \in \mathbb{R}^n$, $w \in \mathcal{W}$, and $t \geq 0$.

 $\bullet \gamma \in \mathcal{K}$: *ISS-gain*; $\bullet \beta \in \mathcal{KL}$: *transient bound.*

For linear systems we can conclude that:

 \bullet A Hurwitz is sufficient for the system to be ISS.

Example

Consider the nonlinear/bilinear system:

 $\dot{x} = -x + xw.$

- The system is 0-input globally asymptotically stable (since $w = 0$ implies $\dot{x} = -x$ and so $x(t) = x(0)e^{-t}$)
- However, consider the bounded input/disturbance $w = 2$. Then $\dot{x} = x$ and so $x(t) = x(0)e^{t}$.
- **Consequently, it is impossible to find** $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that

 $|x(t)| = |x(0)|e^t \leq \beta(|x(0)|, t) + \gamma(2).$

Section 2

[Lyapunov Characterization](#page-13-0)

Definition (Input-to-state stability)

 $\dot{x} = f(x, w)$ is said to be *input-to-state stable (ISS)* if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that solutions satisfy

 $|x(t)| \leq \beta(|x(0)|, t) + \gamma(||w||_{\mathcal{L}_{\infty}})$

for all $x \in \mathbb{R}^n$, $w \in \mathcal{W}$, and $t \geq 0$.

Theorem (ISS-Lyapunov function)

 $\dot{x} = f(x, w)$ *is ISS if and only if there exist a continuously differentiable function* $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ *and* $\alpha_1, \alpha_2, \alpha_3, \chi \in \mathcal{K}_{\infty}$ *such that for all* $x \in \mathbb{R}^n$ *and all* $w \in \mathbb{R}^m$

 $\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|)$ $|x| \geq \chi(|w|) \Rightarrow \langle \nabla V(x), f(x,w) \rangle \leq -\alpha_3(|x|).$

Definition (Input-to-state stability)

 $\dot{x} = f(x, w)$ is said to be *input-to-state stable (ISS)* if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that solutions satisfy

 $|x(t)| \leq \beta(|x(0)|, t) + \gamma(||w||_{\mathcal{L}_{\infty}})$

for all $x \in \mathbb{R}^n$, $w \in \mathcal{W}$, and $t \geq 0$.

Theorem (ISS-Lyapunov function)

 $\dot{x} = f(x, w)$ *is ISS if and only if there exist a continuously differentiable function* $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ *and* $\alpha_1, \alpha_2, \alpha_3, \chi \in \mathcal{K}_{\infty}$ *such that for all* $x \in \mathbb{R}^n$ *and all* $w \in \mathbb{R}^m$

 $\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|)$ $|x| \geq \chi(|w|) \Rightarrow \langle \nabla V(x), f(x,w) \rangle \leq -\alpha_3(|x|).$

"ISS-Lyapunov function =⇒ ISS":

- First show that $S_w = \{x \in \mathbb{R}^n : |x| \leq \chi(|w|)\}\$ is forward invariant
- Once solutions enter S_w they remain there $\forall t \geq 0$.
- \bullet The "size" of this set is dependent only on $|w|$ scaled via $\chi \in \mathcal{K}_{\infty}$.
- \bullet Outside the set S_w , the decrease condition holds
- Apply the comparison principle to obtain a transient bound $\beta \in \mathcal{KL}$.
- \bullet Combine S_{ω} and the transient bound to derive

 $|x(t)| \leq \max \{\beta(|x(0)|, t), \gamma(||w||_{\mathcal{L}_{\infty}})\}\.$

 \rightarrow The converse direction is significantly more difficult (See the book for a reference)

Definition (Input-to-state stability)

 $\dot{x} = f(x, w)$ is said to be *input-to-state stable (ISS)* if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that solutions satisfy

 $|x(t)| \leq \beta(|x(0)|, t) + \gamma(||w||_{\mathcal{L}_{\infty}})$

for all $x \in \mathbb{R}^n$, $w \in \mathcal{W}$, and $t \geq 0$.

Theorem (ISS-Lyapunov function)

 $\dot{x} = f(x, w)$ *is ISS if and only if there exist a continuously differentiable function* $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ *and* $\alpha_1, \alpha_2, \alpha_3, \chi \in \mathcal{K}_{\infty}$ *such that for all* $x \in \mathbb{R}^n$ *and all* $w \in \mathbb{R}^m$

 $\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|)$ $|x| \geq \chi(|w|) \Rightarrow \langle \nabla V(x), f(x,w) \rangle \leq -\alpha_3(|x|).$

Further comments:

• The decrease condition is equivalent to ($\sigma \in \mathcal{K}_{\infty}$)

 $\langle \nabla V(x), f(x, w) \rangle \leq -\alpha_3(|x|) + \sigma(|w|)$

("storage function V with supply pair (α_3, σ) " in some references)

or (*(exponential) dissipation-form ISS-Lyapunov function*)

 $\langle \nabla V(x), f(x, w) \rangle \leq -V(x) + \sigma(|w|)$

or (*(exponential) implication-form ISS-Lyapunov function*)

 $|x| > \chi(|w|) \Rightarrow \langle \nabla V(x), f(x, w) \rangle < -V(x)$

• Note that the functions in the different representations are not the same!

Consider

$$
\dot{x} = f(x, w) = -x - x^3 + xw, \quad x(0) = x_0 \in \mathbb{R}
$$

The candidate ISS-Lyapunov function $V(x) = \frac{1}{2}x^2$ satisfies

> $\langle \nabla V(x), f(x, w) \rangle = \langle x, -x - x^3 + xw \rangle$ $=-x^2-x^4+x^2w$

Consider

$$
\dot{x} = f(x, w) = -x - x^3 + xw, \quad x(0) = x_0 \in \mathbb{R}
$$

The candidate ISS-Lyapunov function $V(x) = \frac{1}{2}x^2$ satisfies

> $\langle \nabla V(x), f(x, w) \rangle = \langle x, -x - x^3 + xw \rangle$ $=-x^2-x^4+x^2w$

Detour....

