Introduction to Nonlinear Control

Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett School of Engineering, Australian National University, Canberra, Australia

Part II:

Chapter 8: LMI Based Controller and Antiwindup Designs 8.1 \mathcal{L}_2 -gain optimization for linear systems 8.2 Systems with Saturation 8.3 Regional Analysis 8.4 Antiwindup Synthesis

Princeton Series in APPLIED MATHEMATICS

Modern Anti-windup Synthesis

Control Augmentation for Actuator Saturation

Luca Zaccarian and Andrew R. Teel

Linear Matrix Inequalities in System and Control Theory

Stephen Boyd Laurent El Ghaoui Eric Feron Venkataramanan Balakrishnan

Lan. Studies in Applied Mathemati

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

Ch. 8: LMI Based Controller and Antiwindup Designs 1/32

\mathcal{L}_2 -Gain Optimization for Linear Systems

- Asymptotic Stability and *L*₂-Gain Optimization
- Feedback Synthesis

2 Systems with Saturation

- LMI-Based Saturated Linear State Feedback Design
- Global Asymptotic Stability Analysis
- \mathcal{L}_2 -Stability and \mathcal{L}_2 -Gain Optimization

3 Regional Analysis

- Local Asymptotic Stability
- \mathcal{L}_2 -Stability and \mathcal{L}_2 -Gain Optimization

Antiwindup Synthesis

- Global Antiwindup Synthesis
- Regional Antiwindup Synthesis

Compact representation: $(x = [x_p^T, x_c^T]^T \in \mathbb{R}^n)$

Г	A	B	E	1	$\int A_p + B_p D_{c,y} C_{p,y}$	$B_p C_c$	$-B_p$	$B_p D_{c,y} D_{p,y} + B_w$	\dot{x}	=	Ax + Bq + Ew
$\frac{1}{C}$	\overline{C}	$\frac{D}{D}$	$\frac{1}{F}$ –	_	$B_cC_{p,y}$	A_c	0	$B_c D_{p,y}$	z	=	Cx + Dq + Fw
ŀ	K		$\frac{1}{C}$	-	$C_{p,z}$	0	0	$D_{p,z}$	u	=	Kx + Lq + Gw
L	11	Ъ	- ⁰ -	1	$D_{c,y}C_{p,y}$	C_c	0	$D_{c,y}D_{p,y}$	q	=	$u - \operatorname{sat}(u)$

Compact representation: ($x = [x_p^T, x_c^T]^T \in \mathbb{R}^n$)

$$\begin{bmatrix} A & B & E \\ \hline C & D & F \\ \hline K & L & G \end{bmatrix} = \begin{bmatrix} A_p + B_p D_{c,y} C_{p,y} & B_p C_c & -B_p & B_p D_{c,y} D_{p,y} + B_w \\ B_c C_{p,y} & A_c & 0 & B_c D_{p,y} \\ \hline C_{p,z} & 0 & 0 & D_{p,z} \\ \hline D_{c,y} C_{p,y} & C_c & 0 & D_{c,y} D_{p,y} \end{bmatrix}$$

Note that:

- The dynamics on the right is more general than the diagram (*L*, *D*)
- The system is nonlinear due to the saturation

- If $L \neq 0$, then $u = L(u \operatorname{sat}(u)) + \mu$ defines an algebraic loop/equation
- → Existence and uniqueness of a solution is not automatically satisfied

 $\dot{x} = Ax + Bq + Ew$ z = Cx + Dq + Fwu = Kx + Lq + Gwa = u - sat(u)

Well-posedness of algebraic loops

System of interest:

$$\begin{array}{rcl} \dot{x} & = & Ax + Bq + Ew \\ z & = & Cx + Dq + Fw \\ u & = & Kx + Lq + Gw \\ q & = & u - \operatorname{sat}(u) \end{array}$$

Algebraic loop: ($\mu = Kx + Gw$)

$$u = L(u - \operatorname{sat}(u)) + \mu$$

Definition (Well-posed algebraic loop)

For $L \in \mathbb{R}^{n_u \times n_u}$ consider the algebraic equation. The algebraic equation is well-posed if it admits a unique solution for all $\mu \in \mathbb{R}^{n_u}$ and if $\mu \mapsto u(\mu)$ is Lipschitz continuous.

Well-posedness of algebraic loops

System of interest:

$$\begin{aligned} \dot{x} &= Ax + Bq + Ew \\ z &= Cx + Dq + Fw \\ u &= Kx + Lq + Gw \\ q &= u - \operatorname{sat}(u) \end{aligned}$$

Algebraic loop: $(\mu = Kx + Gw)$

$$u = L(u - \operatorname{sat}(u)) + \mu$$

Lemma (A sufficient condition)

Consider the algebraic loop for $L \in \mathbb{R}^{n_u \times n_u}$ and $u, \mu \in \mathbb{R}^{n_u}$. If there exists a positive definite matrix $W \in S_{>0}^{n_u}$ satisfying the matrix inequality

$$\frac{1}{\|W\|} \left(L^T W + WL - 2W \right) < 0,$$

then the algebraic loop is well-posed.

Definition (Well-posed algebraic loop)

For $L \in \mathbb{R}^{n_u \times n_u}$ consider the algebraic equation. The algebraic equation is well-posed if it admits a unique solution for all $\mu \in \mathbb{R}^{n_u}$ and if $\mu \mapsto u(\mu)$ is Lipschitz continuous.

Note that

 the factor 1/||W|| is not necessary, but it indicates how far the inequality is from being violated (→ robustness margin)

Section 1

\mathcal{L}_2 -Gain Optimization for Linear Systems

Recall: $\dot{x} = Ax$

- The origin is exponentially stable
- For Q > 0 there exists P > 0 satisfying

$$A^T P + PA = -Q$$

• Idea of the Lyapunov equation is that $V(x) = x^T P x$ is a Lyapunov function

$$\dot{V}(x) = x^T (A^T P + P A) x = -x^T Q x < 0, \qquad x \neq 0.$$

Recall: $\dot{x} = Ax$

- The origin is exponentially stable
- For Q > 0 there exists P > 0 satisfying

$$A^T P + P A = -Q$$

• Idea of the Lyapunov equation is that $V(x) = x^T P x$ is a Lyapunov function

$$\dot{V}(x) = x^T (A^T P + P A) x = -x^T Q x < 0, \qquad x \neq 0.$$

We note that:

- The inequality of the decrease is important not the equality of the Lyapunov equation
- \rightsquigarrow For given A, consider the LMI

$$0 < P$$
$$A^T P + PA < 0$$

instead of the Lyapunov equation

- Advantage: Q is a degree of freedom
- "Optimal" Q and P can be obtained

Recall: $\dot{x} = Ax$

- The origin is exponentially stable
- For Q > 0 there exists P > 0 satisfying

$$A^T P + P A = -Q$$

• Idea of the Lyapunov equation is that $V(x) = x^T P x$ is a Lyapunov function

$$\dot{V}(x) = x^T (A^T P + P A) x = -x^T Q x < 0, \qquad x \neq 0.$$

We note that:

- The inequality of the decrease is important not the equality of the Lyapunov equation
- \rightsquigarrow For given A, consider the LMI

$$0 < P$$
$$A^T P + PA < 0$$

instead of the Lyapunov equation

- Advantage: Q is a degree of freedom
- "Optimal" Q and P can be obtained

$$\begin{array}{ll} \min_{P,\ k} & k \\ \text{subject to} & 0 < k \\ & 0 < P - \alpha I \\ & 0 > P - (k + \alpha)I \\ & 0 > A^T P + PA. \end{array}$$

Recall: $\dot{x} = Ax$

- The origin is exponentially stable
- For Q > 0 there exists P > 0 satisfying

$$A^T P + PA = -Q$$

• Idea of the Lyapunov equation is that $V(x) = x^T P x$ is a Lyapunov function

$$\dot{V}(x) = x^T (A^T P + P A) x = -x^T Q x < 0, \qquad x \neq 0.$$

We note that:

- The inequality of the decrease is important not the equality of the Lyapunov equation
- \rightsquigarrow For given A, consider the LMI

$$0 < P$$
$$A^T P + PA < 0$$

instead of the Lyapunov equation

- Advantage: Q is a degree of freedom
- "Optimal" Q and P can be obtained

$$\begin{array}{ll} \min_{P,\ k} & k \\ \text{subject to} & 0 < k \\ & 0 < P - \alpha I \\ & 0 > P - (k + \alpha)I \\ & 0 > A^T P + PA. \end{array}$$

Here:

• $\alpha > 0$ to ensure that P is not arbitrarily small

• Third constraint to ensure that *P* is not arbitrarily large Toolboxes in Matlab:

• CVX, SOSTOOLS, YALMIP

Approximation: ($\varepsilon > 0$)

$\min_{P, \ k}$	k
subject to	$0 \leq k$
	$0 \leq P - \alpha I - \varepsilon I$
	$0 \geq P - (k + \alpha)I + \varepsilon I$
	$0 \geq A^T P + P A + \varepsilon I$

Consider:

 $\dot{x} = Ax + Ew$ z = Cx + Fw.

Consider:

$$\dot{x} = Ax + Ew$$
$$z = Cx + Fw.$$

- 0-GAS: (internal stability)
 - If 0 is globally asymptotically stable for w = 0, then the system is called 0-GAS
 - \rightsquigarrow If A is Hurwitz then the origin is 0-GAS

Consider:

$$\dot{x} = Ax + Ew$$
$$z = Cx + Fw.$$

0-GAS: (internal stability)

- If 0 is globally asymptotically stable for w = 0, then the system is called 0-GAS
- \rightsquigarrow If A is Hurwitz then the origin is 0-GAS

Recall: For A Hurwitz, Q = -2I, P > 0 solution of the Lyap. equation, $V(x) = x^T P x$, we have derived

 $\dot{V}(x) \leq -x^T x + \gamma^2 w^T w, \qquad \gamma = \|PE\|$

Rearranging terms and integrating (with x(0) = 0) yields

$$\begin{aligned} \|x\|_{\mathcal{L}_{2}[0,t)}^{2} &\leq \int_{0}^{t} x(\tau)^{T} x(\tau) d\tau + V(x(t)) \\ &\leq \gamma^{2} \int_{0}^{t} w(\tau)^{T} w(\tau) d\tau = \gamma^{2} \|w\|_{\mathcal{L}_{2}[0,t)}^{2}. \end{aligned}$$

$$\dot{x} = Ax + Ew$$
$$z = Cx + Fw.$$

0-GAS: (internal stability)

- If 0 is globally asymptotically stable for w = 0, then the system is called 0-GAS
- \rightsquigarrow If A is Hurwitz then the origin is 0-GAS

Recall: For A Hurwitz, Q = -2I, P > 0 solution of the Lyap. equation, $V(x) = x^T P x$, we have derived

$$\dot{V}(x) \leq -x^T x + \gamma^2 w^T w, \qquad \gamma = \|PE\|$$

Rearranging terms and integrating (with x(0) = 0) yields

$$\begin{aligned} \|x\|_{\mathcal{L}_{2}[0,t)}^{2} &\leq \int_{0}^{t} x(\tau)^{T} x(\tau) d\tau + V(x(t)) \\ &\leq \gamma^{2} \int_{0}^{t} w(\tau)^{T} w(\tau) d\tau = \gamma^{2} \|w\|_{\mathcal{L}_{2}[0,t)}^{2}. \end{aligned}$$

