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LMI Based Controller and Antiwindup Designs

0 L>-Gain Optimization for Linear Systems
@ Asymptotic Stability and £2-Gain Optimization
@ Feedback Synthesis

e Systems with Saturation
@ LMI-Based Saturated Linear State Feedback Design
@ Global Asymptotic Stability Analysis
@ [,-Stability and £,-Gain Optimization

9 Regional Analysis
@ Local Asymptotic Stability
@ [,-Stability and £,-Gain Optimization

o Antiwindup Synthesis
@ Global Antiwindup Synthesis
@ Regional Antiwindup Synthesis
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LMI Based Controller and Antiwindup Designs

— » = »
| sat(u) P Plant & Controller:
> Yy
| zp = Apxp+ Bpsat(u)+ Byw
P y = Cpyap+ Dpyw
2 = p,2Tp + Dp,zw
c Te = Acte+ ch
C > _| v = Cexe+ Dc,yy
Compact representation: (z = [z, 217 € R™)
AlBI|E Ap + BpDeyCp,y BpCe | =Bp | BpDe,yDp,y + Buw © = Ax+ Bq+ Ew
T DT | = B.Ch,y Ac 0 BcDyp y z = Czx+ Dqg+ Fw
T a Cp,» 0 0 D,z v = Kz+ Lg+ Guw
DeyCp.y Ce 0 De,yDp,y q = wu-—sat(u)
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LMI Based Controller and Antiwindup Designs

4
— > >
| sat(u) P Plant & Controller:
> > Y
| zp = Apxp+ Bpsat(u)+ Byw
P y = Cpyxp+ Dpyw
z = Cpxp+ Dp.w
C: e = Acze+ Bey
¢ le— ‘1w = Cemet Deyy
Compact representation: (z = [z, 21]7 € R™)
Al BI|E Ap + BpDe,yCp,y BpCe | =Bp | BpDe,yDp,y + Bu & = Az+ Bg+ Ew
T | = B.Ch,y Ac 0 BcDyp y z = Cx+ Dg+ Fw
T a - Cp,» 0 0 D,z v = Kz+ Lg+ Guw
De,yCp.y Ce 0 De,yDp,y q = u-—sat(u)
Note that: @ If L #0, then u = L(u — sat(u)) +  defines an
@ The dynamics on the right is more general than the algebraic loop/equation
diagram (L, D) ~ Existence and uniqueness of a solution is not

@ The system is nonlinear due to the saturation automatically satisfied
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Well-posedness of algebraic loops

System of interest:

&t = Ax+ Bq+ Ew
z = Czx+ Dqg+ Fw
u = Kz+ Lg+ Guw
g = u-—sat(u)

Algebraic loop: (1 = Kz + Gw)
u = L(u —sat(u)) + p

Definition (Well-posed algebraic loop)

For L € R™w*"u consider the algebraic equation. The
algebraic equation is well-posed if it admits a unique
solution for all © € R™« and if p — w(w) is Lipschitz
continuous.
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Well-posedness of algebraic loops

System of interest:

i = Awt Bqt Bw Lemma (A sufficient condition)

z = Cz+Dg+Fw Consider the algebraic loop for L € R™+*™« and
u = Kz+ Lq¢+Guw u, u € R™u. [f there exists a positive definite matrix
q = wu—sat(u) W e 8Ly satisfying the matrix inequality

Algebraic loop: (1 = Kz + Gw) HV1V|| (LTW LWL QW) <o,
u = L(u —sat(u)) + p
then the algebraic loop is well-posed.

Definition (Well-posed algebraic loop)

For L € R™«*™u consider the algebraic equation. The Note that

eliysliialc eouzion I vl faesis 1 seiis Lf% unﬁue @ the factor i1 is not necessary, but it indicates how
S To ol el s S 1 Bl e - @) (8L RE e far the inequality is from being violated (~ robustness
continuous. margin)
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Section 1

L5-Gain Optimization for Linear Systems
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L2-Gain Optimization for Linear Systems

Recall: ¢ = Az
@ The origin is exponentially stable
@ For Q > 0 there exists P > 0 satisfying

ATP+ PA=—-Q

@ Idea of the Lyapunov equation is that V (z) = =™ Pz
is a Lyapunov function

V(z) =27 (ATP + PA)z = —2TQz < 0, z #£0.
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L2-Gain Optimization for Linear Systems

Recall: ¢ = Az
@ The origin is exponentially stable
@ For Q > 0 there exists P > 0 satisfying
ATP+ PA=—-Q

@ Idea of the Lyapunov equation is that V (z) = z” Px
is a Lyapunov function

V(z) =aT(ATP + PA)z = —27Qx < 0, z #£0.

We note that:

@ The inequality of the decrease is important not the
equality of the Lyapunov equation

~» For given A, consider the LMI
0O<P
ATP+PA<O
instead of the Lyapunov equation
@ Advantage: @ is a degree of freedom
@ “Optimal” @ and P can be obtained
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LMI (as convex optimization problem):

min k
P, k

subjectto 0 < k
0< P—al
0> P—(k+a)l
0> ATP+ PA.
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L2-Gain Optimization for Linear Systems

Recall: © = Az
@ The origin is exponentially stable
@ For Q > 0 there exists P > 0 satisfying
ATP+PA=—Q
@ Idea of the Lyapunov equation is that V (z) = =™ Pz
is a Lyapunov function
V(z) =aT(ATP + PA)z = —27Qx < 0,
We note that:

@ The inequality of the decrease is important not the
equality of the Lyapunov equation

~» For given A, consider the LMI
0O<P
ATP+PA<O
instead of the Lyapunov equation
@ Advantage: @ is a degree of freedom
@ “Optimal” @ and P can be obtained
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z #0.