Lemma (Young's inequality)

Let $p, q \in \mathbb{R}_{>0}$ such that $\frac{1}{p} + \frac{1}{q} = 1$. Then for any $x, y \in \mathbb{R}^n$ the inequality

$$
x^T y \le \frac{1}{p} |x|^p + \frac{1}{q} |y|^q
$$

Application: Let
$$
p = q = 2
$$
, $\varepsilon > 0$, $a, b \in \mathbb{R}^n$. Then
\n
$$
a^T b = (\varepsilon a)^T \left(\frac{1}{\varepsilon} b\right) \le \frac{\varepsilon^2}{2} |a|^2 + \frac{1}{2\varepsilon^2} |b|^2
$$

Consider

$$
\dot{x} = f(x, w) = -x - x^3 + xw, \quad x(0) = x_0 \in \mathbb{R}
$$

The candidate ISS-Lyapunov function $V(x) = \frac{1}{2}x^2$ satisfies

$$
\langle \nabla V(x), f(x, w) \rangle = \langle x, -x - x^3 + xw \rangle
$$

= -x² - x⁴ + x²w

$$
\leq -x^2 - x^4 + \frac{1}{2}x^4 + \frac{1}{2}w^2
$$

= -x² - $\frac{1}{2}x^4 + \frac{1}{2}w^2$

Detour....

Lemma (Young's inequality)

Let $p, q \in \mathbb{R}_{>0}$ such that $\frac{1}{p} + \frac{1}{q} = 1$. Then for any $x, y \in \mathbb{R}^n$ the inequality

$$
x^T y \le \frac{1}{p} |x|^p + \frac{1}{q} |y|^q
$$

$$
\begin{aligned} \text{Application: Let } p = q = 2, \, \varepsilon > 0, \, a,b \in \mathbb{R}^n. \text{ Then} \\ a^Tb = (\varepsilon a)^T (\tfrac{1}{\varepsilon} b) \leq \tfrac{\varepsilon^2}{2} |a|^2 + \tfrac{1}{2\varepsilon^2} |b|^2 \end{aligned}
$$

Consider

$$
\dot{x} = f(x, w) = -x - x^3 + xw, \quad x(0) = x_0 \in \mathbb{R}
$$

The candidate ISS-Lyapunov function $V(x) = \frac{1}{2}x^2$ satisfies

 $\langle \nabla V(x), f(x, w) \rangle = \langle x, -x - x^3 + xw \rangle$ $=-x^2-x^4+x^2w$ $\leq -x^2 - x^4 + \frac{1}{2}x^4 + \frac{1}{2}w^2$ $=-x^2 - \frac{1}{2}x^4 + \frac{1}{2}w^2$ Define $\alpha(s) \doteq s^2 + \frac{1}{2}s^4$ and $\sigma(s) \doteq \frac{1}{2}s^2$, Then $V(x) \leq -\alpha(|x|) + \sigma(|w|)$ i.e., V is an ISS-Lyapunov function and the system is ISS. Detour....

Lemma (Young's inequality)

Let $p, q \in \mathbb{R}_{>0}$ such that $\frac{1}{p} + \frac{1}{q} = 1$. Then for any $x, y \in \mathbb{R}^n$ the inequality

$$
x^T y \le \frac{1}{p} |x|^p + \frac{1}{q} |y|^q
$$

$$
\begin{aligned} \text{Application:} \ \text{Let} \ p = q = 2, \ \varepsilon > 0, \ a, b \in \mathbb{R}^n. \ \text{Then} \\ a^Tb = (\varepsilon a)^T (\tfrac{1}{\varepsilon} b) \leq \tfrac{\varepsilon^2}{2} |a|^2 + \tfrac{1}{2\varepsilon^2} |b|^2 \end{aligned}
$$

Consider

$$
\dot{x} = f(x, w) = -x - x^3 + xw, \quad x(0) = x_0 \in \mathbb{R}
$$

The candidate ISS-Lyapunov function $V(x) = \frac{1}{2}x^2$ satisfies

 $\langle \nabla V(x), f(x, w) \rangle = \langle x, -x - x^3 + xw \rangle$ $=-x^2-x^4+x^2w$ $\leq -x^2 - x^4 + \frac{1}{2}x^4 + \frac{1}{2}w^2$ $=-x^2 - \frac{1}{2}x^4 + \frac{1}{2}w^2$ Define $\alpha(s) \doteq s^2 + \frac{1}{2}s^4$ and $\sigma(s) \doteq \frac{1}{2}s^2$, Then $V(x) \leq -\alpha(|x|) + \sigma(|w|)$ i.e., V is an ISS-Lyapunov function and the system is ISS.

→ Observe that $\dot{x} = -x - x^3 + xw$ is ISS while $\dot{x} = -x + xw$ is not ISS (even though the linearizations are the same)

Detour....

Lemma (Young's inequality)

Let $p, q \in \mathbb{R}_{>0}$ such that $\frac{1}{p} + \frac{1}{q} = 1$. Then for any $x, y \in \mathbb{R}^n$ the inequality

$$
x^T y \le \frac{1}{p} |x|^p + \frac{1}{q} |y|^q
$$

Application: Let
$$
p = q = 2
$$
, $\varepsilon > 0$, $a, b \in \mathbb{R}^n$. Then\n
$$
a^T b = (\varepsilon a)^T \left(\frac{1}{\varepsilon} b\right) \le \frac{\varepsilon^2}{2} |a|^2 + \frac{1}{2\varepsilon^2} |b|^2
$$

• Consider

$$
\begin{array}{rcl}\n\dot{x}_1 &=& -x_1 + w \\
\dot{x}_2 &=& -x_2^3 + x_1 x_2\n\end{array}
$$

• Candidate ISS-Lyapunov function

$$
V(x) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2.
$$

• Then
$$
(\frac{1}{2}|x|^2 \leq V(x) \leq \frac{1}{2}|x|^2
$$
 and)
\n $\langle \nabla V(x), f(x, w) \rangle = \left\langle \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} -x_1 + w \\ -x_2^3 + x_1 x_2 \end{bmatrix} \right\rangle$
\n
$$
= -x_1^2 + x_1 w - x_2^4 + x_2^2 x_1
$$

\n
$$
\leq -x_1^2 + \frac{1}{4}x_1^2 + w^2 - x_2^4 + \frac{1}{2}x_2^4 + \frac{1}{2}x_1^2
$$

\n
$$
= -\frac{1}{4}x_1^2 - \frac{1}{2}x_2^4 + w^2.
$$

[Young's inequality applied to the terms x_1w and $x_2^2x_1$.] • Define

$$
\alpha(s) \doteq \begin{cases} \frac{1}{8}s^4, & s \le 1\\ \frac{1}{8}s^2, & s > 1 \end{cases} \text{ and } \sigma(s) \doteq s^2
$$

• Then $\dot{V}(x) \le -\alpha(|x|) + \sigma(|w|) \rightsquigarrow$ the system is ISS.

Section 3

[System Interconnection](#page-23-0)

Consider

$$
\dot{x}_1 = f_1(x_1, w_1)
$$

$$
\dot{x}_2 = f_2(x_2, w_2)
$$

Note that:

• We don't specify the dimensions but assume that the dimensions match in the following!