Slight modification: Suppose we can find P > 0, so that

$$\begin{split} \dot{V}(x) &= x^T (A^T P + PA) x + 2 x^T P E w \\ &< -\gamma \left(\frac{1}{\gamma^2} z^T z - w^T w \right), \quad \forall \ (x,w) \neq 0 \end{split}$$

Then we can show that this guarantees

- 0-GAS (since $\dot{V}(x) < 0 \quad \forall x \neq 0$)
- an \mathcal{L}_2 -gain bound of $\gamma > 0$ from w to output z; i.e., $\|z\|_{\mathcal{L}_2[0,t)} \le \gamma \|w\|_{\mathcal{L}_2[0,t)}$

The bound again follows by integrating (and x(0) = 0):

$$\frac{1}{\gamma}\int_0^t z^T(\tau)z(\tau)d\tau + V(x(t)) \leq \gamma\int_0^t w^T(\tau)w(\tau)d\tau$$

$$\dot{x} = Ax + Ew$$
$$z = Cx + Fw.$$

0-GAS: (internal stability)

- If 0 is globally asymptotically stable for w = 0, then the system is called 0-GAS
- \rightsquigarrow If A is Hurwitz then the origin is 0-GAS

Recall: For A Hurwitz, Q = -2I, P > 0 solution of the Lyap. equation, $V(x) = x^T P x$, we have derived

$$\dot{V}(x) \leq -x^T x + \gamma^2 w^T w, \qquad \gamma = \|PE\|$$

Rearranging terms and integrating (with x(0) = 0) yields

$$\begin{aligned} \|x\|_{\mathcal{L}_{2}[0,t)}^{2} &\leq \int_{0}^{t} x(\tau)^{T} x(\tau) d\tau + V(x(t)) \\ &\leq \gamma^{2} \int_{0}^{t} w(\tau)^{T} w(\tau) d\tau = \gamma^{2} \|w\|_{\mathcal{L}_{2}[0,t)}^{2}. \end{aligned}$$

Slight modification: Suppose we can find P > 0, so that

$$\begin{split} \dot{V}(x) &= x^T (A^T P + PA) x + 2 x^T P E w \\ &< -\gamma \left(\frac{1}{\gamma^2} z^T z - w^T w \right), \quad \forall \ (x,w) \neq 0 \end{split}$$

Then we can show that this guarantees

- 0-GAS (since $\dot{V}(x) < 0 \quad \forall x \neq 0$)
- an \mathcal{L}_2 -gain bound of $\gamma > 0$ from w to output z; i.e., $\|z\|_{\mathcal{L}_2[0,t)} \leq \gamma \|w\|_{\mathcal{L}_2[0,t)}$

The bound again follows by integrating (and x(0) = 0):

$$\frac{1}{\gamma}\int_0^t z^T(\tau)z(\tau)d\tau + V(x(t)) \leq \gamma\int_0^t w^T(\tau)w(\tau)d\tau$$

 \leadsto Can we compute P>0 and $\gamma>0$ by solving an LMI?

Starting point:

$$x^T(A^TP+PA)x+2x^TPEw+\tfrac{1}{\gamma}z^Tz-\gamma w^Tw<0$$

Starting point:

$$\begin{aligned} x^{T}(A^{T}P + PA)x + 2x^{T}PEw + \frac{1}{\gamma}z^{T}z - \gamma w^{T}w < 0 \\ x^{T}(A^{T}P + PA + \frac{1}{\gamma}C^{T}C)x + 2x^{T}(PE + \frac{1}{\gamma}C^{T}F)w + \gamma w^{T}F^{T}Fw < 0 \\ \begin{bmatrix} x \\ w \end{bmatrix}^{T} \left(\begin{bmatrix} A^{T}P + PA & PE \\ E^{T}P & -\gamma I \end{bmatrix} + \frac{1}{\gamma} \begin{bmatrix} C^{T} \\ F^{T} \end{bmatrix} \begin{bmatrix} C & F \end{bmatrix} \right) \begin{bmatrix} x \\ w \end{bmatrix} < 0 \end{aligned}$$

Starting point:

$$\begin{aligned} x^{T}(A^{T}P + PA)x + 2x^{T}PEw + \frac{1}{\gamma}z^{T}z - \gamma w^{T}w < 0 \\ x^{T}(A^{T}P + PA + \frac{1}{\gamma}C^{T}C)x + 2x^{T}(PE + \frac{1}{\gamma}C^{T}F)w + \gamma w^{T}F^{T}Fw < 0 \\ \begin{bmatrix} x \\ w \end{bmatrix}^{T} \left(\begin{bmatrix} A^{T}P + PA & PE \\ E^{T}P & -\gamma I \end{bmatrix} + \frac{1}{\gamma} \begin{bmatrix} C^{T} \\ F^{T} \end{bmatrix} \begin{bmatrix} C & F \end{bmatrix} \right) \begin{bmatrix} x \\ w \end{bmatrix} < 0 \end{aligned}$$

In terms of definite matrices (0 < P and):

$$\begin{bmatrix} A^T P + P A & P E \\ E^T P & -\gamma I \end{bmatrix} + \frac{1}{\gamma} \begin{bmatrix} C^T \\ F^T \end{bmatrix} \begin{bmatrix} C & F \end{bmatrix} < 0$$
(1)

Note that:

- For $\gamma > 0$, fixed we know how to solve the LMI to obtain P
- $\ \, {\rm e} \ \, {\rm However}, \ \, {\rm we \ \, would \ \, like \ to \ \, minimize \ \ } \\ \gamma > 0$
- The inequality is not linear in γ

Starting point:

$$\begin{aligned} x^{T}(A^{T}P + PA)x + 2x^{T}PEw + \frac{1}{\gamma}z^{T}z - \gamma w^{T}w < 0 \\ x^{T}(A^{T}P + PA + \frac{1}{\gamma}C^{T}C)x + 2x^{T}(PE + \frac{1}{\gamma}C^{T}F)w + \gamma w^{T}F^{T}Fw < 0 \\ \begin{bmatrix} x \\ w \end{bmatrix}^{T} \left(\begin{bmatrix} A^{T}P + PA & PE \\ E^{T}P & -\gamma I \end{bmatrix} + \frac{1}{\gamma} \begin{bmatrix} C^{T} \\ F^{T} \end{bmatrix} \begin{bmatrix} C & F \end{bmatrix} \right) \begin{bmatrix} x \\ w \end{bmatrix} < 0 \end{aligned}$$

In terms of definite matrices (0 < P and):

$$\begin{bmatrix} A^T P + PA & PE \\ E^T P & -\gamma I \end{bmatrix} + \frac{1}{\gamma} \begin{bmatrix} C^T \\ F^T \end{bmatrix} \begin{bmatrix} C & F \end{bmatrix} < 0 \qquad (1)$$

Note that:

- For $\gamma > 0$, fixed we know how to solve the LMI to obtain P
- However, we would like to minimize $\gamma>0$
- The inequality is not linear in γ

Lemma (Schur Complement)

) Let $Q \in S^r$ and $R \in S^q$ for $r, q \in \mathbb{N}$ and let $S \in \mathbb{R}^{r \times q}$. Then the matrix condition

$$\left[\begin{array}{cc} Q & S \\ S^T & R \end{array} \right] < 0$$

is equivalent to the matrix conditions

$$R < 0$$
$$Q - SR^{-1}S^T < 0.$$

Starting point:

$$\begin{aligned} x^{T}(A^{T}P + PA)x + 2x^{T}PEw + \frac{1}{\gamma}z^{T}z - \gamma w^{T}w < 0 \\ x^{T}(A^{T}P + PA + \frac{1}{\gamma}C^{T}C)x + 2x^{T}(PE + \frac{1}{\gamma}C^{T}F)w + \gamma w^{T}F^{T}Fw < 0 \\ \begin{bmatrix} x \\ w \end{bmatrix}^{T} \left(\begin{bmatrix} A^{T}P + PA & PE \\ E^{T}P & -\gamma I \end{bmatrix} + \frac{1}{\gamma} \begin{bmatrix} C^{T} \\ F^{T} \end{bmatrix} \begin{bmatrix} C & F \end{bmatrix} \right) \begin{bmatrix} x \\ w \end{bmatrix} < 0 \end{aligned}$$

In terms of definite matrices (0 < P and):

$$\begin{bmatrix} A^T P + PA & PE \\ E^T P & -\gamma I \end{bmatrix} + \frac{1}{\gamma} \begin{bmatrix} C^T \\ F^T \end{bmatrix} \begin{bmatrix} C & F \end{bmatrix} < 0$$
(1)

Here, take $R = -\gamma$, $S = \begin{bmatrix} C & F \end{bmatrix}$ and Q as the leftmost matrix. Then, (1) is equivalent to

$$\begin{bmatrix} A^T P + PA & PE & C^T \\ E^T P & -\gamma I & F^T \\ \hline C & F & -\gamma I \end{bmatrix} < 0$$

Note that:

- For $\gamma > 0$, fixed we know how to solve the LMI to obtain P
- $\bullet \ \ \, \mbox{However, we would like to minimize} \\ \gamma > 0 \ \ \, \mbox{}$
- The inequality is not linear in γ

Lemma (Schur Complement)

) Let $Q \in S^r$ and $R \in S^q$ for $r, q \in \mathbb{N}$ and let $S \in \mathbb{R}^{r \times q}$. Then the matrix condition

$$\left[\begin{array}{cc} Q & S \\ S^T & R \end{array} \right] < 0$$

is equivalent to the matrix conditions

$$R < 0$$
$$Q - SR^{-1}S^T < 0.$$

Overall optimization problem:

Notation:

S

He
$$X = X + X^T$$

Reducing redundancy:

$$\operatorname{He} \left[\begin{array}{c|c} PA & PE & 0 \\ 0 & -\frac{\gamma}{2}I & 0 \\ \hline C & F & -\frac{\gamma}{2}I \end{array} \right] < 0$$

Note that:

- The information that *P* is symmetric is redundant
- The constraint $0 < \gamma$ is redundant ($R = -\gamma$)
- Don't forget the factor $\frac{1}{2}$ on the diagonal

Lemma (Schur Complement)