Introduction to Nonlinear Control

LMI (as convex optimization problem):

min k
Pk
subjectto 0 < k
0< P—al

0> P—(k+a)l

0> ATP+ PA.
Here:

@ o > 0to ensure that P is not arbitrarily small

@ Third constraint to ensure that P is not arbitrarily large
Toolboxes in Matlab:

@ CVX, SOSTOOLS, YALMIP
Approximation: (¢ > 0)

rlrjl,ig k
subjectto 0 < k
0 < P—al—c¢l
0>P—(k+a)l+el
0> ATP+PA+el
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Asymptotic Stability and £2-Gain Optimization

Consider:

T = Ax + Fw
z=Cz+ Fuw.
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Asymptotic Stability and £2-Gain Optimization

Consider:
T = Ax + Ew
z=Cz+ Fuw.
0-GAS: (internal stability)

@ If 0 is globally asymptotically stable for w = 0, then
the system is called 0-GAS

~ If A is Hurwitz then the origin is 0-GAS
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Asymptotic Stability and £2-Gain Optimization

Consider:
T = Ax + Ew
z=Cz+ Fuw.
0-GAS: (internal stability)

@ If 0 is globally asymptotically stable for w = 0, then
the system is called 0-GAS

~ If A is Hurwitz then the origin is 0-GAS

Recall: For A Hurwitz, @ = —2I, P > 0 solution of the
Lyap. equation, V(x) = 2T P, we have derived

V(z) < —2Te++*wTw, ~=|PE|
Rearranging terms and integrating (with z(0) = 0) yields

t
lel2, 0.0 < [ 2(0)Ta()dr +V(a(®)
0

t
<o [ wTw(r)r = 2wl 6.
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Asymptotic Stability and £2-Gain Optimization

Consider:
T = Ax + Ew
z=Cz+ Fuw.
0-GAS: (internal stability)

@ If 0 is globally asymptotically stable for w = 0, then
the system is called 0-GAS

~ If A is Hurwitz then the origin is 0-GAS

Recall: For A Hurwitz, @ = —2I, P > 0 solution of the
Lyap. equation, V(x) = 2T P, we have derived

V() < —zTz 4+ ~*wTw, v =||PE|

Rearranging terms and integrating (with z(0) = 0) yields
t
lel,00 < [ o) e+ V(a(0)

t
<o [ wTw(r)r = 2wl 6.
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Introduction to Nonlinear Control

Slight modification: Suppose we can find P > 0, so that
V(z) =27 (ATP + PA)x + 22T PEw
< —v (,Y%sz — wTw) , V(z,w)#0
Then we can show that this guarantees
@ 0-GAS (since V(z) < 0 Vz # 0)
@ an L2-gain bound of v > 0 from w to output z; i.e.,
12l 2o0,6) < Vllwllzs0,6)

The bound again follows by integrating (and z(0) = 0):

t
1 /0 T (r)(n)dr 4 V() < 4 /O w7 (Y (r)dr
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P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

Slight modification: Suppose we can find P > 0, so that
V(z) =27 (ATP + PA)x + 22T PEw
< —v (,Y%sz — wTw) , V(z,w)#0
Then we can show that this guarantees
@ 0-GAS (since V(z) < 0 Vz # 0)
@ an L2-gain bound of v > 0 from w to output z; i.e.,
12l 2o0,6) < Vllwllzs0,6)

The bound again follows by integrating (and z(0) = 0):

t t
1 / (D) 2(r)dr + V() < v / wT (Fyw(r)dr
0 0
~» Can we compute P > 0 and v > 0 by solving an LMI?

Starting point:
zT(ATP + PA)z + 22T PEw + %sz —ywTw <0
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Asymptotic Stability and £2-Gain Optimization

Starting point:
zT(ATP + PA)z + 2T PEw + %sz —ywTw <0
zT(ATP + PA+ 5CTC)z +2:T(PE + %CTF)w +ywT FTFw <0

] (5 ] Jre e
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Asymptotic Stability and £2-Gain Optimization

Starting point:
zT(ATP + PA)z + 2T PEw + %sz —ywTw <0
zT(ATP + PA+ %CTC)m +2:T(PE + %CTF)w +ywT FTFw <0

T
x ATP+ PA PE 17 o7 x
(e e b IR IF AL

In terms of definite matrices (0 < P and):

I:ATP+PA PE}+1{2;][C F]<0 (1)

ETP I |7}

Introduction to Nonlinear Control

P. Braun & C.M. Kellett (ANU)

Note that:

@ For v > 0, fixed we know how to solve
the LMI to obtain P

@ However, we would like to minimize
v>0

@ The inequality is not linear in ~y
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Asymptotic Stability and £2-Gain Optimization

Starting point:
zT(ATP + PA)z + 2T PEw + %sz —ywTw <0
zT(ATP + PA+ %CTC)m +2:T(PE + %CTF)w +ywT FTFw <0
T T T
T AP+ PA PE 1] C T

B (75 Sl Jre s i)

In terms of definite matrices (0 < P and):
[ ATP+ PA PE } 1 { cT

ol F

ETP —

Introduction to Nonlinear Control
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Note that:

@ For v > 0, fixed we know how to solve
the LMI to obtain P

@ However, we would like to minimize
v>0

@ The inequality is not linear in ~y
Lemma (Schur Complement)

LetQ € S" and R € S§4 forr,q € N and let
S € R"*X4. Then the matrix condition

S
[ & 2 ]<o
is equivalent to the matrix conditions

R<0
Q—-SR'sT <o.
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Asymptotic Stability and £2-Gain Optimization

Starting point:
zT(ATP + PA)z + 2T PEw + %sz —ywTw <0
zT(ATP + PA+ %CTC)m +2:T(PE + %CTF)w +ywT FTFw <0

] (5 ] Jre e

In terms of definite matrices (0 < P and):

ATP+PA PE 1rcT
ETP -1 v | FT

p—

][c F]<o (1

Here,take R=—v,S=[ C F ]andQ as the leftmost matrix.
Then, (1) is equivalent to

ATp+pPA PE | CT

ETpP —~I | FT

C F | =1

<0
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Note that:

@ For v > 0, fixed we know how to solve
the LMI to obtain P

@ However, we would like to minimize
v>0

@ The inequality is not linear in ~y

Lemma (Schur Complement)
LetQ € S" and R € S§4 forr,q € N and let
S € R"*4. Then the matrix condition
[ & 2 ]<o
is equivalent to the matrix conditions
R<O

Q—-SR'sT <o.
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Asymptotic Stability and £,-Gain Optimization (2)

Overall optimization problem: Note that:
rlgin ~ @ The information that P is symmetric is redundant
(s

@ The constraint 0 < ~ is redundant (R = —v)

subjectto 0 <P  symmetric .
I < 4 @ Don't forget the factor % on the diagonal

0 <~
ATpP+PA PE | CT
0> [ ETp iy ‘ P Lemma (Schur Complement)
¢ Bl LetQ € S” and R € 89 forr,q € N and let S € R 4.
Notation: Then the matrix condition
He X = X + X7 Q S
€ + [ sT R <0
Reducing redundancy: ) ) ) o
is equivalent to the matrix conditions
PA PE 0
He 0 —-2I1| o <0 R<0
¢ F [-31 Q- SRsT <.
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Asymptotic Stability and £.-Gain Optimization (Example)