If system 1 and system 2 are ISS

- is the cascade interconnection ISS?
- is the feedback interconnetion ISS?

$$
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} f_1(x_1, w_1) \\ f_2(x_2, x_1) \end{bmatrix} \qquad w_1 \qquad w_2 = x_1
$$
\n
$$
\begin{bmatrix} \dot{x}_1 = f_1(x_1, w_1) & w_2 = x_1 \\ \dot{x}_2 = f_2(x_2, w_2) & \dot{x}_2 = f_2(x_2, w_2) \end{bmatrix}
$$
\n
$$
\begin{aligned} \text{Definition (Big } \text{O notation)}\\ \text{Consider two positive functions } \rho_1, \rho_2 \in \mathcal{P} \text{ and let} \\ c \in \mathbb{R}_{\geq 0} \cup \{\infty\}. \text{ We say that } \rho_1(s) = \mathcal{O}[\rho_2(s)] \text{ as } s \to c \text{ if} \\ \text{and only if} \\ \limsup_{s \to c} \left| \frac{\rho_1(s)}{\rho_2(s)} \right| < \infty. \end{aligned}
$$
\nExample: $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$,

\n
$$
\alpha_1(s) = 4s^2 \quad \text{and} \quad \alpha_2(s) = \begin{cases} s^2, & s \leq 1, \\ s^4, & s > 1. \end{cases}
$$
\nThen

\n
$$
\limsup_{s \to 0} \left| \frac{\alpha_1(s)}{\alpha_2(s)} \right| = \limsup_{s \to 0} \left| \frac{4s^2}{s^2} \right| = \limsup_{s \to 0} 4 = 4 < \infty
$$

i.e.,
$$
\alpha_1(s) = \mathcal{O}[\alpha_2(s)]
$$
 as $s \to 0$.

$$
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} f_1(x_1, w_1) \\ f_2(x_2, x_1) \end{bmatrix} \longrightarrow w_1 \longrightarrow w_1 \longrightarrow w_1 = f_1(x_1, w_1) \longrightarrow w_2 = x_1 \longrightarrow w_2 = f_2(x_2, w_2) \longrightarrow w_2 = x_2 \longrightarrow w_1
$$

Definition (Big $\mathcal O$ notation)

Consider two positive functions $\rho_1, \rho_2 \in \mathcal{P}$ and let $c \in \mathbb{R}_{\geq 0} \cup \{\infty\}$. We say that $\rho_1(s) = \mathcal{O}(\rho_2(s))$ as $s \to c$ if and only if

 $\limsup_{s\to c}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array}$ $\rho_1(s)$ $\rho_2(s)$ $< \infty$.

Example: $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$,

$$
\alpha_1(s) = 4s^2 \quad \text{and} \quad \alpha_2(s) = \begin{cases} s^2, & s \le 1, \\ s^4, & s > 1. \end{cases}
$$

Then

$$
\limsup_{s\to 0}\left|\frac{\alpha_1(s)}{\alpha_2(s)}\right|=\limsup_{s\to 0}\left|\frac{4s^2}{s^2}\right|=\limsup_{s\to 0}4=4<\infty
$$

i.e.,
$$
\alpha_1(s) = \mathcal{O}[\alpha_2(s)]
$$
 as $s \to 0$.
\n**Similarly** $\alpha_1(s) = \mathcal{O}[\alpha_2(s)]$ as $s \to \infty$.
\n**The converse, namely** $\alpha_2(s) = \mathcal{O}[\alpha_1(s)]$ as $s \to c, c \in \{0, \infty\}$, does not need to be true, in general.

Theorem (Changing supply pairs)

Consider two systems, $[x_1^T, x_2^T]^T \in \mathbb{R}^n$, with the cascade *interconnection* $w_2 = x_1$. *Assume that* $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and $\sigma, \alpha_3 \in \mathcal{K}_{\infty}$ satisfy $\langle \nabla V(x), f(x, w_1) \rangle \leq -\alpha_3(|x|) + \sigma(|w_1|)$

1 Suppose that $\tilde{\sigma} \in \mathcal{K}_{\infty}$ satisfies $\sigma(r) = \mathcal{O}[\tilde{\sigma}(r)]$ as $r \to \infty$. Then there exists $\tilde{\alpha}_3 \in \mathcal{K}_{\infty}$ so that $(\tilde{\sigma}, \tilde{\alpha}_3)$ *satisfy*

 $\langle \nabla \widetilde{V}(x), f(x, w_1) \rangle \leq -\tilde{\alpha}_3(|x|) + \tilde{\sigma}(|w_1|)$

for some $\widetilde{V}: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$.

2 *Suppose that* $\tilde{\alpha}_3 \in \mathcal{K}_{\infty}$ *satisfies* $\tilde{\alpha}_3(r) = \mathcal{O}(\alpha_3(r))$ *as* $r \to 0$. Then there exists a $\tilde{\sigma} \in \mathcal{K}_{\infty}$ so that $(\tilde{\sigma}, \tilde{\alpha}_3)$ *satisfies* $\langle \nabla \widetilde{V}(x), f(x, w_1) \rangle \leq -\tilde{\alpha}_3(|x|) + \tilde{\sigma}(|w_1|)$ *for some* $\widetilde{V}: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$.

$$
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} f_1(x_1, w_1) \\ f_2(x_2, x_1) \end{bmatrix} \qquad w_1 \qquad w_2 = x_1 \qquad w_2 = x_2 \qquad w_2 = f_2(x_2, w_2) \qquad x_2 \qquad w_2 = x_2 \
$$

Theorem (Changing supply pairs)

Consider two systems, $[x_1^T, x_2^T]^T \in \mathbb{R}^n$, with the cascade *interconnection* $w_2 = x_1$. *Assume that* $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ *and* $\sigma, \alpha_3 \in \mathcal{K}_{\infty}$ satisfy

$\langle \nabla V(x), f(x, w_1) \rangle \leq -\alpha_3(|x|) + \sigma(|w_1|)$

1 Suppose that $\tilde{\sigma} \in \mathcal{K}_{\infty}$ satisfies $\sigma(r) = \mathcal{O}[\tilde{\sigma}(r)]$ as $r \to \infty$. Then there exists $\tilde{\alpha}_3 \in \mathcal{K}_{\infty}$ so that $(\tilde{\sigma}, \tilde{\alpha}_3)$ *satisfy*

 $\langle \nabla \tilde{V}(x), f(x, w_1) \rangle \leq -\tilde{\alpha}_3(|x|) + \tilde{\sigma}(|w_1|)$

for some $\widetilde{V}: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$.