Let $Q \in S^r$ and $R \in S^q$ for $r, q \in \mathbb{N}$ and let $S \in \mathbb{R}^{r \times q}$. Then the matrix condition

$$\left[\begin{array}{cc} Q & S \\ S^T & R \end{array} \right] < 0$$

is equivalent to the matrix conditions

 $\begin{aligned} R < 0 \\ Q - SR^{-1}S^T < 0. \end{aligned}$

$$\dot{x} = \begin{bmatrix} -1 & -2 & 2\\ 1 & -2 & 1\\ 3 & -2 & -2 \end{bmatrix} x + \begin{bmatrix} 2 & -2\\ 1 & 3\\ 3 & -2 \end{bmatrix} w$$
$$z = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} -3 & 2 \end{bmatrix} w.$$

$$\dot{x} = \begin{bmatrix} -1 & -2 & 2\\ 1 & -2 & 1\\ 3 & -2 & -2 \end{bmatrix} x + \begin{bmatrix} 2 & -2\\ 1 & 3\\ 3 & -2 \end{bmatrix} w$$
$$z = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} -3 & 2 \end{bmatrix} w.$$

Solution of the Lyapunov equation with Q = -2I:

$$P = \left[\begin{array}{rrrr} 3.10 & -3.20 & 1.77 \\ -3.20 & 5.50 & -1.80 \\ 1.77 & -1.80 & 1.37 \end{array} \right].$$

Estimation (using Young's inequality):

$$\begin{aligned} \|z\|_{\mathcal{L}_{2}[0,t)}^{2} &= \|Cx + Fw\|_{\mathcal{L}_{2}[0,t)}^{2} \\ &= \left(\int_{0}^{t} x^{T}CCx + 2x^{T}C^{T}Fw + w^{T}F^{T}Fw \ d\tau\right)^{2} \\ &\leq \left(\int_{0}^{t} 2x^{T}CCx + 2w^{T}F^{T}Fw \ d\tau\right)^{2} \\ &\leq \left(\int_{0}^{t} 2\lambda_{\max}(C^{T}C)x^{T}x + 2\lambda_{\max}(F^{T}F)w^{T}w \ d\tau\right)^{2} \\ &= 2\lambda_{\max}(C^{T}C)\|x\|_{\mathcal{L}_{2}[0,t)}^{2} + 2\lambda_{\max}(F^{T}F)\|w\|_{\mathcal{L}_{2}[0,t)}^{2} \\ &\leq 2\left(\lambda_{\max}(C^{T}C)\|PE\|^{2} + \lambda_{\max}(F^{T}F)\right)\|w\|_{\mathcal{L}_{2}[0,t)}^{2} \\ &= 2711 \cdot \|w\|_{\mathcal{L}_{2}[0,t)}^{2}. \end{aligned}$$

Hence, $\gamma=\sqrt{2711}=52.07$

$$\dot{x} = \begin{bmatrix} -1 & -2 & 2\\ 1 & -2 & 1\\ 3 & -2 & -2 \end{bmatrix} x + \begin{bmatrix} 2 & -2\\ 1 & 3\\ 3 & -2 \end{bmatrix} w$$
$$z = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} -3 & 2 \end{bmatrix} w.$$

Alternatively,

$$\begin{split} \gamma &= 7.43 \\ P &= \begin{bmatrix} 4.38 & -0.22 & -4.12 \\ -0.22 & 0.32 & -0.02 \\ -4.12 & -0.02 & 4.18 \end{bmatrix}. \end{split}$$

is returned as the solution of the LMI

Solution of the Lyapunov equation with Q = -2I:

$$P = \left[\begin{array}{rrrr} 3.10 & -3.20 & 1.77 \\ -3.20 & 5.50 & -1.80 \\ 1.77 & -1.80 & 1.37 \end{array} \right].$$

Estimation (using Young's inequality):

$$\begin{aligned} \|z\|_{\mathcal{L}_{2}[0,t)}^{2} &= \|Cx + Fw\|_{\mathcal{L}_{2}[0,t)}^{2} \\ &= \left(\int_{0}^{t} x^{T}CCx + 2x^{T}C^{T}Fw + w^{T}F^{T}Fw \, d\tau\right)^{2} \\ &\leq \left(\int_{0}^{t} 2x^{T}CCx + 2w^{T}F^{T}Fw \, d\tau\right)^{2} \\ &\leq \left(\int_{0}^{t} 2\lambda_{\max}(C^{T}C)x^{T}x + 2\lambda_{\max}(F^{T}F)w^{T}w \, d\tau\right)^{2} \\ &= 2\lambda_{\max}(C^{T}C)\|x\|_{\mathcal{L}_{2}[0,t)}^{2} + 2\lambda_{\max}(F^{T}F)\|w\|_{\mathcal{L}_{2}[0,t)}^{2} \\ &\leq 2\left(\lambda_{\max}(C^{T}C)\|PE\|^{2} + \lambda_{\max}(F^{T}F)\right)\|w\|_{\mathcal{L}_{2}[0,t)}^{2} \\ &= 2711 \cdot \|w\|_{\mathcal{L}_{2}[0,t)}^{2}. \end{aligned}$$

Hence, $\gamma=\sqrt{2711}=52.07$

Consider: (\rightsquigarrow Design static state feedback K)

$$\dot{x} = Ax + Bu + Ew$$
$$z = Cx + Du + Fw$$
$$u = Kx.$$

Consider: (\rightsquigarrow Design static state feedback K)

$$\dot{x} = Ax + Bu + Ew$$
$$z = Cx + Du + Fw$$
$$u = Kx.$$

In closed-loop form:

$$\dot{x} = (A + BK)x + Ew$$
$$z = (C + DK)x + Fw.$$

Same approach as before: $(P > 0, V(x) = x^T P x)$

$$\begin{split} \dot{V}(x) &= x^T \left((A + BK)^T P + P(A + BK) \right) x + 2x^T P E w \\ &< -\gamma \left(\frac{1}{\gamma^2} z^T z - w^T w \right) \quad \forall \; (x, w) \neq 0 \end{split}$$

(Unknowns: P, K, γ)

Consider: (\rightsquigarrow Design static state feedback K)

$$\dot{x} = Ax + Bu + Ew$$
$$z = Cx + Du + Fw$$
$$u = Kx.$$

In closed-loop form:

$$\dot{x} = (A + BK)x + Ew$$
$$z = (C + DK)x + Fw.$$

Same approach as before: $(P > 0, V(x) = x^T P x)$

$$\begin{split} \dot{V}(x) &= x^T \left((A + BK)^T P + P(A + BK) \right) x + 2x^T P E w \\ &< -\gamma \left(\frac{1}{\gamma^2} z^T z - w^T w \right) \quad \forall \; (x, w) \neq 0 \end{split}$$

(Unknowns: P, K, γ)

STEP 1: Asymptotic stability (i.e., w = 0)

$$0 > (A + BK)^T P + P(A + BK)$$
$$= A^T P + PA + K^T B^T P + PBK$$

Consider: (\rightsquigarrow Design static state feedback K)

$$\dot{x} = Ax + Bu + Ew$$
$$z = Cx + Du + Fw$$
$$u = Kx.$$

In closed-loop form:

$$\dot{x} = (A + BK)x + Ew$$
$$z = (C + DK)x + Fw.$$

Same approach as before: $(P > 0, V(x) = x^T P x)$

$$\begin{split} \dot{V}(x) &= x^T \left((A + BK)^T P + P(A + BK) \right) x + 2x^T P E w \\ &< -\gamma \left(\frac{1}{\gamma^2} z^T z - w^T w \right) \quad \forall \; (x, w) \neq 0 \end{split}$$

(Unknowns: P, K, γ) STEP 1: Asymptotic stability (i.e., w = 0)

$$0 > (A + BK)^T P + P(A + BK)$$
$$= A^T P + PA + K^T B^T P + PBK$$

Define $\Lambda = P^{-1}$: (left and right multiplication with Λ) $\Lambda A^T P \Lambda + \Lambda P A \Lambda + \Lambda K^T B^T P \Lambda + \Lambda P B K \Lambda$ $= \Lambda A^T + A \Lambda + \Lambda (BK)^T + B K \Lambda$ $= \text{He} (A \Lambda + B K \Lambda)$

Define $X = K\Lambda$. Then

$$\operatorname{He}\left(A\Lambda + BK\Lambda\right) = \operatorname{He}\left(A\Lambda + BX\right)$$

is linear in the unknowns $\Lambda = P^{-1}$ and $X = K\Lambda$ The condition

$$\operatorname{He}\left(A\Lambda + BX\right) < 0$$

guarantees that A + BK is Hurwitz (with Lyapunov function $V(x) = x^T P x$)

Consider: (\rightsquigarrow Design static state feedback K)

$$\dot{x} = Ax + Bu + Ew$$
$$z = Cx + Du + Fw$$
$$u = Kx.$$

In closed-loop form:

$$\dot{x} = (A + BK)x + Ew$$
$$z = (C + DK)x + Fw.$$

Same approach as before: $(P > 0, V(x) = x^T P x)$

$$\begin{split} \dot{V}(x) &= x^T \left((A + BK)^T P + P(A + BK) \right) x + 2x^T P E w \\ &< -\gamma \left(\frac{1}{\gamma^2} z^T z - w^T w \right) \quad \forall \; (x, w) \neq 0 \end{split}$$

(Unknowns: P, K, γ) STEP 1: Asymptotic stability (i.e., w = 0)

$$D > (A + BK)^T P + P(A + BK)$$
$$= A^T P + PA + K^T B^T P + PBK$$

Define $\Lambda = P^{-1}$: (left and right multiplication with Λ) $\Lambda A^T P \Lambda + \Lambda P A \Lambda + \Lambda K^T B^T P \Lambda + \Lambda P B K \Lambda$ $= \Lambda A^T + A \Lambda + \Lambda (BK)^T + B K \Lambda$ $= \text{He} (A \Lambda + B K \Lambda)$

Define $X = K\Lambda$. Then

$$\operatorname{He}\left(A\Lambda + BK\Lambda\right) = \operatorname{He}\left(A\Lambda + BX\right)$$

is linear in the unknowns $\Lambda = P^{-1}$ and $X = K\Lambda$ The condition

$$\operatorname{He}\left(A\Lambda + BX\right) < 0$$

guarantees that A + BK is Hurwitz (with Lyapunov function $V(x) = x^T Px$)

STEP 2: \mathcal{L}_2 -gain optimization Recall the condition (for known K)

$$\operatorname{He} \left[\begin{array}{c|c} P(A+BK) & PE & 0 \\ 0 & -\frac{\gamma}{2}I & 0 \\ \hline C+DK & F & -\frac{\gamma}{2}I \end{array} \right] < 0$$

Recall the condition:

$$\operatorname{He} \left[\begin{array}{c|c} P(A+BK) & PE & 0 \\ 0 & -\frac{\gamma}{2}I & 0 \\ \hline C+DK & F & -\frac{\gamma}{2}I \end{array} \right] < 0$$

Recall the condition:

$$\operatorname{He} \left[\begin{array}{c|c} P(A+BK) & PE & 0\\ 0 & -\frac{\gamma}{2}I & 0\\ \hline C+DK & F & -\frac{\gamma}{2}I \end{array} \right] < 0$$