Consider:
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Asymptotic Stability and £.-Gain Optimization (Example)

Consider: ) . )
) ) Solution of the Lyapunov equation with Q = —21:
-1 - 2 2 —
i = 1 -2 1 |z+ | 1 3 |w 3.10 —-3.20 1.77
3 -2 2 3 -2 P = —3.20 550 —1.80 |.
1.77 —1.80 1.37
z:[l 0 0]33—}—[—3 Z]w

Estimation (using Young’s inequality):
12lZ,0,6 = €% + FuliZ, 0.,
= (fot zTCCx + 2eTCT Fw + wT FT Fw dr)2
< (f(f 2eTCCx + 2wT FT Fw d7'>2
< (fé 2Amax (CT 2T @ + 2Amax (FT F)wTw dT)2
= Dmax (CTO) 212, 0.0) + 2Amax(FTF)l[w|2 0.4,
<2 (Amax(CTO)IPEN + M (F7 F)) 20,1
= 2711 - ||wl|%,0,4)-

Hence, v = v2711 = 52.07
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Asymptotic Stability and £.-Gain Optimization (Example)

Consider: ) ) )
Solution of the Lyapunov equation with Q = —21:
-1 -2 2 2 =2
T = 1 -2 1 jz+ | 1 3 |w 3.10 -3.20 1.77
3 -2 2 3 -2 P = —3.20 550 —1.80 |.
1.77 —1.80 1.37
z:[l 0 0]:c+[—3 Z]w
Estimation (using Young’s inequality):
||z||i2[0’t) =|Cz+ Fw”a[o,t)
2
Alternatively, = (Jg e CCa +22TCT Fuw + wT FT Fuw dr)

-~ 2
v =743 < (Jy 207 CC + 20T FT Fu dr)

4.38 —-0.22 —4.12 5
P=| —022 032 -002 |. < (J3 22max(CTC)aT o + 2Ama (FT F)wTw dr )
—4.12  —-0.02 4.18

= 2)\max(CTC)HI”§:2[0,t) + 2)‘maX(FTF)Hw”§:2[0,t)

is returned as the solution of the LMI

<2 (Amax(CTOVIPEIP + Mnax (FTF) ) [10l1% 0.1
2
= 2711 |wlZ, 0,4)-

Hence, v = v2711 = 52.07
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Feedback Synthesis

Consider: (~ Design static state feedback K)
& = Ax + Bu+ Ew
z=Czx+ Du+ Fw
u= K.
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Feedback Synthesis

Consider: (~ Design static state feedback K)
& = Ax + Bu+ Ew
z=Cx+ Du+ Fw
u = Kux.
In closed-loop form:
= (A+ BK)x + Ew
z=(C+ DK)x + Fuw.
Same approach as before: (P > 0, V(z) = 27 Px)
V(e) = 2T ((A +BEK)TP+ P(A+ BK)) z+ 22T PEw

< -7 (’Y%sz - wTw> Y (z,w) # 0

(Unknowns: P, K, )
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Feedback Synthesis

Consider: (~ Design static state feedback K)
& = Ax + Bu+ Ew
z=Cx+ Du+ Fw
u = Kux.
In closed-loop form:
= (A+ BK)x + Ew
z=(C+ DK)x + Fuw.
Same approach as before: (P > 0, V(z) = 27 Px)
V(e) = 2T ((A +BEK)TP+ P(A+ BK)) z+ 22T PEw

< -7 (’Y%sz - wTw> Y (z,w) # 0

(Unknowns: P, K, )
STEP 1: Asymptotic stability (i.e., w = 0)

0> (A+ BK)TP+ P(A+ BK)
=ATP+PA+KTBTP + PBK
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Same approach as before: (P > 0, V(z) = 27 Px)
V(e) = 2T ((A +BEK)TP+ P(A+ BK)) z+ 22T PEw

< -7 (’Y%ZTZ - wTw> Y (z,w) # 0

(Unknowns: P, K, )
STEP 1: Asymptotic stability (i.e., w = 0)

0> (A+ BK)TP+ P(A+ BK)
=ATP+PA+KTBTP + PBK
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Introduction to Nonlinear Control

Define A = P—: (left and right multiplication with A)
AATPA + APAA + AKTBTPA + APBKA
= AAT + AN+ A(BK)T + BKA
= He (AA + BKA)
Define X = KA. Then
He (AA + BKA) = He (AA + BX)

is linear in the unknowns A = P~1 and X = KA
The condition

He (AA + BX) < 0

guarantees that A + BK is Hurwitz (with Lyapunov function
V(z) = 2T Px)
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0> (A+ BK)TP+ P(A+ BK)
=ATP+PA+KTBTP + PBK
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Define A = P—: (left and right multiplication with A)
AATPA + APAA + AKTBTPA + APBKA
= AAT + AN+ A(BK)T + BKA
= He (AA + BKA)
Define X = KA. Then
He (AA + BKA) = He (AA + BX)

is linear in the unknowns A = P~1 and X = KA
The condition

He(AA+ BX) <0
guarantees that A + BK is Hurwitz (with Lyapunov function
V(z) = 2T Px)
STEP 2: £5-gain optimization
Recall the condition (for known K)
P(A+BK) PE
He 0 -7

0
5 0 <0
C+ DK F =7
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Feedback Synthesis (2)

Recall the condition:

s

P(A+BK) P
He 0
C+ DK

NS Rl

<0
1

ol
|
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Feedback Synthesis (2)

Recall the condition:

Define A = P! (left and right multiplication):

A 0O O P(A+BK) PE | 0 A0 O AN+BKA E
0 I 0 |He 0 -21| o 0 I 0|="He 0 —2r
0 0 I C+ DK A 0 0 I

0
7 0 <0
CA+DKA | —31

P. Braun & C.M. Kellett (ANU)
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Feedback Synthesis (2)

Recall the condition:

Define A = P! (left and right multiplication):

A0 0 P(A+BK) PE | 0 A0 O AN+ BKA E
0 I 0 |He 0 -21| o0 0 I 0 |=He 0 17
0 I —7I7 0 0 I

0 C+DK  F |

Again, define X = KA:

AN + BX E
He 0 —

0
31| 0 <0.
CA+DXx F | —1I
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Feedback Synthesis (2)

Recall the condition:

Define A = P! (left and right multiplication):

A0 O P(A+BK) PE | 0
0 I 0 |He 0 -21| o0
0 0 I 17

C+DK  F |-

A 0 O AA + BKA E 0
0 I 0 |=He 0 =21 0 <0
0 0 I CA+DKA F | —ZI
Again, define X = KA:

Corresponding optimization/feasibility problem:
AA+ BX E 0 min 7y
He 0 1] 0 <0 AXy
CA+ DX F|-37 subjectto 0 <A symmetric
0<~

(AN+BX) E 0
0 > He 0 —21] 0

CA+ DX F | —31
~ Lyapunov function V(z) = T A~'z and a feedback
gain matrix K = XA~ such that ~ is minimal
P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control
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Feedback Synthesis (Example)

Consider: Eigenvalues of A:
1 2 =2 3 2 -2 {4,0.5 £ 1.325}
x:[:é g _;]m+{_f}u+{é _g]w Eigenvalues of A + BK:
z=[1 0 0]Jz+[ -3 2w {—4.78 £ 0.905, —0.15}
Solution of the LMI: Eigenvalues of P:
v =8.1910 {0.02,0.07,2.34}

K= -732 664 462 ]

1.18 -1.19 -0.62
P=| —-1.19 1.33 0.71 | .

—0.62 0.71 0.40
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Section 2

Systems with Saturation
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Systems with Saturation

Consider:

& = Az + Bsat(u)
u=Kzx

sat(u) dz(u)

Saturation: (we will suppress the limit « in the following)

-1, u<-1
sat(u) = u, —1<u<l
1, 1<uw.
—4, u<-—@
satg(u) = u, —u<u<
u, u<u.

Deadzone: (¢ = dz(u))

dz(u) = u — sat(u) and dzg (u) = u — satg (u),

We assume to have decentralized saturations

@ i.e., for u € R™« we assume that each input has its
own saturation function, possibly with different
saturation levels @; on the t" input.
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Systems with Saturation

sat(u) dz(u)
Consider:
& = Az + Bsat(u)
u= Kz
Saturation: (we will suppress the limit « in the following) w u
-1, u<-1
sat(u) = u, —1<u<l
1, 1<uw.
Note that:
—t, u<—u _ -
sata(u) = v —a<u< @ u € Rand ¢ = u — sat(u), satisfies
U, u<u. dz(u) sat(u) > 0 or equivalently glu—q) > 0.
Deadzone: (¢ = dz(u)) @ In particular sign(dz(u)) = sign(sat(u)) or
dz(u) = u — sat(u) and dzg (u) = u — satg (u), equivalently sign(q) = sign(u — q)

@ Moreover,
We assume to have decentralized saturations

wq(u—¢q) >0 forw >0
@ i.e., for u € R™« we assume that each input has its

own saturation function, possibly with different @ A vector version: (W > 0, diagonal)
saturation levels @; on the t" input.

dz(u)TW sat(u) > 0, TW(u—-q)>0

P. Braun & C.M. Kellett (ANU)
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LMI-Based Saturated Linear State Feedback Design

Controller design u = Kz: (¢ = u — sat(u))
& = Az + Bsat(Kz) = (A+ BK)xz — Bdz(Kz)
Consider Lyapunov function: (P > 0)
V(z) = 2T Px

We want: V(z(t)) < 0 despite the nonlinearity.
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LMI-Based Saturated Linear State Feedback Design

Controller design u = Kz: (¢ = u — sat(u))
& = Az + Bsat(Kz) = (A+ BK)x — Bdz(Kzx)
Consider Lyapunov function: (P > 0)
V(z) = 2T Px
We want: V(z(t)) < 0 despite the nonlinearity.
Formally, for (z, q) = (z,dz(Kz)) # 0 we want

{ z rHe[ —V?/K V(l)/ } { z } =2¢"W(u— q)

= 2(dz(Kz))TW(Kz — da(Kz)) >0 = V(z)<0
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LMI-Based Saturated Linear State Feedback Design

Controller design u = Kz: (¢ = u — sat(u))
& = Az + Bsat(Kz) = (A+ BK)x — Bdz(Kzx)
Consider Lyapunov function: (P > 0)
V(z) = 2T Px
We want: V(z(t)) < 0 despite the nonlinearity.
Formally, for (z, q) = (z,dz(Kz)) # 0 we want

z 17 0 0 x T
o) el e w ] [3 ] e
=2(dz(Kz))"W (Kz —dz(Kz)) >0 = V(z)<0
Derivative of the candidate Lyapunov function
V(z) =27 (A+ BK)'P+ P(A+ BK))z — 22T PBq
=2T(ATP+ PA+ KTBTP + PBK)z — 22T PBdz(Kzx)

(3] e[ ][]

Unknowns: W > 0 diagonal; P > 0; K
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LMI-Based Saturated Linear State Feedback Design

Controller design u = Kz: (¢ = u — sat(u))

b= Av+ Bsat(Ka) = (A + BK)z — Bda(Ka) Lemma (S-Lemma or S-Procedure)

Consider Lyapunov function: (P > 0) Let My, My € 8", r € N, and suppose there exists
T ¢* € R” such that (¢*)T M1¢* > 0. Then the following
V(z) == Px statements are equivalent:
We want: V(z(t)) < 0 despite the nonlinearity. @ There exists T > 0 such that Mo — T M > 0.
7 .
Formally, for (z, q) = (z,dz(Kz)) # 0 we want o gg’;va[ggf(? such that ¢* My ¢ > 0 it holds that

z 17 0 0 x T
R ) R
=2(da(Kz))TW(Kz —dz(Kz)) >0 = V(z)<0

Derivative of the candidate Lyapunov function
V(z) =27 (A+ BK)'P+ P(A+ BK))z — 22T PBq
=2T(ATP+ PA+ KTBTP + PBK)z — 22T PBdz(Kzx)

(3] e[ ][]

Unknowns: W > 0 diagonal; P > 0; K
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LMI-Based Saturated Linear State Feedback Design

Controller design u = Kz: (¢ = u — sat(u))

b= Av+ Bsat(Ka) = (A + BK)z — Bda(Ka) Lemma (S-Lemma or S-Procedure)