2 *Suppose that* $\tilde{\alpha}_3 \in \mathcal{K}_{\infty}$ *satisfies* $\tilde{\alpha}_3(r) = \mathcal{O}(\alpha_3(r))$ *as* $r \to 0$. Then there exists a $\tilde{\sigma} \in \mathcal{K}_{\infty}$ so that $(\tilde{\sigma}, \tilde{\alpha}_3)$ *satisfies* $\langle \nabla \widetilde{V}(x), f(x, w_1) \rangle \leq -\tilde{\alpha}_3(|x|) + \tilde{\sigma}(|w_1|)$ *for some* $\widetilde{V}: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$.

We can freely choose the gain σ for small arguments or we can freely choose the decrease α_3 for large arguments:

$$
\limsup_{s \to \infty} \left| \frac{\sigma(s)}{\tilde{\sigma}(s)} \right| < \infty, \quad \text{and} \quad \limsup_{s \to 0} \left| \frac{\tilde{\alpha}_3(s)}{\alpha_3(s)} \right| < \infty.
$$

(We cannot modify the gain σ for large arguments or the decrease rate α_3 for small arguments.)

$$
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} f_1(x_1, w_1) \\ f_2(x_2, x_1) \end{bmatrix} \longrightarrow \begin{bmatrix} w_1 \\ \dot{x}_1 = f_1(x_1, w_1) \end{bmatrix} \longrightarrow \begin{bmatrix} w_2 = x_1 \\ \dot{x}_2 = f_2(x_2, w_2) \end{bmatrix} \longrightarrow \begin{bmatrix} x_2 \\ \dot{x}_1 = f_1(x_1, w_1) \end{bmatrix}
$$

Theorem (Changing supply pairs)

Consider two systems, $[x_1^T, x_2^T]^T \in \mathbb{R}^n$, with the cascade *interconnection* $w_2 = x_1$. *Assume that* $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ *and* $\sigma, \alpha_3 \in \mathcal{K}_{\infty}$ satisfy

$\langle \nabla V(x), f(x, w_1) \rangle \leq -\alpha_3(|x|) + \sigma(|w_1|)$

1 Suppose that $\tilde{\sigma} \in \mathcal{K}_{\infty}$ satisfies $\sigma(r) = \mathcal{O}[\tilde{\sigma}(r)]$ as $r \to \infty$. Then there exists $\tilde{\alpha}_3 \in \mathcal{K}_{\infty}$ so that $(\tilde{\sigma}, \tilde{\alpha}_3)$ *satisfy*

 $\langle \nabla \tilde{V}(x), f(x, w_1) \rangle \leq -\tilde{\alpha}_3(|x|) + \tilde{\sigma}(|w_1|)$

for some $\widetilde{V}: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$.

2 *Suppose that* $\tilde{\alpha}_3 \in \mathcal{K}_{\infty}$ *satisfies* $\tilde{\alpha}_3(r) = \mathcal{O}(\alpha_3(r))$ *as* $r \to 0$. Then there exists a $\tilde{\sigma} \in \mathcal{K}_{\infty}$ so that $(\tilde{\sigma}, \tilde{\alpha}_3)$ *satisfies* $\langle \nabla \widetilde{V}(x), f(x, w_1) \rangle \leq -\tilde{\alpha}_3(|x|) + \tilde{\sigma}(|w_1|)$ *for some* $\widetilde{V}: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$.

We can freely choose the gain σ for small arguments or we can freely choose the decrease α_3 for large arguments:

$$
\limsup_{s \to \infty} \left| \frac{\sigma(s)}{\tilde{\sigma}(s)} \right| < \infty, \quad \text{and} \quad \limsup_{s \to 0} \left| \frac{\tilde{\alpha}_3(s)}{\alpha_3(s)} \right| < \infty.
$$

(We cannot modify the gain σ for large arguments or the decrease rate α_3 for small arguments.)

Theorem (ISS Cascade)

Consider the system with $[x_1, x_2]^T \in \mathbb{R}^n$, $w_2 = x_1$. If each *of the subsystems are ISS, then the cascade interconnection is ISS with* w_1 *as input and* x *as state.*

Proof relies on:

$$
\dot{V}_1(x_1) \le -\alpha_{3,1}(|x_1|) + \sigma_1(|w_1|)
$$
\n
$$
\dot{V}_2(x_2) \le -\alpha_{3,2}(|x_2|) + \sigma_2(|w_2|)
$$
\n
$$
\varphi(s) = \begin{cases}\nO[\alpha_{3,1}(s)], & \text{as } s \to 0 \\
O[2\sigma_2(s)], & \text{as } s \to \infty\n\end{cases}
$$

$$
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} f_1(x_1, w_1) \\ f_2(x_2, x_1) \end{bmatrix} \longrightarrow \begin{bmatrix} w_1 \\ \dot{x}_1 = f_1(x_1, w_1) \end{bmatrix} \longrightarrow \begin{bmatrix} w_2 = x_1 \\ w_2 = f_2(x_2, w_2) \end{bmatrix} \longrightarrow \begin{bmatrix} x_2 \\ \dot{x}_2 = f_2(x_2, w_2) \end{bmatrix}
$$

Example

Consider

 $\dot{x}_1 = -x_1 + w_1$ $\dot{x}_2 = -x_2^3 + x_2w_2$ Two Lyapunov functions $V_1(x_1) = \frac{1}{2}x_1^2$ and $V_2(x_2) = \frac{1}{2}x_2^2$ satisfy: $\dot{V}_1(x_1) = -x_1^2 + x_1w_1 \leq -x_1^2 + \frac{1}{2}x_1^2 + \frac{1}{2}w_1^2 = -\frac{1}{2}x_1^2 + \frac{1}{2}w_1^2$ $V_2(x_2) = -x_2^4 + x_2^2 w_2 \le -x_2^4 + \frac{1}{2}x_2^4 + \frac{1}{2}w_2^2 = -\frac{1}{2}x_2^4 + \frac{1}{2}w_2^2$

- \rightarrow The two systems are ISS
- The input and state dimensions match \bullet
- The cascade interconnection $w_2 = x_1$ is ISS
- \rightsquigarrow The cascade interconnection $w_1 = x_2$ is ISS

Consider matched ISS-Lyapunov functions satisfying

$$
\dot{V}_1(x_1) \le -\varphi(|x_1|) + \sigma_1(|w_1|)
$$

\n
$$
\dot{V}_2(x_2) \le -\alpha_{3,2}(|x_2|) + \varepsilon \varphi(|w_2|), \qquad [\varepsilon \in (0, 1)]
$$