Define $\Lambda = P^{-1}$ (left and right multiplication):

$$\begin{bmatrix} \Lambda & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} \operatorname{He} \begin{bmatrix} P(A+BK) & PE & 0 \\ 0 & -\frac{\gamma}{2}I & 0 \\ \hline C+DK & F & -\frac{\gamma}{2}I \end{bmatrix} \begin{bmatrix} \Lambda & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} = \operatorname{He} \begin{bmatrix} A\Lambda + BK\Lambda & E & 0 \\ 0 & -\frac{\gamma}{2}I & 0 \\ \hline C\Lambda + DK\Lambda & F & -\frac{\gamma}{2}I \end{bmatrix} < 0$$

Recall the condition:

$$\operatorname{He} \left[\begin{array}{c|c} P(A+BK) & PE & 0\\ 0 & -\frac{\gamma}{2}I & 0\\ \hline C+DK & F & -\frac{\gamma}{2}I \end{array} \right] < 0$$

Define $\Lambda = P^{-1}$ (left and right multiplication):

$$\begin{bmatrix} \Lambda & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} \operatorname{He} \begin{bmatrix} P(A+BK) & PE & 0 \\ 0 & -\frac{\gamma}{2}I & 0 \\ \hline C+DK & F & -\frac{\gamma}{2}I \end{bmatrix} \begin{bmatrix} \Lambda & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} = \operatorname{He} \begin{bmatrix} A\Lambda + BK\Lambda & E & 0 \\ 0 & -\frac{\gamma}{2}I & 0 \\ \hline C\Lambda + DK\Lambda & F & -\frac{\gamma}{2}I \end{bmatrix} < 0$$

Again, define $X = K\Lambda$:

$$\operatorname{He} \left[\begin{array}{c|c} A\Lambda + BX & E & 0 \\ 0 & -\frac{\gamma}{2}I & 0 \\ \hline C\Lambda + DX & F & -\frac{\gamma}{2}I \end{array} \right] < 0.$$

Recall the condition:

$$\operatorname{He} \left[\begin{array}{c|c} P(A+BK) & PE & 0\\ 0 & -\frac{\gamma}{2}I & 0\\ \hline C+DK & F & -\frac{\gamma}{2}I \end{array} \right] < 0$$

Define $\Lambda = P^{-1}$ (left and right multiplication):

$$\begin{bmatrix} \Lambda & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} \operatorname{He} \begin{bmatrix} P(A+BK) & PE & 0 \\ 0 & -\frac{\gamma}{2}I & 0 \\ \hline C+DK & F & -\frac{\gamma}{2}I \end{bmatrix} \begin{bmatrix} \Lambda & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} = \operatorname{He} \begin{bmatrix} A\Lambda + BK\Lambda & E & 0 \\ 0 & -\frac{\gamma}{2}I & 0 \\ \hline C\Lambda + DK\Lambda & F & -\frac{\gamma}{2}I \end{bmatrix} < 0$$

Again, define $X = K\Lambda$:

$$\operatorname{He} \begin{bmatrix} A\Lambda + BX & E & 0\\ 0 & -\frac{\gamma}{2}I & 0\\ \hline C\Lambda + DX & F & -\frac{\gamma}{2}I \end{bmatrix} < 0.$$

Corresponding optimization/feasibility problem:

$$\begin{array}{ll} \min_{\Lambda, X, \gamma} & \gamma \\ \text{subject to} & 0 < \Lambda & \text{symmetric} \\ & 0 < \gamma \\ & 0 > \text{He} \left[\begin{array}{c|c} (A\Lambda + BX) & E & 0 \\ 0 & -\frac{\gamma}{2}I & 0 \\ \hline C\Lambda + DX & F & -\frac{\gamma}{2}I \end{array} \right] \end{array}$$

→ Lyapunov function $V(x) = x^T \Lambda^{-1} x$ and a feedback gain matrix $K = X \Lambda^{-1}$ such that γ is minimal

Feedback Synthesis (Example)

Consider:

$$\dot{x} = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 2 & -1 \\ -3 & 2 & 2 \end{bmatrix} x + \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix} u + \begin{bmatrix} 2 & -2 \\ 1 & 3 \\ 3 & -2 \end{bmatrix} w$$

$$z = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} -3 & 2 \end{bmatrix} w.$$

Solution of the LMI:

$$\begin{split} \gamma &= 8.1910 \\ K &= \begin{bmatrix} -7.32 & 6.64 & 4.62 \end{bmatrix} \\ P &= \begin{bmatrix} 1.18 & -1.19 & -0.62 \\ -1.19 & 1.33 & 0.71 \\ -0.62 & 0.71 & 0.40 \end{bmatrix}. \end{split}$$

Eigenvalues of A:

 $\{4, 0.5 \pm 1.32j\}$

Eigenvalues of A + BK:

 $\{-4.78 \pm 0.90 j, -0.15\}$

Eigenvalues of P:

 $\{0.02, 0.07, 2.34\}$

Section 2

Systems with Saturation
Systems with Saturation

Consider:

$$\dot{x} = Ax + B\operatorname{sat}(u)$$
$$u = Kx$$

Saturation: (we will suppress the limit \bar{u} in the following)

$$sat(u) \doteq \begin{cases}
-1, & u < -1 \\
u, & -1 \le u \le 1 \\
1, & 1 < u.
\end{cases}$$

$$sat_{\bar{u}}(u) \doteq \begin{cases}
-\bar{u}, & u < -\bar{u} \\
u, & -\bar{u} \le u \le \bar{u} \\
\bar{u}, & \bar{u} < u.
\end{cases}$$

Deadzone: (q = dz(u))

 $dz(u) = u - \operatorname{sat}(u)$ and $dz_{\bar{u}}(u) = u - \operatorname{sat}_{\bar{u}}(u)$,

We assume to have decentralized saturations

• i.e., for $u \in \mathbb{R}^{n_u}$ we assume that each input has its own saturation function, possibly with different saturation levels \bar{u}_i on the i^{th} input.

Systems with Saturation

Consider:

$$\dot{x} = Ax + B\operatorname{sat}(u)$$
$$u = Kx$$

Saturation: (we will suppress the limit \bar{u} in the following)

$$sat(u) \doteq \begin{cases}
-1, & u < -1 \\
u, & -1 \le u \le 1 \\
1, & 1 < u.
\end{cases}$$

$$sat_{\bar{u}}(u) \doteq \begin{cases}
-\bar{u}, & u < -\bar{u} \\
u, & -\bar{u} \le u \le \bar{u} \\
\bar{u}, & \bar{u} < u.
\end{cases}$$

Deadzone: (q = dz(u))

 $dz(u) = u - \operatorname{sat}(u)$ and $dz_{\bar{u}}(u) = u - \operatorname{sat}_{\bar{u}}(u)$,

We assume to have decentralized saturations

• i.e., for $u \in \mathbb{R}^{n_u}$ we assume that each input has its own saturation function, possibly with different saturation levels \bar{u}_i on the i^{th} input.

Note that:

• $u \in \mathbb{R}$ and $q = u - \operatorname{sat}(u)$, satisfies

 $dz(u) \operatorname{sat}(u) \ge 0$ or equivalently $q(u-q) \ge 0$.

- In particular sign(dz(u)) = sign(sat(u)) or equivalently sign(q) = sign(u - q)
- Moreover,

$$wq(u-q) \ge 0$$
 for $w > 0$

• A vector version: (*W* > 0, diagonal)

 $dz(u)^T W \operatorname{sat}(u) \ge 0, \qquad q^T W(u-q) \ge 0$

$$\dot{x} = Ax + B\operatorname{sat}(Kx) = (A + BK)x - B\operatorname{dz}(Kx)$$

Consider Lyapunov function: (P > 0)

$$V(x) = x^T P x$$

We want: $\dot{V}(x(t)) < 0$ despite the nonlinearity.

$$\dot{x} = Ax + B\operatorname{sat}(Kx) = (A + BK)x - B\operatorname{dz}(Kx)$$

Consider Lyapunov function: (P > 0)

$$V(x) = x^T P x$$

We want: $\dot{V}(x(t)) < 0$ despite the nonlinearity.

Formally, for $(x,q) = (x, dz(Kx)) \neq 0$ we want

$$\begin{bmatrix} x \\ q \end{bmatrix}^T \operatorname{He} \begin{bmatrix} 0 & 0 \\ -WK & W \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix} = 2q^T W(u-q)$$
$$= 2(\operatorname{dz}(Kx))^T W(Kx - \operatorname{dz}(Kx)) \ge 0 \quad \Rightarrow \quad \dot{V}(x) < 0$$

$$\dot{x} = Ax + B\operatorname{sat}(Kx) = (A + BK)x - B\operatorname{dz}(Kx)$$

Consider Lyapunov function: (P > 0)

$$V(x) = x^T P x$$

We want: $\dot{V}(x(t)) < 0$ despite the nonlinearity.

Formally, for $(x,q) = (x, dz(Kx)) \neq 0$ we want

$$\begin{bmatrix} x \\ q \end{bmatrix}^T \operatorname{He} \begin{bmatrix} 0 & 0 \\ -WK & W \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix} = 2q^T W(u-q)$$
$$= 2(\operatorname{dz}(Kx))^T W(Kx - \operatorname{dz}(Kx)) \ge 0 \quad \Rightarrow \quad \dot{V}(x) < 0$$

Derivative of the candidate Lyapunov function

$$\begin{split} \dot{V}(x) &= x^T ((A + BK)^T P + P(A + BK))x - 2x^T P B q \\ &= x^T (A^T P + PA + K^T B^T P + PBK)x - 2x^T P B \operatorname{dz}(Kx) \\ &= \begin{bmatrix} x \\ q \end{bmatrix}^T \operatorname{He} \begin{bmatrix} PA + PBK & -PB \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix} \end{split}$$

Unknowns: W > 0 diagonal; P > 0; K

$$\dot{x} = Ax + B\operatorname{sat}(Kx) = (A + BK)x - B\operatorname{dz}(Kx)$$

Consider Lyapunov function: (P > 0)

$$V(x) = x^T P x$$

We want: $\dot{V}(x(t)) < 0$ despite the nonlinearity.

Formally, for $(x,q) = (x, dz(Kx)) \neq 0$ we want

$$\begin{bmatrix} x \\ q \end{bmatrix}^T \operatorname{He} \begin{bmatrix} 0 & 0 \\ -WK & W \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix} = 2q^T W(u-q)$$
$$= 2(\operatorname{dz}(Kx))^T W(Kx - \operatorname{dz}(Kx)) \ge 0 \quad \Rightarrow \quad \dot{V}(x) < 0$$

Derivative of the candidate Lyapunov function

$$\begin{split} \dot{V}(x) &= x^T ((A + BK)^T P + P(A + BK))x - 2x^T P B q \\ &= x^T (A^T P + P A + K^T B^T P + P B K)x - 2x^T P B \, \mathrm{dz}(Kx) \\ &= \left[\begin{array}{c} x \\ q \end{array} \right]^T \mathrm{He} \left[\begin{array}{c} P A + P B K & -P B \\ 0 & 0 \end{array} \right] \left[\begin{array}{c} x \\ q \end{array} \right] \end{split}$$

Unknowns: W > 0 diagonal; P > 0; K

Lemma (S-Lemma or S-Procedure)

Let $M_0, M_1 \in S^r$, $r \in \mathbb{N}$, and suppose there exists $\zeta^* \in \mathbb{R}^r$ such that $(\zeta^*)^T M_1 \zeta^* > 0$. Then the following statements are equivalent:

• There exists $\tau > 0$ such that $M_0 - \tau M_1 > 0$.