Consider Lyapunov function: (P > 0) Let Mo, My € S, r € N, and suppose there exists
- ¢* € R such that (¢*)T M1¢* > 0. Then the following
V(z) =z Pz statements are equivalent:
We want: V(z(t)) < 0 despite the nonlinearity. @ There exists > 0 such that Mo — My > 0.
a7 .
Formally, for (z, q) = (=, dz(Kx)) # 0 we want Q For all¢ # 0 such that (" M1 > 0 it holds that
¢* Mop¢ > 0.
x T 0 0 x T ’
He =2q" W(u—

[ q } [ -WK W } [ q } a ( 9 Assume that for all (z, q) # 0: (7 is absorbed in W)
=2(da(Kz))TW(Kz —dz(Kz)) >0 = V(z)<0 «T(ATP + PA+ KTBTP + PBK)z — 22T PBq
Derivative of the candidate Lyapunov function 124" W (Kz —q) <0
V(z) = 2" ((A+ BK)" P+ P(A+ BK))x — 22" PBq ~+ The inequality guarantees what we want (1. = 2.")

=2T(ATP+ PA+ KTBTP + PBK)z — 22T PBdz(Kzx)

(3] e[ ][]

Unknowns: W > 0 diagonal; P > 0; K
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LMI-Based Saturated Linear State Feedback Design

Controller design u = Kz: (¢ = u — sat(u))
& = Az + Bsat(Kz) = (A+ BK)x — Bdz(Kzx)
Consider Lyapunov function: (P > 0)
V(z) = 2T Px
We want: V (z(t)) < 0 despite the nonlinearity.
Formally, for (z, q) = (z,dz(Kz)) # 0 we want

z 17 0 0 x T
o) el e ][5 ]erweo
= 2(dz(Kz))TW(Kz — da(Kz)) >0 = V(z)<0
Derivative of the candidate Lyapunov function
V(z) =27 (A+ BK)'P+ P(A+ BK))z — 22T PBq
=2T(ATP+ PA+ KTBTP + PBK)z — 22T PBdz(Kzx)
1" PA+PBK -PB [«
o el ]
Unknowns: W > 0 diagonal; P > 0; K

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

Lemma (S-Lemma or S-Procedure)

Let My, My € 8", r € N, and suppose there exists
¢* € R” such that (¢*)T M1¢* > 0. Then the following
statements are equivalent:

@ There exists T > 0 such that My — 7M; > 0.

@ Forall ¢ # 0 such that ¢ M1 ¢ > 0 it holds that
¢TMo¢ > 0.

Assume that for all (z, q) # 0: (7 is absorbed in W)
2T(ATP+ PA+ KTBTP + PBK)z — 22T PBq
+2¢"W(Kz —q) <0
~» The inequality guarantees what we want (“1. = 2.)

In Matrix notation:

T
|:z:|H|:PA+PBK —PB:||::Ej|<O
q WK —-W q

is negative definite.
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LMI-Based Saturated Linear State Feedback Design (2)

Controller design u = Kz: (¢ = u — sat(u))
& = Az + Bsat(Kz) = (A+ BK)x — Bdz(Kz)
If there exists K, P, W such that

T
x PA+PBK —PB [ =
R R I B

then uw = Kz defines a stabilizing control law.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control

Ch. 8: LMI Based Controller and Antiwindup Designs 17/32



LMI-Based Saturated Linear State Feedback Design (2)

Controller design u = Kz: (¢ = u — sat(u))
& = Az + Bsat(Kz) = (A+ BK)x — Bdz(Kz)
If there exists K, P, W such that

{ z rHe[ PA+PBK -PB } { z

q WK W q:|<0

then uw = Kz defines a stabilizing control law.
Multiplying with diag(P~*, W ~1):

—1 _ -1
0>[P 0 ]He{PA—‘rPBK PB} [P 0 ]

o w-1 WK -W o w-1
— g[APT '+ BKP™! —BW~1]_ TAA+BX —BD
=He Kp-1! w-1 |77 X D

where A=P 1, X=KP !, D=Ww"1
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LMI-Based Saturated Linear State Feedback Design (2)

Controller design u = Kz: (¢ = u — sat(u))
& = Az + Bsat(Kz) = (A+ BK)x — Bdz(Kz)
If there exists K, P, W such that

{ z rHe[ PA+PBK -PB } { z

q WK W q:|<0

then uw = Kz defines a stabilizing control law.
Multiplying with diag(P~*, W ~1):

—1 _ -1
0>[P 0 ]He{PA-i-PBK PB} [P 0 ]

o w-! WK -w o w-!
_qg AP~' 4+ BKP~1 —BW-! 1| AM+BX -BD
e Kp-1 w-t | T X D

where A=P 1, X=KP !, D=Ww"1
If there exist A, X, D so that

He { AAN+BX —-BD

X D }<0, 0< A, 0< D diagonal

then the bounded input sat(Kz), K = XA~! globally
asymptotically stabilizes the origin.
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LMI-Based Saturated Linear State Feedback Design (2)

Controller design u = Kz: (¢ = u — sat(u)) How likely is it that the LMI has a solution?
& = Az + Bsat(Kz) = (A+ BK)x — Bdz(Kz)
If there exists K, P, W such that

{ z rHe[ PA+PBK -PB } { z

q WK W q:|<0

then uw = Kz defines a stabilizing control law.
Multiplying with diag(P~*, W ~1):

—1 _ -1
0>[P 0 ]He{PA—i-PBK PB} [P 0 ]

o w-! WK -w o w-!
_qg AP~' 4+ BKP~1 —BW-! 1| AM+BX -BD
e Kp-1 w-t | T X D

where A=P 1, X=KP !, D=Ww"1
If there exist A, X, D so that

He { AAN+BX —-BD

X D }<0, 0< A, 0< D diagonal

then the bounded input sat(Kz), K = XA~! globally
asymptotically stabilizes the origin.
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LMI-Based Saturated Linear State Feedback Design (2)

Controller design u = Kz: (¢ = u — sat(u)) How likely is it that the LMI has a solution?
& = Az + Bsat(Kz) = (A + BK)z — Bdz(Kx) @ If the LMI has a solution then
If there exists K, P, W such that 0> I -B H AN+ BX —BD 1 0
T o I |7° X -D | |-BT I
T H PA+ PBK —PB T 0
q ¢ WK -W q | < _ge|AA BD
B X =D\

then uw = Kz defines a stabilizing control law.
Multiplying with diag(P~*, W ~1):

0> p-1 0 g PA+PBK —PB]|[pP? 0
0o w-1|"€ WK -W 0o w-!

