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LMI Based Controller and Antiwindup Designs
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Plant & Controller:

P :

 ẋp = Apxp +Bp sat(u) +Bww
y = Cp,yxp +Dp,yw
z = Cp,zxp +Dp,zw

C :

{
ẋc = Acxc +Bcy
u = Ccxc +Dc,yy

Compact representation: (x = [xT
p , xT

c ]T ∈ Rn) A B E
C D F
K L G

 =

 Ap +BpDc,yCp,y BpCc −Bp BpDc,yDp,y +Bw

BcCp,y Ac 0 BcDp,y

Cp,z 0 0 Dp,z

Dc,yCp,y Cc 0 Dc,yDp,y

 ẋ = Ax+Bq + Ew
z = Cx+Dq + Fw
u = Kx+ Lq +Gw
q = u− sat(u)

Note that:
The dynamics on the right is more general than the
diagram (L, D)

The system is nonlinear due to the saturation

If L ̸= 0, then u = L(u− sat(u)) + µ defines an
algebraic loop/equation

⇝ Existence and uniqueness of a solution is not
automatically satisfied
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ẋc = Acxc +Bcy
u = Ccxc +Dc,yy

Compact representation: (x = [xT
p , xT

c ]T ∈ Rn) A B E
C D F
K L G

 =

 Ap +BpDc,yCp,y BpCc −Bp BpDc,yDp,y +Bw

BcCp,y Ac 0 BcDp,y

Cp,z 0 0 Dp,z

Dc,yCp,y Cc 0 Dc,yDp,y
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Well-posedness of algebraic loops

System of interest:

ẋ = Ax+Bq + Ew
z = Cx+Dq + Fw
u = Kx+ Lq +Gw
q = u− sat(u)

Algebraic loop: (µ = Kx+Gw)

u = L(u− sat(u)) + µ

Definition (Well-posed algebraic loop)
For L ∈ Rnu×nu consider the algebraic equation. The
algebraic equation is well-posed if it admits a unique
solution for all µ ∈ Rnu and if µ 7→ u(µ) is Lipschitz
continuous.

Lemma (A sufficient condition)
Consider the algebraic loop for L ∈ Rnu×nu and
u, µ ∈ Rnu . If there exists a positive definite matrix
W ∈ Snu

>0 satisfying the matrix inequality

1
∥W∥

(
LTW +WL− 2W

)
< 0,

then the algebraic loop is well-posed.

Note that
the factor 1

∥W∥ is not necessary, but it indicates how
far the inequality is from being violated (⇝ robustness
margin)
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Section 1

L2-Gain Optimization for Linear Systems
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L2-Gain Optimization for Linear Systems

Recall: ẋ = Ax

The origin is exponentially stable

For Q > 0 there exists P > 0 satisfying

ATP + PA = −Q

Idea of the Lyapunov equation is that V (x) = xTPx
is a Lyapunov function

V̇ (x) = xT (ATP + PA)x = −xTQx < 0, x ̸= 0.

We note that:
The inequality of the decrease is important not the
equality of the Lyapunov equation

⇝ For given A, consider the LMI

0 < P

ATP + PA < 0

instead of the Lyapunov equation

Advantage: Q is a degree of freedom

“Optimal” Q and P can be obtained

LMI (as convex optimization problem):

min
P, k

k

subject to 0 < k

0 < P − αI

0 > P − (k + α)I

0 > ATP + PA.
Here:

α > 0 to ensure that P is not arbitrarily small

Third constraint to ensure that P is not arbitrarily large
Toolboxes in Matlab:

CVX, SOSTOOLS, YALMIP
Approximation: (ε > 0)

min
P, k

k

subject to 0 ≤ k

0 ≤ P − αI − εI

0 ≥ P − (k + α)I + εI

0 ≥ ATP + PA+ εI
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Asymptotic Stability and L2-Gain Optimization

Consider:

ẋ = Ax+ Ew

z = Cx+ Fw.

0-GAS: (internal stability)
If 0 is globally asymptotically stable for w = 0, then
the system is called 0-GAS

⇝ If A is Hurwitz then the origin is 0-GAS
Recall: For A Hurwitz, Q = −2I, P > 0 solution of the
Lyap. equation, V (x) = xTPx, we have derived

V̇ (x) ≤ −xT x+ γ2wTw, γ = ∥PE∥

Rearranging terms and integrating (with x(0) = 0) yields

∥x∥2L2[0,t)
≤

∫ t

0
x(τ)T x(τ)dτ + V (x(t))

≤ γ2

∫ t

0
w(τ)Tw(τ)dτ = γ2∥w∥2L2[0,t)

.