(2) For all $\zeta \neq 0$ such that $\zeta^T M_1 \zeta \ge 0$ it holds that $\zeta^T M_0 \zeta > 0$.

 $\dot{x} = Ax + B\operatorname{sat}(Kx) = (A + BK)x - B\operatorname{dz}(Kx)$

Consider Lyapunov function: (P > 0)

$$V(x) = x^T P x$$

We want: $\dot{V}(x(t)) < 0$ despite the nonlinearity.

Formally, for $(x,q) = (x, dz(Kx)) \neq 0$ we want

$$\begin{bmatrix} x \\ q \end{bmatrix}^T \operatorname{He} \begin{bmatrix} 0 & 0 \\ -WK & W \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix} = 2q^T W(u-q)$$
$$= 2(\operatorname{dz}(Kx))^T W(Kx - \operatorname{dz}(Kx)) \ge 0 \quad \Rightarrow \quad \dot{V}(x) < 0$$

Derivative of the candidate Lyapunov function

$$\begin{split} \dot{V}(x) &= x^T ((A+BK)^T P + P(A+BK))x - 2x^T P B q \\ &= x^T (A^T P + P A + K^T B^T P + P B K)x - 2x^T P B \operatorname{dz}(Kx) \\ &= \begin{bmatrix} x \\ q \end{bmatrix}^T \operatorname{He} \begin{bmatrix} PA + P B K & -P B \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix} \end{split}$$

Unknowns: W > 0 diagonal; P > 0; K

Let $M_0, M_1 \in S^r$, $r \in \mathbb{N}$, and suppose there exists $\zeta^* \in \mathbb{R}^r$ such that $(\zeta^*)^T M_1 \zeta^* > 0$. Then the following statements are equivalent:

• There exists $\tau > 0$ such that $M_0 - \tau M_1 > 0$.

(a) For all $\zeta \neq 0$ such that $\zeta^T M_1 \zeta \ge 0$ it holds that $\zeta^T M_0 \zeta > 0$.

Assume that for all $(x, q) \neq 0$: (τ is absorbed in W) $x^{T}(A^{T}P + PA + K^{T}B^{T}P + PBK)x - 2x^{T}PBq$ $+2q^{T}W(Kx - q) < 0$

 \rightsquigarrow The inequality guarantees what we want ("1. \Rightarrow 2.")

$$\dot{x} = Ax + B\operatorname{sat}(Kx) = (A + BK)x - B\operatorname{dz}(Kx)$$

Consider Lyapunov function: (P > 0)

$$V(x) = x^T P x$$

We want: $\dot{V}(x(t)) < 0$ despite the nonlinearity.

Formally, for $(x,q) = (x, dz(Kx)) \neq 0$ we want

$$\begin{bmatrix} x \\ q \end{bmatrix}^T \operatorname{He} \begin{bmatrix} 0 & 0 \\ -WK & W \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix} = 2q^T W(u-q)$$
$$= 2(\operatorname{dz}(Kx))^T W(Kx - \operatorname{dz}(Kx)) \ge 0 \quad \Rightarrow \quad \dot{V}(x) < 0$$

Derivative of the candidate Lyapunov function

$$\dot{V}(x) = x^{T}((A + BK)^{T}P + P(A + BK))x - 2x^{T}PBq$$

$$= x^{T}(A^{T}P + PA + K^{T}B^{T}P + PBK)x - 2x^{T}PB dz(Kx)$$

$$= \begin{bmatrix} x \\ q \end{bmatrix}^{T} He \begin{bmatrix} PA + PBK & -PB \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix}$$

Unknowns: W > 0 diagonal; P > 0; K

Lemma (S-Lemma or S-Procedure)

Let $M_0, M_1 \in S^r$, $r \in \mathbb{N}$, and suppose there exists $\zeta^* \in \mathbb{R}^r$ such that $(\zeta^*)^T M_1 \zeta^* > 0$. Then the following statements are equivalent:

• There exists $\tau > 0$ such that $M_0 - \tau M_1 > 0$.

So For all $\zeta \neq 0$ such that $\zeta^T M_1 \zeta \ge 0$ it holds that $\zeta^T M_0 \zeta > 0$.

Assume that for all $(x, q) \neq 0$: (τ is absorbed in W) $x^{T}(A^{T}P + PA + K^{T}B^{T}P + PBK)x - 2x^{T}PBq$ $+2q^{T}W(Kx - q) < 0$

 \rightsquigarrow The inequality guarantees what we want ("1. \Rightarrow 2.") In Matrix notation:

$$\left[\begin{array}{c} x\\ q \end{array}\right]^T \mathrm{He} \left[\begin{array}{c} PA + PBK & -PB\\ WK & -W \end{array}\right] \left[\begin{array}{c} x\\ q \end{array}\right] < 0$$

is negative definite.

$$\dot{x} = Ax + B\operatorname{sat}(Kx) = (A + BK)x - B\operatorname{dz}(Kx)$$

If there exists K, P, W such that

$$\begin{bmatrix} x \\ q \end{bmatrix}^T \operatorname{He} \begin{bmatrix} PA + PBK & -PB \\ WK & -W \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix} < 0$$

then u = Kx defines a stabilizing control law.

$$\dot{x} = Ax + B\operatorname{sat}(Kx) = (A + BK)x - B\operatorname{dz}(Kx)$$

If there exists K, P, W such that

$$\begin{bmatrix} x \\ q \end{bmatrix}^T \operatorname{He} \begin{bmatrix} PA + PBK & -PB \\ WK & -W \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix} < 0$$

then u = Kx defines a stabilizing control law. Multiplying with $diag(P^{-1}, W^{-1})$:

$$0 > \begin{bmatrix} P^{-1} & 0 \\ 0 & W^{-1} \end{bmatrix} \operatorname{He} \begin{bmatrix} PA + PBK & -PB \\ WK & -W \end{bmatrix} \begin{bmatrix} P^{-1} & 0 \\ 0 & W^{-1} \end{bmatrix}$$
$$= \operatorname{He} \begin{bmatrix} AP^{-1} + BKP^{-1} & -BW^{-1} \\ KP^{-1} & W^{-1} \end{bmatrix} = \operatorname{He} \begin{bmatrix} A\Lambda + BX & -BD \\ X & D \end{bmatrix}$$

where $\Lambda=P^{-1},$ $X=KP^{-1},$ $D=W^{-1}$

$$\dot{x} = Ax + B\operatorname{sat}(Kx) = (A + BK)x - B\operatorname{dz}(Kx)$$

If there exists K, P, W such that

$$\begin{bmatrix} x \\ q \end{bmatrix}^T \operatorname{He} \begin{bmatrix} PA + PBK & -PB \\ WK & -W \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix} < 0$$

then u = Kx defines a stabilizing control law. Multiplying with $diag(P^{-1}, W^{-1})$:

$$0 > \begin{bmatrix} P^{-1} & 0 \\ 0 & W^{-1} \end{bmatrix} \operatorname{He} \begin{bmatrix} PA + PBK & -PB \\ WK & -W \end{bmatrix} \begin{bmatrix} P^{-1} & 0 \\ 0 & W^{-1} \end{bmatrix}$$
$$= \operatorname{He} \begin{bmatrix} AP^{-1} + BKP^{-1} & -BW^{-1} \\ KP^{-1} & W^{-1} \end{bmatrix} = \operatorname{He} \begin{bmatrix} A\Lambda + BX & -BD \\ X & D \end{bmatrix}$$

where $\Lambda = P^{-1}$, $X = KP^{-1}$, $D = W^{-1}$ If there exist Λ , X, D so that

$$\operatorname{He} \left[\begin{array}{cc} A\Lambda + BX & -BD \\ X & -D \end{array} \right] < 0, \quad 0 < \Lambda, \quad 0 < D \text{ diagonal}$$

then the bounded input sat(Kx), $K = X\Lambda^{-1}$ globally asymptotically stabilizes the origin.

How likely is it that the LMI has a solution?

$$\dot{x} = Ax + B\operatorname{sat}(Kx) = (A + BK)x - B\operatorname{dz}(Kx)$$

If there exists K, P, W such that

$$\begin{bmatrix} x \\ q \end{bmatrix}^T \operatorname{He} \begin{bmatrix} PA + PBK & -PB \\ WK & -W \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix} < 0$$

then u = Kx defines a stabilizing control law. Multiplying with $diag(P^{-1}, W^{-1})$:

$$0 > \begin{bmatrix} P^{-1} & 0 \\ 0 & W^{-1} \end{bmatrix} \operatorname{He} \begin{bmatrix} PA + PBK & -PB \\ WK & -W \end{bmatrix} \begin{bmatrix} P^{-1} & 0 \\ 0 & W^{-1} \end{bmatrix}$$
$$= \operatorname{He} \begin{bmatrix} AP^{-1} + BKP^{-1} & -BW^{-1} \\ KP^{-1} & W^{-1} \end{bmatrix} = \operatorname{He} \begin{bmatrix} A\Lambda + BX & -BD \\ X & D \end{bmatrix}$$

where $\Lambda = P^{-1}$, $X = KP^{-1}$, $D = W^{-1}$ If there exist Λ , X, D so that

$$\operatorname{He} \left[\begin{array}{cc} A\Lambda + BX & -BD \\ X & -D \end{array} \right] < 0, \quad 0 < \Lambda, \quad 0 < D \text{ diagonal}$$

then the bounded input sat(Kx), $K = X\Lambda^{-1}$ globally asymptotically stabilizes the origin.

$$\dot{x} = Ax + B\operatorname{sat}(Kx) = (A + BK)x - B\operatorname{dz}(Kx)$$

If there exists K, P, W such that

$$\begin{bmatrix} x \\ q \end{bmatrix}^T \operatorname{He} \begin{bmatrix} PA + PBK & -PB \\ WK & -W \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix} < 0$$

then u = Kx defines a stabilizing control law. Multiplying with $diag(P^{-1}, W^{-1})$:

$$0 > \begin{bmatrix} P^{-1} & 0 \\ 0 & W^{-1} \end{bmatrix} \operatorname{He} \begin{bmatrix} PA + PBK & -PB \\ WK & -W \end{bmatrix} \begin{bmatrix} P^{-1} & 0 \\ 0 & W^{-1} \end{bmatrix}$$
$$= \operatorname{He} \begin{bmatrix} AP^{-1} + BKP^{-1} & -BW^{-1} \\ KP^{-1} & W^{-1} \end{bmatrix} = \operatorname{He} \begin{bmatrix} A\Lambda + BX & -BD \\ X & D \end{bmatrix}$$

where $\Lambda = P^{-1}$, $X = KP^{-1}$, $D = W^{-1}$ If there exist Λ , X, D so that

$$\operatorname{He} \left[\begin{array}{cc} A\Lambda + BX & -BD \\ X & -D \end{array} \right] < 0, \quad 0 < \Lambda, \quad 0 < D \text{ diagonal}$$

then the bounded input sat(Kx), $K = X\Lambda^{-1}$ globally asymptotically stabilizes the origin.