@ Then the Schur complement implies that
AN +AAT = Q<0
2D+ (XT + BD)Q ' (x + DTBT) <0

_ He[AP_l +BKP~! —BW—l} _HE[AA+BX —BD]
Kp~! w-! X D ~ Ais Hurwitz (since A > 0)
where A=P ', X =KP ', D=wW"! ~ The origin is globally asymptotically stable with
If there exist A, X, D so that K =0.
He [ AL BX B ] <0, 0<A, 0<D diagonal
- ~ We need local approaches
then the bounded input sat(Kz), K = XA~! globally

asymptotically stabilizes the origin.
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Global Asymptotic Stability Analysis

Consider

Ax + Bq+ Ew
Cz + Dq+ Fw
Kz + Lg+ Gw
u — sat(u)

Q2w 8

but we start with w = 0.
For K, L given, how do we establish global asymptotic
stability of the orign?
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Global Asymptotic Stability Analysis

Consider @ Corresponding LMI:
& = Ax+ Bq+ Ew
z = Czx+ Dqg+ Fw He Vj[';?( WPBWL < 0.
uw = Kx+ Lg+ Guw -
g = u—sat(u)

~ Feasibility (unknowns P > 0, W > 0 diagonal)
but we start with w = 0. implies global asymptotic stability
For K, L given, how do we establish global asymptotic
stability of the orign?

@ Candidate Lyapunov function V(z) = 27 Px

@ We want that the sector condition implies a decrease,
ie.,

¢ Wu—-q >0 =
V(z) = 2T (ATP + PA)x + 22T PBg < 0, (z,q) #0
@ S-Procedure: (W > 0 diagonal)
2T (ATP + PA)z + 22T PBg+ 2¢TW(u —q) <0

@ Using the definition of u:

2T (ATP + PA)x + 22T PBq
+2¢"W(Kz — Lg—q) <0
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Global Asymptotic Stability Analysis

Consider @ Corresponding LMI:
& = Ax+ Bq+ Ew
z = Czx+ Dqg+ Fw He [ V];?( WPBWL < 0.
uw = Kx+ Lg+ Guw -
g = u—sat(u)

~ Feasibility (unknowns P > 0, W > 0 diagonal)
but we start with w = 0. implies global asymptotic stability
For K, L given, how do we establish global asymptotic

stability of the orign? @ Note that: The Schur complement implies

T
@ Candidate Lyapunov function V (z) = 27 Pz —2W+ WL+ LW <0
@ We want that the sector condition implies a decrease, Recall: Well-posedness of the algebraic loop
ie.,

u= Kz + L(u — sat(u)) + Gw
TWu-9q>0 =

V(z) =" (ATP + PA)x + 2" PBg <0, (,0) #0 | emma (A sufficient condition)

@ S-Procedure: (W > 0 diagonal) Consider the algebraic loop for I € R™u*"u and

T AT T T _ u, p € R™u. [f there exists a positive definite matrix
e (ATP+ PAwt 20 PBq+2¢ W(u—q) <0 W e 8¢ satisfying the matrix inequality
@ Using the definition of u:
o (ETW +wL—2w) <o,
zT(ATP + PA)z + 22T PBq
+2¢"W(Kz — Lg—q) < 0 then the algebraic loop is well-posed. )
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Global Asymptotic Stability Analysis (2)

Consider (withw =0

=

z = Ax+ Bq+ Ew
z = Czx+ Dq+ Fw
u = Kx+ Lg+ Guw
qg = u—sat(u)
@ Corresponding LMI:
PA PB
He [ wk —w+wr | <Y

@ Note that: The Schur complement implies
—2W + WL+ LTW <0
Recall: Well-posedness of the algebraic loop
Lemma (A sufficient condition)

Consider the algebraic loop for L € R™«*"w and
u, u € R™u. If there exists a positive definite matrix
W e 8¢ satisfying the matrix inequality
1 T _
T (L W+ WL 2W) <0,

then the algebraic loop is well-posed.

Introducing a robustness margin: (v € (0, 1])

2T (ATP + PA)z + 2¢TPBq+ 2¢TW(Kxz — Lg — q) <
2T(ATP + PA)x 4+ 2¢T PBq + 2¢"W(Kz — Lg — vq) <0
Corresponding LMI:

PA PB
WK —vW+WL

-~

He { } <0 (2
The Schur Complement implies:

—20W + WL+ LTW <o.
If (2) is satisfied, then

(T _ Lol — ) W
e (LTW WL —2w) < =201 =) ¥ <0

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 8: LMI Based Controller and Antiwindup Designs 19/32



L,-Stability and £2-Gain Optimization

Consider
z = Azx+ Bq+ Ew
z = Cx+ Dq+ Fw
u = Kzx+ Lg+ Guw
g = u-—sat(u)
Lo-stability problem (for given K, L). We perform the same steps as before
TWwu—-q)>0 = 2T (ATP + PA)z 4 2¢T P(Bq + Ew) < —v ( S wTw>
(S-Procedure) 2T (AT P + PA)x + 2¢T P(Bq+ Ew) + 2¢¥ W (u — q) + v ( 2T —w w) <0
(Definition of u) zT(ATP + PA)z + 22T P(Bq + Ew) + 2¢" W(Gw + Kz + Lqg — q) + 7sz —ywTw <0
Corresponding matrix notation:
1" ATP 4+ PA PB+ KTW PE ] [T x
q BTP+ WK —2W+WL+LTW WG |+~ [C D F] q | <o
w ETP GTw —I | 7| FT w
Schur complement
PA PB PE 0
WK -W+WL WG 0
He 0 0 7%1 0 < 0.
C D F |71
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Lo-Stability and £,-Gain Optimization (Optimization Problem & Example)

Overall Optimization problem: (v € (0, 1])

min
P,W,y 7

subjectto 0 < P symmetric
0<wW diagonal

0<vy
PA PB PE 0
WK —vW+WL WG 0
0 > He
0 0 -1 0
C D F | -31
Example:
Consider

-1 -2 2 3 2 =2
T = 1 -2 1 |z+ 2 | g+ 1 3 | w
3 -2 =2 -1 3 -2

z:[l 0 0]1:4—[—3 Q]w
=[-1 -2 1]z+[2 -3 ]w

u
q = u — sat(u).