Here, matched refers to

 $\lceil x_1 \rceil$ \dot{x}_2

$$
\varphi(s) = \begin{cases} \mathcal{O}[\alpha_{3,1}(s)], & \text{as } s \to 0\\ \mathcal{O}\left[\frac{1}{\varepsilon}\sigma_2(s)\right], & \text{as } s \to \infty \end{cases}
$$

Define: $V(x) = V_1(x_1) + V_2(x_2)$. Then

$$
\dot{V}(x) = \dot{V}_1(x_1) + \dot{V}_2(x_2) \n\leq -\varphi(|x_1|) + \sigma_1(|k(x_2)|) - \alpha_{3,2}(|x_2|) + \varepsilon\varphi(|x_1|) \n= -(1 - \varepsilon)\varphi(|x_1|) - \alpha_{3,2}(|x_2|) + \sigma_1(|k(x_2)|)
$$

$$
w_1 = k(x_2)
$$

 $w_2 = x_1$
 $x_2 = f_2(x_2, w_2)$
 x_2
 $k(x_2)$

$$
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} f_1(x_1, k(x_2)) \\ f_2(x_2, x_1) \end{bmatrix}
$$

Consider matched ISS-Lyapunov functions satisfying

$$
\dot{V}_1(x_1) \le -\varphi(|x_1|) + \sigma_1(|w_1|)
$$
\n
$$
\dot{V}_2(x_2) \le -\alpha_{3,2}(|x_2|) + \varepsilon \varphi(|w_2|), \qquad [\varepsilon \in (0, 1)]
$$
\nand

Here, matched refers to

$$
\varphi(s) = \begin{cases} \mathcal{O}[\alpha_{3,1}(s)], & \text{as } s \to 0\\ \mathcal{O}\left[\frac{1}{\varepsilon}\sigma_2(s)\right], & \text{as } s \to \infty \end{cases}
$$

Define: $V(x) = V_1(x_1) + V_2(x_2)$. Then

$$
\dot{V}(x) = \dot{V}_1(x_1) + \dot{V}_2(x_2)
$$
\n
$$
\leq -\varphi(|x_1|) + \sigma_1(|k(x_2)|) - \alpha_{3,2}(|x_2|) + \varepsilon\varphi(|x_1|)
$$
\n
$$
= -(1 - \varepsilon)\varphi(|x_1|) - \alpha_{3,2}(|x_2|) + \sigma_1(|k(x_2)|)
$$

Asymptotic stability of the origin?

 $\sigma_1(|k(x_2)|) \leq (1-\bar{\varepsilon})\alpha_{3,2}(|x_2|) \Rightarrow V(x(t)) < 0 \,\forall x(t) \neq 0$ (for $\bar{\varepsilon} \in (0,1)$)

Theorem (ISS small-gain)

Consider the feedback interconnection. Suppose we have matched ISS-Lyapunov functions for the subsystems. If the nonlinear function $k : \mathbb{R}^{n_1} \rightarrow \mathbb{R}^{m_2}$ *satisfies*

$$
|k(x_2)| \leq \sigma_1^{-1} \left((1 - \bar{\varepsilon}) \alpha_{3,2}(|x_2|) \right)
$$

for some $\bar{\varepsilon} \in (0, 1)$ *, then the origin of the closed-loop system is asymptotically stable.*

Note that:

 $\lceil x_1 \rceil$ \dot{x}_2

• The condition

 $|k(x_2)| \leq \sigma_1^{-1} ((1 - \bar{\varepsilon}) \alpha_{3,2}(|x_2|))$

is called small-gain condition

- Small-gain theorems place limits on the loop-gain of a feedback system so that signals are not amplified as they traverse the feedback loop.
- Small-gain theorems present sufficient conditions (not necessary conditions)

1

 $=\begin{bmatrix} f_1(x_1, k(x_2)) \\ f_2(x_2, x_1) \end{bmatrix}$ $f_2(x_2, x_1)$

Note that:

 $\lceil x_1 \rceil$ \dot{x}_2

• The condition

 $|k(x_2)| \leq \sigma_1^{-1} ((1 - \bar{\varepsilon}) \alpha_{3,2}(|x_2|))$

is called small-gain condition

- Small-gain theorems place limits on the loop-gain of a feedback system so that signals are not amplified as they traverse the feedback loop.
- Small-gain theorems present sufficient conditions (not necessary conditions)

Theorem

Consider the feedback interconnection with $w_2, x_1 \in \mathbb{R}^{n_1}$ *and* $w_1, x_2 \in \mathbb{R}^{n_2}$ *and* $w_1 = k(x_2) = x_2$ *and* $w_2 = x_1$ *. If each of the systems is ISS with ISS-Lyapunov functions*

$$
\dot{V}_1(x_1) \le -\alpha_{3,1}(V_1(x_1)) + \sigma_1(V_2(x_2))
$$

$$
\dot{V}_2(x_2) \le -\alpha_{3,2}(V_2(x_2)) + \sigma_2(V_1(x_1))
$$

(and $\alpha_{3,1}, \alpha_{3,2}, \sigma_1, \sigma_2 \in \mathcal{K}_{\infty}$ *) and if, for all* $s \geq 0$ *,*

 $\alpha_{3,1}^{-1} \circ \sigma_2(s) < s, \hspace{1cm} \alpha_{3,2}^{-1} \circ \sigma_1(s) < s$

then the origin of the feedback interconnection is asymptotically stable.

1

 $=\left[\begin{array}{c} f_1(x_1, k(x_2)) \\ f_2(x_2, x_1) \end{array} \right]$ $f_2(x_2, x_1)$

Example: Consider

 $\lceil x_1 \rceil$ \dot{x}_2

$$
\dot{x}_1 = -x_1 + w_1
$$

$$
\dot{x}_2 = -x_2^3 + x_2w_2
$$

Consider $V_1(x_1) = \frac{\varepsilon}{2} x_1^2$ for $\varepsilon \in (0, 1)$ and $V_2(x_2) = \frac{1}{2} x_2^2$. With $\alpha_{3,1}(s) = \frac{\varepsilon}{2}s^4$, $\sigma_2(s) = \frac{1}{2}s^2$ and $\varphi(s) = \frac{1}{2}s^2$ it holds that (verify!)

$$
V_2(x_2) \le -\varphi(|x_2|) + \sigma_2(|w_2|)
$$

$$
V_1(x_1) \le -\alpha_{3,1}(|x_1|) + \varepsilon \varphi(|w_1|)
$$

Feedback interconnection $w_2 = k(x_1), w_1 = x_2$

To conclude asymptotic stability the condition

$$
|k(x_1)| \le \sqrt{2(1-\bar{\varepsilon})\frac{\varepsilon}{2}|x_1|^4} = \sqrt{(1-\bar{\varepsilon})\varepsilon}x_1^2
$$

needs to be satisfied. (Here $\sigma_2^{-1}(s) = \sqrt{2s}$.)