How likely is it that the LMI has a solution?

• If the LMI has a solution then

$$\begin{split} 0 &> \begin{bmatrix} I & -B \\ 0 & I \end{bmatrix} \operatorname{He} \begin{bmatrix} A\Lambda + BX & -BD \\ X & -D \end{bmatrix} \begin{bmatrix} I & 0 \\ -B^T & I \end{bmatrix} \\ &= \operatorname{He} \begin{bmatrix} A\Lambda & BD \\ X & -D \end{bmatrix}. \end{split}$$

• Then the Schur complement implies that

$$A\Lambda + \Lambda A^T = -Q < 0$$
$$2D + (X^T + BD)Q^{-1}(X + D^T B^T) < 0$$

- \rightsquigarrow A is Hurwitz (since $\Lambda > 0$)
- \rightsquigarrow The origin is globally asymptotically stable with K = 0.

~ We need local approaches

Global Asymptotic Stability Analysis

Consider

 $\dot{x} = Ax + Bq + Ew$ z = Cx + Dq + Fw u = Kx + Lq + Gwq = u - sat(u)

but we start with w = 0.

For K, L given, how do we establish global asymptotic stability of the orign?

Global Asymptotic Stability Analysis

Consider

 $\begin{aligned} \dot{x} &= Ax + Bq + Ew \\ z &= Cx + Dq + Fw \\ u &= Kx + Lq + Gw \\ q &= u - \operatorname{sat}(u) \end{aligned}$

but we start with w = 0.

For *K*, *L* given, how do we establish global asymptotic stability of the orign?

- Candidate Lyapunov function $V(x) = x^T P x$
- We want that the sector condition implies a decrease, i.e.,

$$\begin{aligned} q^T W(u-q) &\geq 0 \quad \Rightarrow \\ \dot{V}(x) &= x^T (A^T P + P A) x + 2 x^T P B q < 0, \ (x,q) \neq 0 \end{aligned}$$

• S-Procedure: (W > 0 diagonal)

$$x^T (A^T P + PA)x + 2x^T P B q + 2q^T W(u - q) < 0$$

• Using the definition of *u*:

$$\begin{aligned} x^T (A^T P + PA)x + 2x^T P B q \\ &+ 2q^T W (Kx - Lq - q) < 0 \end{aligned}$$

• Corresponding LMI:

$$He \left[\begin{array}{cc} PA & PB \\ WK & -W+WL \end{array} \right] < 0.$$

→ Feasibility (unknowns P > 0, W > 0 diagonal) implies global asymptotic stability

Global Asymptotic Stability Analysis

Consider

$$\begin{aligned} \dot{x} &= Ax + Bq + Ew \\ z &= Cx + Dq + Fw \\ u &= Kx + Lq + Gw \\ q &= u - \operatorname{sat}(u) \end{aligned}$$

but we start with w = 0.

For *K*, *L* given, how do we establish global asymptotic stability of the orign?

- Candidate Lyapunov function $V(x) = x^T P x$
- We want that the sector condition implies a decrease, i.e.,

$$\begin{aligned} q^T W(u-q) &\geq 0 \quad \Rightarrow \\ \dot{V}(x) &= x^T (A^T P + P A) x + 2 x^T P B q < 0, \ (x,q) \neq 0 \end{aligned}$$

• S-Procedure: (W > 0 diagonal)

$$x^T (A^T P + PA)x + 2x^T PBq + 2q^T W(u - q) < 0$$

• Using the definition of *u*:

$$x^{T}(A^{T}P + PA)x + 2x^{T}PBq$$
$$+ 2q^{T}W(Kx - Lq - q) < 0$$

• Corresponding LMI:

$$He \left[\begin{array}{cc} PA & PB \\ WK & -W+WL \end{array} \right] < 0.$$

- → Feasibility (unknowns P > 0, W > 0 diagonal) implies global asymptotic stability
- Note that: The Schur complement implies

 $-2W + WL + L^TW < 0$

Recall: Well-posedness of the algebraic loop

 $u = Kx + L(u - \operatorname{sat}(u)) + Gw$

Lemma (A sufficient condition)

Consider the algebraic loop for $L \in \mathbb{R}^{n_u \times n_u}$ and $u, \mu \in \mathbb{R}^{n_u}$. If there exists a positive definite matrix $W \in S_{>0}^{n_u}$ satisfying the matrix inequality

$$\frac{1}{\|W\|} \left(L^T W + WL - 2W \right) < 0,$$

then the algebraic loop is well-posed.

Global Asymptotic Stability Analysis (2)

Consider (with w = 0)

$$\begin{array}{rcl} \dot{x} & = & Ax + Bq + Ew \\ z & = & Cx + Dq + Fw \\ u & = & Kx + Lq + Gw \\ q & = & u - \operatorname{sat}(u) \end{array}$$

• Corresponding LMI:

He
$$\begin{bmatrix} PA & PB \\ WK & -W+WL \end{bmatrix} < 0.$$

• Note that: The Schur complement implies

 $-2W + WL + L^TW < 0$

Recall: Well-posedness of the algebraic loop

Lemma (A sufficient condition)

Consider the algebraic loop for $L \in \mathbb{R}^{n_u \times n_u}$ and $u, \mu \in \mathbb{R}^{n_u}$. If there exists a positive definite matrix $W \in S_{>0}^{n_u}$ satisfying the matrix inequality

$$\frac{1}{\|W\|} \left(L^T W + WL - 2W \right) < 0,$$

then the algebraic loop is well-posed.

Introducing a robustness margin: ($\nu \in (0, 1]$)

$$\begin{aligned} x^{T}(A^{T}P + PA)x + 2x^{T}PBq + 2q^{T}W(Kx - Lq - q) \leq \\ x^{T}(A^{T}P + PA)x + 2x^{T}PBq + 2q^{T}W(Kx - Lq - \nu q) \leq 0 \\ \end{aligned}$$
Corresponding LMI:

$$\operatorname{He}\left[\begin{array}{cc} PA & PB\\ WK & -\nu W + WL \end{array}\right] < 0 \tag{2}$$

The Schur Complement implies:

$$-2\boldsymbol{\nu}W+WL+L^TW<0.$$

If (2) is satisfied, then

$$\tfrac{1}{\|W\|} \left(L^T W + WL - 2W \right) < -2(1-\nu) \tfrac{W}{\|W\|} < 0$$

$\mathcal{L}_2\text{-}\mathsf{Stability}$ and $\mathcal{L}_2\text{-}\mathsf{Gain}$ Optimization

Consider

$$\begin{array}{rcl} \dot{x} &=& Ax+Bq+Ew\\ z &=& Cx+Dq+Fw\\ u &=& Kx+Lq+Gw\\ q &=& u-\operatorname{sat}(u) \end{array}$$

 \mathcal{L}_2 -stability problem (for given K, L). We perform the same steps as before

$$q^{T}W(u-q) \geq 0 \qquad \Rightarrow \qquad x^{T}(A^{T}P + PA)x + 2x^{T}P(Bq + Ew) < -\gamma\left(\frac{1}{\gamma^{2}}z^{T}z - w^{T}w\right)$$
(S-Procedure)
$$x^{T}(A^{T}P + PA)x + 2x^{T}P(Bq + Ew) + 2q^{T}W(u-q) + \gamma\left(\frac{1}{\gamma^{2}}z^{T}z - w^{T}w\right) < 0$$
(Definition of u)
$$x^{T}(A^{T}P + PA)x + 2x^{T}P(Bq + Ew) + 2q^{T}W(Gw + Kx + Lq - q) + \frac{1}{\gamma}z^{T}z - \gamma w^{T}w < 0$$

Corresponding matrix notation:

$$\begin{bmatrix} x \\ q \\ w \end{bmatrix}^T \left(\begin{bmatrix} A^T P + PA & PB + K^T W & PE \\ B^T P + WK & -2W + WL + L^T W & WG \\ E^T P & G^T W & -\gamma I \end{bmatrix} + \frac{1}{\gamma} \begin{bmatrix} C^T \\ D^T \\ F^T \end{bmatrix} \begin{bmatrix} C & D & F \end{bmatrix} \right) \begin{bmatrix} x \\ q \\ w \end{bmatrix} < 0.$$

Schur complement

$$\mathrm{He} \, \left[\begin{array}{cccc} PA & PB & PE & 0 \\ WK & -W + WL & WG & 0 \\ 0 & 0 & -\frac{\gamma}{2}I & 0 \\ \hline C & D & F & -\frac{\gamma}{2}I \end{array} \right] < 0.$$

\mathcal{L}_2 -Stability and \mathcal{L}_2 -Gain Optimization (Optimization Problem & Example)

Overall Optimization problem: ($\nu \in (0, 1]$)

$\min_{P,W,\gamma}$	γ	
subject to	0 < P	symmetric
	0 < W	diagonal
	$0 < \gamma$	
	$0 > \mathrm{He}$	$\begin{bmatrix} PA & PB & PE & 0\\ WK & -\nu W + WL & WG & 0\\ 0 & 0 & -\frac{\gamma}{2}I & 0\\ \hline C & D & F & -\frac{\gamma}{2}I \end{bmatrix}$
Example: Consider		
$\dot{x} = \begin{bmatrix} - \\ - \\ - \end{bmatrix}$	$egin{array}{cccc} 1 & -2 \ 1 & -2 \ 3 & -2 \end{array}$	$\begin{bmatrix} 2\\1\\-2 \end{bmatrix} x + \begin{bmatrix} 3\\2\\-1 \end{bmatrix} q + \begin{bmatrix} 2&-2\\1&3\\3&-2 \end{bmatrix} w$
$z = \begin{bmatrix} 1 \end{bmatrix}$	0 0];	$x + \begin{bmatrix} -3 & 2 \end{bmatrix} w$
$u = \begin{bmatrix} -1 \end{bmatrix}$	-2 1	$\begin{bmatrix} 1 \\ 2 \end{bmatrix} x + \begin{bmatrix} 2 \\ -3 \end{bmatrix} w$

 $q = u - \operatorname{sat}(u).$

Solution: $\gamma = 7.8607$ (for $\nu = 1$)

Section 3

Regional Analysis

Regional Analysis

Lemma

Let $u \in \mathbb{R}$ and $q = u - \operatorname{sat}(u)$. For an arbitrary row vector $H \in \mathbb{R}^{1 \times n}$, for all $x \in \mathbb{R}^n$ such that $\operatorname{sat}(Hx) = Hx$, the sector condition

 $(u-q+Hx)q \ge 0$ holds.

Proof.