Solution: v = 7.8607 (for v = 1)
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Section 3

Regional Analysis
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Regional Analysis

Lemma

Letu € R and g = u — sat(u). For an arbitrary row vector
H € RY™™ forallz € R™ such thatsat(Hz) = Hz, the
sector condition

(u—q+Hz)g>0 holds.

Proof.
Let z € R™ such that sat(Hxz) = Hu is satisfied. Then
(u—q+ Hz)g = (u —u+sat(u) + Hz)(u — sat(u))
= (sat(u) + Hz)(u — sat(u))
= (sat(u) + sat(Hz))(u — sat(u))
Now, consider two cases:
@ u = sat(u): Then (sat(u) +sat(Hz))(u —sat(u)) =0
@ u # sat(u): Both terms on the right have the same
sign or are zero. Specifically: (1) if u > sat(u) then

sat(u) > sat(Hz); (2) if u = sat(u) the right term
vanishes; (3) if u < sat(u) then sat(u) < sat(Hz).

a

v
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Regional Analysis

Lemma

Letu € R and g = u — sat(u). For an arbitrary row vector
H € RY™™ forallz € R™ such thatsat(Hz) = Hz, the
sector condition

(u—q+Hz)g>0 holds.

Proof.
Let z € R™ such that sat(Hxz) = Hu is satisfied. Then
(u—q+ Hz)g = (u —u+sat(u) + Hz)(u — sat(u))
= (sat(u) + Hz)(u — sat(u))
= (sat(u) + sat(Hz))(u — sat(u))
Now, consider two cases:
@ u = sat(u): Then (sat(u) +sat(Hz))(u —sat(u)) =0
@ u # sat(u): Both terms on the right have the same
sign or are zero. Specifically: (1) if u > sat(u) then

sat(u) > sat(Hz); (2) if u = sat(u) the right term
vanishes; (3) if u < sat(u) then sat(u) < sat(Hz).

O

e

P. Braun & C.M. Kellett (ANU)

Vector version and positive scaling W > 0 diagonal:
(u—q+ He)TWqg>0
Visualization of the sector condition:
2
1.5
1
0.5
)
-0.5
-1

-1.5

-2
-2 -1 0 1 2

&y
Domain where sat(Hz) = Hz is satisfied.
Here H, = [1,1] (blue) and H, = [1, —1] (red).
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Local Asymptotic Stability

Candidate Lyapunov function:
V(z) = 2T Px
We want
Vi)=zTPz<1 = V()<0, z#0
Note that: (u; saturation level)
ﬂ%zTHiTHir<mTPx, Ve#0, Vi=1,...,n,

implies (i € {1,...,n4})
sata, (Hiz) = Hiz Yz € {z € R"|zT Pz < 1}
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Local Asymptotic Stability

Candidate Lyapunov function: Consider (with w = 0)
V(z) = 2T Px ¢ = Ax+ Bgq+ Ew
z = Czr+Dqg+ Fw
We want v — KeootlLgtGuw
V@)=2TPz<1 = V(z)<0, z#0 g = u-—sat(u)

Note that: (u; saturation level)
Lo H Hix <2"Px, Va0, Vi=1,..,n,

implies ( € {1,...,nu4})
satg; (Hix) = Hix Vax € {zx € R™"| TPz <1}
Schur complement: (unknowns P, H;)

P HT
H; ’E?

0<|

:|, i=1,...,ny
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Local Asymptotic Stability

Candidate Lyapunov function: Consider (with w = 0)
V(z) = 2T Px & = Az+ Bq+ Ew
z = Czx+ Dqgq+ Fw
We want u = Kx+ Lg+ Guw
V@)=2TPz<1 = V(z)<0, z#0 g = u-—sat(u)
Note that: (u; saturation level) ~+ We can proceed as before.

We want that the sector condition implies a decrease, i.e.,
%ZTHZTHix<mTPx, Ve#0, Vi=1,...,n, T
Wi g Wu—qg+Hz) >0 =

implies (’L € {1,. ,nu}) V(Ct) _ $T(ATP+ PA)CE + 21:TPBq <0, (x,q) ?é 0
sata,(Hiz) = Hix Va € {z € R™|z" Pz <1} and we apply the S-procedure
Schur complement: (unknowns P, H;) «T(ATP + PA)z + 2:TPBq
0<[§, Pg} i=1,...,ny +2¢"W(Kz—Lqg—q+ Hz) <0 V(z,q9) #0

and obtain the matrix representation

PA PB
WK+WH —-W+WL

~ Not an LMI due to WH

<0

He
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Local Asymptotic Stability (2)

Define set of new unknowns:
A =P, Ag = WL, r=Hp!

Note that:
I H1P71
—TT=HP ! =
Cn, Hp, P!
P71 0 P HT P71 0
0<[0 1][HZ a?Ho 1
_[ Pt P'HT ] _[ M TIT
=l mpt @ | T a
0> Pt 0 g PA PB p-1 0
0o W-U'C\WK+WH -W+WL|| 0o w-!
— He Ap~1 BW—1
- Kp=l4+HpP~! —w-l4rLw-!
_Hu ANy BAs
= KA 4T —As+ LAy

P. Braun & C.M. Kellett (ANU)
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Local Asymptotic Stability (2)

rr ndin. imization problem:
Define set of new unknowns: Corresponding optimization proble

i k
A=P', Ap=w"' T=HP! A Ao Tk
Note that: subjectto 0 < Aj symmetric
Iy H, P! 0 <Az diagonal
: =I=HpP = : 0<k
) ’ I—A
T, H,, P! 0<k N
A1 0 .
2 =
0< He [ T, %’522 },z 1, My,

ANy BA»>
0>He|:KA1+F —A2-|—LA2j|

@ [f the the optimization problem is feasible then

0> p-1 0 ]H [ PA PB Mpfl 0 } the origin is locally asymptotically stable
_ (¢} —
0o w! WK+WH -W+WL|| 0 W! @ Estimate of the region of attraction
" [ Ap-1 BW-1 ] {x € R" : 2T Pz < 1} (with P = ATY)
= He _ _ — _
KpP~'+HP™! —Wwl4+Lw! @ The smallest eigenvalue of P is maximized:
— He Al BAs 0<kI-A; <= LI<P
KA +T  —As+ LA

@ v € (0,1) can be incorporated
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Local Asymptotic Stability (Example)