Since in this example the selection of $\varepsilon \in (0,1)$ in the ISS-Lyapunov function as well as $\bar{\varepsilon} \in (0,1)$ in the Theorem are arbitrary, all of the feedback functions

$$
k(x_1) = \frac{1}{2}x_1^2, \ \ k(x_1) = \frac{1}{2}\operatorname{sign}(x_1)x_1^2, \ \ k(x_1) = \frac{1}{2}\operatorname{sat}(x_1^2)
$$

satisfy the condition for $\varepsilon = \bar{\varepsilon} = \frac{1}{2}$.

Note that: For $w_1 = k(x_2), w_2 = x_1$, the Lyapunov functions V_1 and V_2 are not matched.

$$
w_1 = k(x_2)
$$

$$
x_1 = f_1(x_1, w_1)
$$

$$
w_2 = x_1
$$

$$
x_2 = f_2(x_2, w_2)
$$

$$
k(x_2)
$$

 $\lceil x_1 \rceil$ \dot{x}_2 $=\begin{bmatrix} f_1(x_1, k(x_2)) \\ f_2(x_2, x_1) \end{bmatrix}$ $f_2(x_2, x_1)$ 1

Example: Consider the dynamical system

$$
\dot{x}_1 = -x_1^3 + x_1 w_1, \n\dot{x}_2 = -x_2 + \frac{1}{2} w_2^2.
$$

The functions $V_1(x_1) = \frac{1}{2}x_1^2$ and $V_2(x_2) = \frac{1}{2}x_2^2$ satisfy the estimates

$$
\dot{V}_1(x_1) = -x_1^4 + x_1^2 w_1 \le -x_1^4 + \frac{1}{2}x_1^4 + \frac{1}{2}w_1^2 = -2V_1(x_1)^2 + V_2(w_1),
$$

\n
$$
\dot{V}_2(x_2) = -x_2^2 + \frac{1}{2}x_2w_2^2 \le -x_2^2 + \frac{1}{4}x_2^2 + \frac{1}{4}w_2^4 = -\frac{3}{2}V_2(x_2) + V_1(w_1)^2.
$$

Define

$$
\alpha_{3,1}(s) = 2s^2
$$
, $\sigma_1(s) = \frac{1}{2}s$, $\alpha_{3,2}(s) = \frac{3}{2}s$, $\sigma_2(s) = s^2$

It holds that

 $\dot{V}_1(x_1) \leq -\alpha_{3,1}(V_1(x_1)) + \sigma_1(V_2(x_2))$ $\dot{V}_2(x_2) \leq -\alpha_{3,2}(V_2(x_2)) + \sigma_2(V_1(x_1))$

and

$$
\alpha_{3,1}^{-1} \circ \sigma_2(s) < s
$$
\n
$$
\alpha_{3,2}^{-1} \circ \sigma_1(s) < s
$$

 \rightsquigarrow The origin of the feedback interconnection $(w_1 = x_2, w_2 = x_1)$ is asymptotically stable.

Section 4

[Integral-to-Integral Estimates and](#page-38-0) \mathcal{L}_2 -gain

Integral-to-Integral Estimates and \mathcal{L}_2 -gain

Derivation of an alternate ISS estimate:

• Recall: Dissipation-form ISS-Lyapunov function

 $\frac{d}{dt}V(x(t)) = \langle \nabla V(x(t)), f(x(t), w(t)) \rangle$ $\langle -\alpha_3(|x(t)|) + \sigma(|w(t)|) \rangle$

Integral-to-Integral Estimates and \mathcal{L}_2 -gain

Derivation of an alternate ISS estimate:

• Recall: Dissipation-form ISS-Lyapunov function

 $\frac{d}{dt}V(x(t)) = \langle \nabla V(x(t)), f(x(t), w(t)) \rangle$ $\langle -\alpha_3(|x(t)|) + \sigma(|w(t)|) \rangle$

• Integration

$$
V(x(t)) - V(x(0)) \leq -\int_0^t \alpha_3(|x(\tau)|)d\tau
$$

$$
+ \int_0^t \sigma(|w(\tau)|)d\tau.
$$

• Rearrange terms (and $V(x) \leq \alpha_2(|x|)$):

$$
\int_0^t \alpha_3(|x(\tau)|)d\tau \le \int_0^t \alpha_3(|x(\tau)|)d\tau + V(x(t))
$$

$$
\le V(x(0)) + \int_0^t \sigma(|w(\tau)|)d\tau
$$

$$
\le \alpha_2(|x(0)|) + \int_0^t \sigma(|w(\tau)|)d\tau
$$
 (1)

Derivation of an alternate ISS estimate:

• Recall: Dissipation-form ISS-Lyapunov function

 $\frac{d}{dt}V(x(t)) = \langle \nabla V(x(t)), f(x(t), w(t)) \rangle$ $\langle -\alpha_3(|x(t)|) + \sigma(|w(t)|) \rangle$

• Integration

$$
V(x(t)) - V(x(0)) \le -\int_0^t \alpha_3(|x(\tau)|)d\tau
$$

$$
+ \int_0^t \sigma(|w(\tau)|)d\tau.
$$

• Rearrange terms (and $V(x) \leq \alpha_2(|x|)$):

$$
\int_0^t \alpha_3(|x(\tau)|)d\tau \le \int_0^t \alpha_3(|x(\tau)|)d\tau + V(x(t))
$$

$$
\le V(x(0)) + \int_0^t \sigma(|w(\tau)|)d\tau
$$

$$
\le \alpha_2(|x(0)|) + \int_0^t \sigma(|w(\tau)|)d\tau
$$
 (1)

Lemma

Consider the nonlinear system $\dot{x} = f(x, w)$ *. If the system is ISS, then there exist* $\alpha_2, \alpha_3, \sigma \in \mathcal{K}_{\infty}$ *such that* [\(1\)](#page-39-1) *is satisfied for all* $t > 0$ *. Conversely, if* $\dot{x} = f(x, w)$ *is forward complete and satisfies* [\(1\)](#page-39-1) *for* $\alpha_2, \alpha_3, \sigma \in \mathcal{K}_{\infty}$ *for all* $t \geq 0$ *, then the system is ISS.*

Derivation of an alternate ISS estimate:

• Recall: Dissipation-form ISS-Lyapunov function

 $\frac{d}{dt}V(x(t)) = \langle \nabla V(x(t)), f(x(t), w(t)) \rangle$ $\langle -\alpha_3(|x(t)|) + \sigma(|w(t)|) \rangle$

• Integration

$$
V(x(t)) - V(x(0)) \le -\int_0^t \alpha_3(|x(\tau)|)d\tau
$$

$$
+ \int_0^t \sigma(|w(\tau)|)d\tau.
$$

• Rearrange terms (and $V(x) \leq \alpha_2(|x|)$):

$$
\int_0^t \alpha_3(|x(\tau)|)d\tau \le \int_0^t \alpha_3(|x(\tau)|)d\tau + V(x(t))
$$

$$
\le V(x(0)) + \int_0^t \sigma(|w(\tau)|)d\tau
$$

$$
\le \alpha_2(|x(0)|) + \int_0^t \sigma(|w(\tau)|)d\tau
$$
 (1)

Lemma

Consider the nonlinear system $\dot{x} = f(x, w)$. If the system *is ISS, then there exist* $\alpha_2, \alpha_3, \sigma \in \mathcal{K}_{\infty}$ *such that* [\(1\)](#page-39-1) *is satisfied for all* $t > 0$ *. Conversely, if* $\dot{x} = f(x, w)$ *is forward complete and satisfies* [\(1\)](#page-39-1) *for* $\alpha_2, \alpha_3, \sigma \in \mathcal{K}_{\infty}$ *for all* $t > 0$ *, then the system is ISS.*

Consider $\dot{x} = Ax + Ew$; A Hurwitz. Consider $V(x) = x^T P x$, P positive definite, defined through

$$
A^T P + P A = -2I.
$$

It holds that (Cauchy-Schwarz and Young's inequality)

$$
\dot{V}(x) = x^T A^T P x + w^T E^T P x + x^T P A x + x^T P E w \n= -2x^T x + 2x^T P E w \le -2x^T x + 2|x| ||w| ||PE|| \n\le -2x^T x + x^T x + ||P E||^2 w^T w = -x^T x + ||P E||^2 w^T w
$$

Integrate and rearrange

1)
$$
\int_0^t |x(\tau)|^2 d\tau \leq \lambda_{\max(P)} |x(0)|^2 + ||PE||^2 \int_0^t |w(\tau)|^2 d\tau
$$

Integral-to-Integral Estimates and \mathcal{L}_2 -gain (2)

Consider $\dot{x} = Ax + Ew$; A Hurwitz. Consider $V(x) = x^T P x$, P positive definite, defined through

$$
A^T P + P A = -2I.
$$

It holds that (Cauchy-Schwarz and Young's inequality)

$$
\dot{V}(x) = x^T A^T P x + w^T E^T P x + x^T P A x + x^T P E w \n= -2x^T x + 2x^T P E w \le -2x^T x + 2|x| |w| ||P E|| \n\le -2x^T x + x^T x + ||P E||^2 w^T w = -x^T x + ||P E||^2 w^T w
$$

Integrate and rearrange

$$
\int_0^t |x(\tau)|^2 d\tau \leq \lambda_{\max(P)} |x(0)|^2 + ||PE||^2 \int_0^t |w(\tau)|^2 d\tau
$$

With $\alpha_3(s) = s^2$, $\alpha_2(s) = \lambda_{\max} s^2$ and $\sigma(s) = ||PE||^2 s^2$:

$$
\int_0^t \alpha_3(|x(t)|) d\tau \leq \alpha_2(|x(0)|) + \int_0^t \sigma(|w(\tau)|) d\tau
$$

Alternatively using the \mathcal{L}_2 -norm:

$$
||x||_{\mathcal{L}_2}^2 \leq \lambda_{\max(P)} |x(0)|^2 + \gamma^2 ||w||_{\mathcal{L}_2}^2
$$

Integral-to-Integral Estimates and \mathcal{L}_2 -gain (2)

Consider $\dot{x} = Ax + Ew$; A Hurwitz. Consider $V(x) = x^T P x$, P positive definite, defined through

$$
A^T P + P A = -2I.
$$

It holds that (Cauchy-Schwarz and Young's inequality)

$$
\dot{V}(x) = x^T A^T P x + w^T E^T P x + x^T P A x + x^T P E w \n= -2x^T x + 2x^T P E w \le -2x^T x + 2|x| ||w| ||PE|| \n\le -2x^T x + x^T x + ||P E||^2 w^T w = -x^T x + ||P E||^2 w^T w
$$

Integrate and rearrange

$$
\int_0^t |x(\tau)|^2 d\tau \leq \lambda_{\max(P)} |x(0)|^2 + ||PE||^2 \int_0^t |w(\tau)|^2 d\tau
$$

With $\alpha_3(s) = s^2$, $\alpha_2(s) = \lambda_{\max} s^2$ and $\sigma(s) = ||PE||^2 s^2$:

$$
\int_0^t \alpha_3(|x(t)|) d\tau \leq \alpha_2(|x(0)|) + \int_0^t \sigma(|w(\tau)|) d\tau
$$

Alternatively using the \mathcal{L}_2 -norm:

$$
||x||_{\mathcal{L}_2}^2 \leq \lambda_{\max(P)} |x(0)|^2 + \gamma^2 ||w||_{\mathcal{L}_2}^2
$$

Definition $(\mathcal{L}_2$ -stability)

The system $\dot{x} = f(x, w)$ is said to be \mathcal{L}_2 -stable or to have *finite* \mathcal{L}_2 -*gain* if there exist constants κ , $\gamma > 0$ so that

$$
||x||^2_{\mathcal{L}_2} \le \kappa |x(0)|^2 + \gamma^2 ||w||^2_{\mathcal{L}_2}
$$

for all $w \in \mathcal{W}$.

Note that:

 \bullet It is common to assume $x(0) = 0$ and hence the above definition is frequently written simply as

$$
\|x\|_{\mathcal{L}_2}^2\leq \gamma^2\|w\|_{\mathcal{L}_2}^2.
$$

Definition $(\mathcal{L}_2$ -stability)

The system $\dot{x} = f(x, w)$ is said to be \mathcal{L}_2 -stable or to have *finite* \mathcal{L}_2 -*gain* if there exist constants κ , $\gamma > 0$ so that

$$
||x||_{\mathcal{L}_2}^2 \le \kappa |x(0)|^2 + \gamma^2 ||w||_{\mathcal{L}_2}^2
$$

for all $w \in \mathcal{W}$.