Let $x \in \mathbb{R}^n$ such that sat(Hx) = Hx is satisfied. Then

$$(u-q+Hx)q = (u-u+\operatorname{sat}(u)+Hx)(u-\operatorname{sat}(u))$$
$$= (\operatorname{sat}(u)+Hx)(u-\operatorname{sat}(u))$$
$$= (\operatorname{sat}(u)+\operatorname{sat}(Hx))(u-\operatorname{sat}(u))$$

Now, consider two cases:

1
$$u = \operatorname{sat}(u)$$
: Then $(\operatorname{sat}(u) + \operatorname{sat}(Hx))(u - \operatorname{sat}(u)) = 0$

3 $u \neq \operatorname{sat}(u)$: Both terms on the right have the same sign or are zero. Specifically: (1) if $u > \operatorname{sat}(u)$ then $\operatorname{sat}(u) \ge \operatorname{sat}(Hx)$; (2) if $u = \operatorname{sat}(u)$ the right term vanishes; (3) if $u < \operatorname{sat}(u)$ then $\operatorname{sat}(u) \le \operatorname{sat}(Hx)$.

Regional Analysis

Lemma

Let $u \in \mathbb{R}$ and $q = u - \operatorname{sat}(u)$. For an arbitrary row vector $H \in \mathbb{R}^{1 \times n}$, for all $x \in \mathbb{R}^n$ such that $\operatorname{sat}(Hx) = Hx$, the sector condition

 $(u-q+Hx)q \ge 0$ holds.

Proof.

Let $x \in \mathbb{R}^n$ such that sat(Hx) = Hx is satisfied. Then

$$(u-q+Hx)q = (u-u+\operatorname{sat}(u)+Hx)(u-\operatorname{sat}(u))$$
$$= (\operatorname{sat}(u)+Hx)(u-\operatorname{sat}(u))$$
$$= (\operatorname{sat}(u)+\operatorname{sat}(Hx))(u-\operatorname{sat}(u))$$

Now, consider two cases:

1
$$u = \operatorname{sat}(u)$$
: Then $(\operatorname{sat}(u) + \operatorname{sat}(Hx))(u - \operatorname{sat}(u)) = 0$

2 $u \neq \operatorname{sat}(u)$: Both terms on the right have the same sign or are zero. Specifically: (1) if $u > \operatorname{sat}(u)$ then $\operatorname{sat}(u) \ge \operatorname{sat}(Hx)$; (2) if $u = \operatorname{sat}(u)$ the right term vanishes; (3) if $u < \operatorname{sat}(u)$ then $\operatorname{sat}(u) \le \operatorname{sat}(Hx)$. Vector version and positive scaling W > 0 diagonal:

$$(u - q + \frac{Hx}{T})^T Wq \ge 0$$

Visualization of the sector condition:

Domain where sat(Hx) = Hx is satisfied. Here $H_b = [1, 1]$ (blue) and $H_r = [1, -1]$ (red).

Local Asymptotic Stability

Candidate Lyapunov function:

$$V(x) = x^T P x$$

We want

$$V(x) = x^T P x \le 1 \quad \Rightarrow \quad \dot{V}(x) < 0, \quad x \neq 0$$

Note that: (\bar{u}_i saturation level)

$$\frac{1}{\bar{u}_i^2} x^T H_i^T H_i x < x^T P x, \qquad \forall x \neq 0, \quad \forall i = 1, \dots, n_u$$

implies ($i \in \{1, \ldots, n_u\}$)

 $\operatorname{sat}_{\bar{u}_i}(H_i x) = H_i x \quad \forall \ x \in \{x \in \mathbb{R}^{n_u} | \ x^T P x \le 1\}$

Candidate Lyapunov function:

$$V(x) = x^T P x$$

We want

$$V(x) = x^T P x \le 1 \quad \Rightarrow \quad \dot{V}(x) < 0, \quad x \neq 0$$

Note that: (\bar{u}_i saturation level)

$$\frac{1}{\bar{u}_i^2} x^T H_i^T H_i x < x^T P x, \qquad \forall \ x \neq 0, \quad \forall i = 1, \dots, n_u$$

implies ($i \in \{1, \ldots, n_u\}$)

$$\operatorname{sat}_{\bar{u}_i}(H_i x) = H_i x \quad \forall \ x \in \{x \in \mathbb{R}^{n_u} | \ x^T P x \le 1\}$$

Schur complement: (unknowns P, H_i)

$$0 < \begin{bmatrix} P & H_i^T \\ H_i & \bar{u}_i^2 \end{bmatrix}, \quad i = 1, \dots, n_u$$

Consider (with w = 0)

$$\dot{x} = Ax + Bq + Ew z = Cx + Dq + Fw u = Kx + Lq + Gw q = u - sat(u)$$

Candidate Lyapunov function:

$$V(x) = x^T P x$$

We want

$$V(x) = x^T P x \le 1 \quad \Rightarrow \quad \dot{V}(x) < 0, \quad x \neq 0$$

Note that: (\bar{u}_i saturation level)

$$\frac{1}{\bar{u}_i^2} x^T H_i^T H_i x < x^T P x, \qquad \forall x \neq 0, \quad \forall i = 1, \dots, n_u$$

implies ($i \in \{1, \ldots, n_u\}$)

$$\operatorname{sat}_{\bar{u}_i}(H_i x) = H_i x \quad \forall \ x \in \{x \in \mathbb{R}^{n_u} | \ x^T P x \le 1\}$$

Schur complement: (unknowns P, H_i)

$$0 < \left[\begin{array}{cc} P & H_i^T \\ H_i & \bar{u}_i^{\underline{\flat}} \end{array} \right], \quad i = 1, \dots, n_u$$

Consider (with w = 0)

 $\dot{x} = Ax + Bq + Ew$ z = Cx + Dq + Fw u = Kx + Lq + Gwq = u - sat(u)

\rightsquigarrow We can proceed as before.

We want that the sector condition implies a decrease, i.e.,

$$\begin{aligned} q^T W(u-q+\mathbf{H}\mathbf{x}) &\geq 0 \quad \Rightarrow \\ \dot{V}(x) &= x^T (A^T P + P A)x + 2x^T P B q < 0, \ (x,q) \neq 0 \end{aligned}$$

and we apply the S-procedure

$$x^T (A^T P + PA)x + 2x^T PBq$$

 $+2q^T W(Kx - Lq - q + Hx) < 0 \quad \forall (x,q) \neq 0$

and obtain the matrix representation

$$\operatorname{He} \left[\begin{array}{cc} PA & PB \\ WK + WH & -W + WL \end{array} \right] < 0$$

 \rightsquigarrow Not an LMI due to WH

Local Asymptotic Stability (2)

Define set of new unknowns:

$$\Lambda_1 = P^{-1}, \qquad \Lambda_2 = W^{-1}, \qquad \Gamma = HP^{-1}$$

Note that:

0

$$\begin{bmatrix} \Gamma_{1} \\ \vdots \\ \Gamma_{n_{u}} \end{bmatrix} = \Gamma = HP^{-1} = \begin{bmatrix} H_{1}P^{-1} \\ \vdots \\ H_{n_{u}}P^{-1} \end{bmatrix}$$
$$0 < \begin{bmatrix} P^{-1} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} P & H_{i}^{T} \\ H_{i} & \bar{u}_{i}^{2} \end{bmatrix} \begin{bmatrix} P^{-1} & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} P^{-1} & P^{-1}H_{i}^{T} \\ H_{i}P^{-1} & \bar{u}_{i}^{2} \end{bmatrix} = \begin{bmatrix} \Lambda_{1} & \Gamma_{i}^{T} \\ \Gamma_{i} & \bar{u}_{i}^{2} \end{bmatrix}$$
$$> \begin{bmatrix} P^{-1} & 0 \\ 0 & W^{-1} \end{bmatrix} \text{He} \begin{bmatrix} PA & PB \\ WK + WH & -W + WL \end{bmatrix} \begin{bmatrix} P^{-1} & 0 \\ 0 & W^{-1} \end{bmatrix}$$
$$= \text{He} \begin{bmatrix} AP^{-1} & BW^{-1} \\ KP^{-1} + HP^{-1} & -W^{-1} + LW^{-1} \end{bmatrix}$$
$$= \text{He} \begin{bmatrix} A\Lambda_{1} & B\Lambda_{2} \\ K\Lambda_{1} + \Gamma & -\Lambda_{2} + L\Lambda_{2} \end{bmatrix}$$

Local Asymptotic Stability (2)

Define set of new unknowns:

$$\Lambda_1 = P^{-1}, \qquad \Lambda_2 = W^{-1}, \qquad \Gamma = HP^{-1}$$

Note that:

$$\begin{bmatrix} \Gamma_{1} \\ \vdots \\ \Gamma_{n_{u}} \end{bmatrix} = \Gamma = HP^{-1} = \begin{bmatrix} H_{1}P^{-1} \\ \vdots \\ H_{n_{u}}P^{-1} \end{bmatrix}$$
$$0 < \begin{bmatrix} P^{-1} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} P & H_{i}^{T} \\ H_{i} & \overline{u}_{i}^{5} \end{bmatrix} \begin{bmatrix} P^{-1} & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} P^{-1} & P^{-1}H_{i}^{T} \\ H_{i}P^{-1} & \overline{u}_{i}^{2} \end{bmatrix} = \begin{bmatrix} \Lambda_{1} & \Gamma_{i}^{T} \\ \Gamma_{i} & \overline{u}_{i}^{2} \end{bmatrix}$$
$$0 > \begin{bmatrix} P^{-1} & 0 \\ 0 & W^{-1} \end{bmatrix} \text{He} \begin{bmatrix} PA & PB \\ WK + WH & -W + WL \end{bmatrix} \begin{bmatrix} P^{-1} & 0 \\ 0 & W^{-1} \end{bmatrix}$$
$$= \text{He} \begin{bmatrix} AP^{-1} & BW^{-1} \\ KP^{-1} + HP^{-1} & -W^{-1} + LW^{-1} \end{bmatrix}$$
$$= \text{He} \begin{bmatrix} A\Lambda_{1} & B\Lambda_{2} \\ K\Lambda_{1} + \Gamma & -\Lambda_{2} + L\Lambda_{2} \end{bmatrix}$$

Corresponding optimization problem:

۸ su

$$\begin{array}{ll} \min_{1,\Lambda_2,\Gamma,k} & k \\ \text{bject to} & 0 < \Lambda_1 & \text{symmetric} \\ & 0 < \Lambda_2 & \text{diagonal} \\ & 0 < k \\ & 0 < kI - \Lambda_1 \\ & 0 < \text{He} \left[\begin{array}{c} \frac{1}{2}\Lambda_1 & 0 \\ \Gamma_i & \frac{1}{2}\overline{u}_i^2 \end{array} \right], \ i = 1, \dots, n_u \\ & 0 > \text{He} \left[\begin{array}{c} A\Lambda_1 & B\Lambda_2 \\ K\Lambda_1 + \Gamma & -\Lambda_2 + L\Lambda_2 \end{array} \right] \end{array}$$

- If the the optimization problem is feasible then the origin is locally asymptotically stable
- Estimate of the region of attraction $\{x \in \mathbb{R}^n : x^T P x \leq 1\}$ (with $P = \Lambda_1^{-1}$)
- The smallest eigenvalue of *P* is maximized:

$$0 < kI - \Lambda_1 \quad \Longleftrightarrow \quad \frac{1}{k}I < P$$

• $\nu \in (0,1)$ can be incorporated

Local Asymptotic Stability (Example)