Consider @ (For w = 0) the system without saturation is globally
& = Az + Bsat(u) + Ew asymptotically stable
2= Cz + Dsat(u) + Fw @ Saturation level @ = 1, (| sat(Hzx)| = 1)
w= Kz @ We obtain V(x) = 2T Pz with

Using the deadzone operator: 21.93 —-22.11 —-10.78

P = —22.11 26.01 12.83

z=Czx+ DBz — Dg+ Fw = (C+ DB)x — Dg + Fw
u= Kz

q = u — sat(u)

H = [2.75,—1.98, —2.06]

We continue with an earlier example (which we have
stabilized in the unconstrained case):

—20.93 21.92 11.83 -3 2 =2
= [—15.62 15.28 8.22 z +|—-2| g +|1 3| w
431 —-4.64 —-261 1 3 -2

z=[1 0 0]z+[ -3 2w
u=[ —731 664 461 Jz+[2 -3 |w

q = u — sat(u)
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L,-Stability and £2-Gain Optimization

We continue with:

Ax + Bq+ Ew
Cz + Dq+ Fw
Kz + Lg+ Gw
u — sat(u)

Q2w 8
(I

@ Local asymptotic stability: V(z) = T Pz,

V(z) <0 Ve {zeR"\{0} V(z) <1}
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L,-Stability and £2-Gain Optimization

We continue with:

Ax + Bq+ Ew
Cz + Dq+ Fw
Kz + Lg+ Gw
u — sat(u)

Q € w &
[

@ Local asymptotic stability: V(z) = T Pz,

V(z) <0 Ve {zeR"\{0} V(z) <1}

@ Local L-stability: For s > 0 fixed, find V(z) = 27 Px
and v > 0 such that

lzlleo < Allwlle,  Viwle, <s
(and z(0) = 0).
@ Derive conditions based on
V(z(t) < wlw Vo € {x € R": V(z) < 5%}
@ Corresponding LMI:

HT
0< al i=1,...,nq.
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L,-Stability and £2-Gain Optimization

We continue with: Overall optimization problem:
& = Ax+ Bq+ Ew min 5
z = Czx+Dg+ Fw A1,A9,T,6
u = Kz+Lg+Guw subjectto 0 < Ag symmetric
¢ = u—satu) 0<As  diagonal
@ Local asymptotic stability: V(z) = 7 Pz, 0<9o
1
. 5 0
V(z) <0 Vze{zecR"\{0}|V(z) <1} 0 < He Zr 22 i=1,...,10
@ Local Lo-stability: For s > 0 fixed, find V (z) = 2T Pz o2
and > 0 such that Ay BA; E 0
'+ KA —Ao + LAs G 0
lzlley <Allwlle,  Viwle, < 0>He| 0 ~1r o
(and z(0) = 0). CAq DA, F =31
@ Derive conditions based on Feasibility for fixed s > 0 implies:
V(z@®) <wlw Vee{zreR":V(z)<s?} @ The local £2-bound for v = v/§
@ Corresponding LMI: @ local asymptotic stablility for all z € R™ contained in

the sublevel set {z € R™ : 2T Pz < s?}.

p HT .
0< H é L oi=1,...,n,.
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Lo-Stability and £,-Gain Optimization (Example)

) . Optimal L2-gain ~ (with respect to s):
We continue with the example: P 2-gain 7 ( P s)

& = Az + Bsat(u) + Ew 200 ‘ ‘ ]
z = Cz + Dsat(u) + Fw
u = Kzx. 150 ‘
Using the deadzone operator: < 100 ‘
¢ =Ax+ BKz — Bq+ Ew= (A+ BK)x — Bq+ Ew ‘
z=Cz+ DBz — Dg+ Fw = (C+ DB)x — Dqg + Fw 50
u=Kzx /j
—u— 0
g =u = sat(u) 0 0.02 0.04 0.06
We continue with an earlier example (which we have s
stabilized in the unconstrained case):
—20.93 2192 11.83 -3 2 =2
T = |—15.62 15.28 822 x+|-2| g+|1 3| w
431 —-4.64 —2.61 1 3 -2

z:[l 0 O]m+[—3 Q}w
u:[—7.31 6.64 4,61]:1:-‘,—[2 —3]w

q = u — sat(u)

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 8: LMI Based Controller and Antiwindup Designs 28/32



Section 4

Antiwindup Synthesis
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Antiwindup Synthesis

Plant & Controller:

zp = Apzp+ Bpsat(u) + Byw
P y = Chyzp+ Dpyw
z = Cpzzp+ Dp.w

C: T = Acl'c+ch+Daw,1q
’ u = Ccxc+ Dc,yy + Daw,Qq
Anti-windup injection terms

@ Dayw,1 and D,y 2 are to be designed to improve the
closed-loop performance.

w z

—P>
| sat(u) q P y

P. Braun & C.M. Kellett (ANU)
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Updated system dynamics:

= Az + (B + BawDaw)q + Ew
=Cz+ Dq+ Fw

=Kz + (L + LawDaw)q + Gw
q =u—sat(u)

ISERNER R

Design parameter:

_ Daw,l
Daw - |: Daw,2 :|

System/Controller parameter:

0 B
Baw - [ In Op j| } LaW = [O Inu]'
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Global Antiwindup Synthesis

Optimization problem:

AReXy
subjectto 0 < Ay symmetric

0 < As diagonal

0<y
ANy BA2 + Baw X E 0
KA —vA LA Law X G 0
0 > He 01 vA2 + 02“1‘ aw _%I 0
CAy D F ‘ —%I

~ If the optimization problem is feasible, the antiwindup injection term D,y = XA;1
~ v € (0, 1] can be used/decreased to obtain an implementable D.., > (well-posedness of algebraic loop)

~~ Local analysis can be performed using the same tricks discussed before
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Global Antiwindup Synthesis (Example)

Consider the plant/controller defined through the dynamics (subject to the disturbances):

—-0.2 —-0.2]06 |3
C{‘P Bol Du | 1 1 0 Joals A | B. 1 _Jo]1 {1 it<1
Doy oet| = | =04_—09 0|’ Ce|Dew |~ 2720 “Y70 ift>1
Pz Pz 04 —0.9 0
o D1 = —127.30, Day,2 = 0.45.
2r 0
=) 3 \,
-
= 0 = E=R)
= NS =
O -2 = . ——Uncontrolled setting
) —— Unconstrained input
4 Saturated input
67 —— Antiwindup controller|
6 . . . . : :
0 10 20 30 40 0 10 20 30 40
t t
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