Note that:

 \bullet It is common to assume $x(0) = 0$ and hence the above definition is frequently written simply as

$$
\|x\|_{\mathcal{L}_2}^2\leq \gamma^2\|w\|_{\mathcal{L}_2}^2.
$$

Connection between input-output \mathcal{L}_2 -stability and the Bode Plot for linear systems:

 $\dot{x} = Ax + Ew, \qquad y = Cx$

and its representation in the frequency domain

$$
\hat{y}(s) = G(s)\hat{w}(s), \qquad G(s) = C(sI - A)^{-1}E.
$$

Integral-to-Integral Estimates and \mathcal{L}_2 -gain (3)

Definition $(\mathcal{L}_2$ -stability)

The system $\dot{x} = f(x, w)$ is said to be \mathcal{L}_2 -stable or to have *finite* \mathcal{L}_2 -*gain* if there exist constants κ , $\gamma > 0$ so that

$$
||x||_{\mathcal{L}_2}^2 \le \kappa |x(0)|^2 + \gamma^2 ||w||_{\mathcal{L}_2}^2
$$

for all $w \in \mathcal{W}$

Note that:

It is common to assume $x(0) = 0$ and hence the above definition is frequently written simply as

 $||x||^2_{\mathcal{L}_2} \leq \gamma^2 ||w||^2_{\mathcal{L}_2}.$

Connection between input-output \mathcal{L}_2 -stability and the Bode Plot for linear systems:

$$
\dot{x} = Ax + Ew, \qquad y = Cx
$$

and its representation in the frequency domain

$$
\hat{y}(s) = G(s)\hat{w}(s), \qquad G(s) = C(sI - A)^{-1}E.
$$

Recall Parseval's relation:

$$
||y||_{\mathcal{L}_2}^2 = \int_0^\infty |y(\tau)|^2 d\tau = \frac{1}{2\pi} \int_{-\infty}^\infty |\hat{y}(jw)|^2 dw
$$

This can be further rewritten

$$
||y||_{\mathcal{L}_2}^2 \leq \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(jw)|^2 |\hat{w}(j\omega)|^2 d\omega
$$

\n
$$
\leq \operatorname{ess} \sup_{\omega} |G(j\omega)|^2 \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{w}(j\omega)|^2 d\omega
$$

\n
$$
= ||G||_{\infty}^2 \int_{0}^{\infty} |w(\tau)|^2 d\tau
$$

\n
$$
= ||G||_{\infty}^2 ||w||_{\mathcal{L}_2}^2.
$$

 \rightarrow With $\gamma = ||G||_{\infty}$ the \mathcal{L}_2 -gain of a linear system is the peak magnitude of the transfer function and can be read off from the Bode Plot.

Note that:

The estimate also holds for multi-input, multi-output systems. However, in this case the definition of the \mathcal{H}_{∞} -norm for multi-input, multi-output systems has to be used.

System Interconnections

We assume that:

 $x(0) = 0$

It holds that:

$$
\|v_1+v_2\|_{\mathcal{L}_2}^2\leq \|v_1\|_{\mathcal{L}_2}^2+\|v_2\|_{\mathcal{L}_2}^2,
$$

Closed loop system

$$
\left[\begin{array}{c}\n\dot{x}_1 \\
\dot{x}_2\n\end{array}\right] = \left[\begin{array}{c}\nf_1(x_1, x_2 + \tilde{w}_1) \\
f_2(x_2, x_1 + \tilde{w}_2)\n\end{array}\right]
$$

Theorem $(\mathcal{L}_2$ small-gain)

Consider the closed loop system. If each of the subsystems is \mathcal{L}_2 -stable with gains $\gamma_1, \gamma_2 > 0$, then closed *loop system with* $w_1 = x_2 + \tilde{w}_1$ *and* $w_2 = x_1 + \tilde{w}_2$ *is* \mathcal{L}_2 -stable if $\gamma_1\gamma_2 < 1$.

Proof: \mathcal{L}_2 -stability implies

$$
\begin{aligned} \|x_1\|_{\mathcal{L}_2}^2 &\leq \gamma_1^2 \|w_1\|_{\mathcal{L}_2}^2 = \gamma_1^2 \|\tilde{w}_1 + x_2\|_{\mathcal{L}_2}^2 \\ &\leq \gamma_1^2 \|\tilde{w}_1\|_{\mathcal{L}_2}^2 + \gamma_1^2 \gamma_2^2 \|\tilde{w}_2\|_{\mathcal{L}_2}^2 + \gamma_1^2 \gamma_2^2 \|x_1\|_{\mathcal{L}_2}^2 \end{aligned}
$$

$$
||x_1||_{\mathcal{L}_2}^2 (1 - \gamma_1^2 \gamma_2^2) \leq \gamma_1^2 ||\tilde{w}_1||_{\mathcal{L}_2}^2 + \gamma_1^2 \gamma_2^2 ||\tilde{w}_2||_{\mathcal{L}_2}^2.
$$
 If $\gamma_1 \gamma_2 < 1$ then $\gamma_1^2 \gamma_2^2 < 1$ and

$$
||x_1||_{\mathcal{L}_2}^2 \le \frac{1}{1 - \gamma_1^2 \gamma_2^2} \left(\gamma_1^2 ||\tilde{w}_1||_{\mathcal{L}_2}^2 + \gamma_1^2 \gamma_2^2 ||\tilde{w}_2||_{\mathcal{L}_2}^2 \right)
$$

Same bound on the \mathcal{L}_2 -norm of x_2 can be derived The bounds on x_1 and x_2 can be combined as

$$
\begin{aligned} &\|x\|_{\mathcal{L}_2}^2=\|x_1\|_{\mathcal{L}_2}^2+\|x_2\|_{\mathcal{L}_2}^2\\ &\leq\tfrac{1}{1-\gamma_1^2\gamma_2^2}\big(\gamma_1^2\|\tilde{w}_1\|_{\mathcal{L}_2}^2\!\!+\!\gamma_2^2\|\tilde{w}_2\|_{\mathcal{L}_2}^2\!\!+\!\gamma_1^2\gamma_2^2(\|\tilde{w}_1\|_{\mathcal{L}_2}^2\!\!+\!\|\tilde{w}_2\|_{\mathcal{L}_2}^2))\end{aligned}
$$

Introduction to Nonlinear Control

Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett School of Engineering, Australian National University, Canberra, Australia

Part I:

- Chapter 7: Input-to-State Stability
	- 7.1 Motivation & Definition
	- 7.2 Lyapunov Characterization
	- 7.3 System Interconnection
	- 7.4 Integral-to-Integral Estimates and \mathcal{L}_2 -gain