Consider

$$\dot{x} = Ax + B \operatorname{sat}(u) + Ew$$
$$z = Cx + D \operatorname{sat}(u) + Fw$$
$$u = Kx.$$

Using the deadzone operator:

$$\dot{x} = Ax + BKx - Bq + Ew = (A + BK)x - Bq + Ew$$
$$z = Cx + DBx - Dq + Fw = (C + DB)x - Dq + Fw$$
$$u = Kx$$

$$q = u - \operatorname{sat}(u)$$

We continue with an earlier example (which we have stabilized in the unconstrained case):

$$\begin{split} \dot{x} &= \begin{bmatrix} -20.93 & 21.92 & 11.83\\ -15.62 & 15.28 & 8.22\\ 4.31 & -4.64 & -2.61 \end{bmatrix} x + \begin{bmatrix} -3\\ -2\\ 1 \end{bmatrix} q + \begin{bmatrix} 2 & -2\\ 1 & 3\\ 3 & -2 \end{bmatrix} w \\ u &= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} -3 & 2 \end{bmatrix} w \\ u &= \begin{bmatrix} -7.31 & 6.64 & 4.61 \end{bmatrix} x + \begin{bmatrix} 2 & -3 \end{bmatrix} w \\ q &= u - \operatorname{sat}(u) \end{split}$$

- (For w = 0) the system without saturation is globally asymptotically stable
- Saturation level $\bar{u} = 1$, ($|\operatorname{sat}(Hx)| = 1$)

• We obtain
$$V(x) = x^T P x$$
 with

$$P = \begin{bmatrix} 21.93 & -22.11 & -10.78 \\ -22.11 & 26.01 & 12.83 \\ -10.78 & 12.83 & 9.43 \end{bmatrix}$$
$$H = [2.75, -1.98, -2.06]$$

\mathcal{L}_2 -Stability and \mathcal{L}_2 -Gain Optimization

We continue with:

$$\begin{aligned} \dot{x} &= Ax + Bq + Ew \\ z &= Cx + Dq + Fw \\ u &= Kx + Lq + Gw \\ q &= u - \operatorname{sat}(u) \end{aligned}$$

• Local asymptotic stability: $V(x) = x^T P x$,

 $\dot{V}(x) < 0 \quad \forall x \in \{x \in \mathbb{R}^n \setminus \{0\} | V(x) \le 1\}$

$\mathcal{L}_2\text{-}\mathsf{Stability}$ and $\mathcal{L}_2\text{-}\mathsf{Gain}$ Optimization

We continue with:

- $\dot{x} = Ax + Bq + Ew$ z = Cx + Dq + Fw u = Kx + Lq + Gwq = u - sat(u)
- Local asymptotic stability: $V(x) = x^T P x$,

 $\dot{V}(x) < 0 \quad \forall x \in \{x \in \mathbb{R}^n \backslash \{0\} | V(x) \le 1\}$

• Local \mathcal{L}_2 -stability: For s > 0 fixed, find $V(x) = x^T P x$ and $\gamma > 0$ such that

$$||z||_{\mathcal{L}_2} \le \gamma ||w||_{\mathcal{L}_2} \qquad \forall ||w||_{\mathcal{L}_2} \le s$$

(and x(0) = 0).

Derive conditions based on

$$\dot{V}(x(t)) \le w^T w \qquad \forall x \in \{x \in \mathbb{R}^n : V(x) \le s^2\}$$

• Corresponding LMI:

$$0 < \begin{bmatrix} P & H_i^T \\ i & \frac{\tilde{u}_i}{s^2} \\ H_i & \frac{\tilde{u}_i}{s^2} \end{bmatrix}, \quad i = 1, \dots, n_u.$$

P. Braun & C.M. Kellett (ANU)

\mathcal{L}_2 -Stability and \mathcal{L}_2 -Gain Optimization

We continue with:

$$\dot{x} = Ax + Bq + Ew$$

 $z = Cx + Dq + Fw$
 $u = Kx + Lq + Gw$
 $q = u - sat(u)$

• Local asymptotic stability: $V(x) = x^T P x$,

 $\dot{V}(x) < 0 \quad \forall x \in \{x \in \mathbb{R}^n \setminus \{0\} \mid V(x) \le 1\}$

• Local \mathcal{L}_2 -stability: For s > 0 fixed, find $V(x) = x^T P x$ and $\gamma > 0$ such that

$$\|z\|_{\mathcal{L}_2} \le \gamma \|w\|_{\mathcal{L}_2} \qquad \forall \|w\|_{\mathcal{L}_2} \le s$$

(and x(0) = 0).

Derive conditions based on

$$\dot{V}(x(t)) \le w^T w \qquad \forall x \in \{x \in \mathbb{R}^n : V(x) \le s^2\}$$

Corresponding LMI:

$$0 < \begin{bmatrix} P & H_i^T \\ I_i & \frac{n_i^2}{s^2} \\ H_i & \frac{n_i^2}{s^2} \end{bmatrix}, \quad i = 1, \dots, n_u.$$

Overall optimization problem:

 Λ_1 ,

$$\begin{array}{ll} \min_{\Lambda_1,\Lambda_2,\Gamma,\delta} & \delta \\ \text{subject to} & 0 < \Lambda_1 & \text{symmetric} \\ & 0 < \Lambda_2 & \text{diagonal} \\ & 0 < \delta \\ & 0 < \text{He} \left[\begin{array}{c} \frac{1}{2}\Lambda_1 & 0 \\ \Gamma_i & \frac{\bar{u}_i^2}{2s^2} \end{array} \right] \quad i = 1, \ldots, n_u \\ & 0 > \text{He} \left[\begin{array}{c} A\Lambda_1 & B\Lambda_2 & E & 0 \\ \Gamma + K\Lambda_1 & -\Lambda_2 + L\Lambda_2 & G & 0 \\ 0 & 0 & -\frac{1}{2}I & 0 \\ C\Lambda_1 & D\Lambda_2 & F & -\frac{\delta}{2}I \end{array} \right] \end{array}$$

Feasibility for fixed s > 0 implies:

- The local \mathcal{L}_2 -bound for $\gamma = \sqrt{\delta}$
- local asymptotic stablility for all $x \in \mathbb{R}^n$ contained in the sublevel set $\{x \in \mathbb{R}^{n} : x^{T} P x \leq s^{2}\}.$

We continue with the example:

$$\dot{x} = Ax + B \operatorname{sat}(u) + Ew$$
$$z = Cx + D \operatorname{sat}(u) + Fw$$
$$u = Kx.$$

Using the deadzone operator:

$$\begin{split} \dot{x} &= Ax + BKx - Bq + Ew = (A + BK)x - Bq + Ew \\ z &= Cx + DBx - Dq + Fw = (C + DB)x - Dq + Fw \\ u &= Kx \\ q &= u - \operatorname{sat}(u) \end{split}$$

We continue with an earlier example (which we have stabilized in the unconstrained case):

$$\begin{split} \dot{x} &= \begin{bmatrix} -20.93 & 21.92 & 11.83\\ -15.62 & 15.28 & 8.22\\ 4.31 & -4.64 & -2.61 \end{bmatrix} x + \begin{bmatrix} -3\\ -2\\ 1 \end{bmatrix} q + \begin{bmatrix} 2 & -2\\ 1 & 3\\ 3 & -2 \end{bmatrix} w \\ z &= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} -3 & 2 \end{bmatrix} w \\ u &= \begin{bmatrix} -7.31 & 6.64 & 4.61 \end{bmatrix} x + \begin{bmatrix} 2 & -3 \end{bmatrix} w \\ q &= u - \operatorname{sat}(u) \end{split}$$

Optimal \mathcal{L}_2 -gain γ (with respect to s):

Section 4

Antiwindup Synthesis

Antiwindup Synthesis

Plant & Controller:

$$\mathcal{P}: \left\{ \begin{array}{rl} \dot{x}_p &=& A_p x_p + B_p \operatorname{sat}(u) + B_w w \\ y &=& C_{p,y} x_p + D_{p,y} w \\ z &=& C_{p,z} x_p + D_{p,z} w \end{array} \right. \\ \mathcal{C}: \left\{ \begin{array}{rl} \dot{x}_c &=& A_c x_c + B_c y + D_{aw,1} q \\ u &=& C_c x_c + D_{c,y} y + D_{aw,2} q \end{array} \right.$$

Anti-windup injection terms

• $D_{\text{aw},1}$ and $D_{\text{aw},2}$ are to be designed to improve the closed-loop performance.

Updated system dynamics:

$$\begin{aligned} \dot{x} &= Ax + (B + B_{\mathrm{aw}} D_{\mathrm{aw}})q + Ew \\ z &= Cx + Dq + Fw \\ u &= Kx + (L + L_{\mathrm{aw}} D_{\mathrm{aw}})q + Gw \\ q &= u - \operatorname{sat}(u) \end{aligned}$$

Design parameter:

$$D_{\rm aw} = \left[\begin{array}{c} D_{\rm aw,1} \\ D_{\rm aw,2} \end{array} \right]$$

System/Controller parameter:

$$B_{\rm aw} = \begin{bmatrix} 0 & B_p \\ I_{n_c} & 0 \end{bmatrix}, \qquad L_{\rm aw} = \begin{bmatrix} 0 & I_{n_u} \end{bmatrix}.$$

P. Braun & C.M. Kellett (ANU)

Optimization problem:

 \sim If the optimization problem is feasible, the antiwindup injection term $D_{\rm aw} = X \Lambda_2^{-1}$

 $\rightsquigarrow \nu \in (0, 1]$ can be used/decreased to obtain an implementable $D_{aw,2}$ (well-posedness of algebraic loop) \rightsquigarrow Local analysis can be performed using the same tricks discussed before

Global Antiwindup Synthesis (Example)

Consider the plant/controller defined through the dynamics (subject to the disturbances):

$$\begin{bmatrix} A_p & B_p & B_w \\ \hline C_{p,y} & D_{p,y} \\ \hline C_{p,z} & D_{p,z} \end{bmatrix} = \begin{bmatrix} -0.2 & -0.2 & 0.6 & 3 \\ 1 & 0 & 0.4 & 3 \\ \hline -0.4 & -0.9 & 0 \\ \hline -0.4 & -0.9 & 0 \end{bmatrix}, \qquad \begin{bmatrix} A_c & B_c \\ \hline C_c & D_{c,y} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \hline 2 & 2 \end{bmatrix}, \qquad w(t) = \begin{cases} 1, & \text{if } t \le 1 \\ 0, & \text{if } t > 1 \end{cases}$$

Introduction to Nonlinear Control

Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett School of Engineering, Australian National University, Canberra, Australia

Part II:

Chapter 8: LMI Based Controller and Antiwindup Designs 8.1 \mathcal{L}_2 -gain optimization for linear systems 8.2 Systems with Saturation 8.3 Regional Analysis 8.4 Antiwindup Synthesis