Slight modification: Suppose we can find P > 0, so that

V̇ (x) = xT (ATP + PA)x+ 2xTPEw

< −γ
(

1
γ2 z

T z − wTw
)
, ∀ (x,w) ̸= 0

Then we can show that this guarantees

0-GAS (since V̇ (x) < 0 ∀x ̸= 0)

an L2-gain bound of γ > 0 from w to output z; i.e.,

∥z∥L2[0,t) ≤ γ∥w∥L2[0,t)

The bound again follows by integrating (and x(0) = 0):

1
γ

∫ t

0
zT (τ)z(τ)dτ + V (x(t)) ≤ γ

∫ t

0
wT (τ)w(τ)dτ

⇝ Can we compute P > 0 and γ > 0 by solving an LMI?

Starting point:

xT (ATP + PA)x+ 2xTPEw + 1
γ
zT z − γwTw < 0
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Asymptotic Stability and L2-Gain Optimization

Starting point:

xT (ATP + PA)x+ 2xTPEw + 1
γ
zT z − γwTw < 0

xT (ATP + PA+ 1
γ
CTC)x+ 2xT (PE + 1

γ
CTF )w + γwTFTFw < 0[

x
w

]T ([
ATP + PA PE

ETP −γI

]
+

1

γ

[
CT

FT

] [
C F

]) [
x
w

]
< 0

In terms of definite matrices (0 < P and):[
ATP + PA PE

ETP −γI

]
+

1

γ

[
CT

FT

] [
C F

]
< 0 (1)

Here, take R = −γ, S =
[

C F
]

and Q as the leftmost matrix.

Then, (1) is equivalent to ATP + PA PE CT

ETP −γI FT

C F −γI

 < 0

Note that:
For γ > 0, fixed we know how to solve
the LMI to obtain P

However, we would like to minimize
γ > 0

The inequality is not linear in γ

Lemma (Schur Complement)

Let Q ∈ Sr and R ∈ Sq for r, q ∈ N and let
S ∈ Rr×q . Then the matrix condition[

Q S
ST R

]
< 0

is equivalent to the matrix conditions

R < 0

Q− SR−1ST < 0.
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γ > 0

The inequality is not linear in γ

Lemma (Schur Complement)

Let Q ∈ Sr and R ∈ Sq for r, q ∈ N and let
S ∈ Rr×q . Then the matrix condition[

Q S
ST R

]
< 0

is equivalent to the matrix conditions

R < 0

Q− SR−1ST < 0.
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Asymptotic Stability and L2-Gain Optimization (2)
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Asymptotic Stability and L2-Gain Optimization (Example)

Consider:

ẋ =

 −1 −2 2
1 −2 1
3 −2 −2

x+

 2 −2
1 3
3 −2

w

z =
[

1 0 0
]
x+

[
−3 2

]
w.

Alternatively,

γ = 7.43

P =

 4.38 −0.22 −4.12
−0.22 0.32 −0.02
−4.12 −0.02 4.18

 .

is returned as the solution of the LMI

Solution of the Lyapunov equation with Q = −2I:

P =

 3.10 −3.20 1.77
−3.20 5.50 −1.80
1.77 −1.80 1.37

 .

Estimation (using Young’s inequality):

∥z∥2L2[0,t)
= ∥Cx+ Fw∥2L2[0,t)

=
(∫ t

0 xTCCx+ 2xTCTFw + wTFTFw dτ
)2

≤
(∫ t

0 2xTCCx+ 2wTFTFw dτ
)2

≤
(∫ t

0 2λmax(CTC)xT x+ 2λmax(FTF )wTw dτ
)2

= 2λmax(C
TC)∥x∥2L2[0,t)

+ 2λmax(F
TF )∥w∥2L2[0,t)

≤ 2
(
λmax(C

TC)∥PE∥2 + λmax(F
TF )

)
∥w∥2L2[0,t)

= 2711 · ∥w∥2L2[0,t)
.

Hence, γ =
√
2711 = 52.07
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ẋ =

 −1 −2 2
1 −2 1
3 −2 −2

x+

 2 −2
1 3
3 −2

w

z =
[

1 0 0
]
x+

[
−3 2

]
w.

Alternatively,

γ = 7.43

P =

 4.38 −0.22 −4.12
−0.22 0.32 −0.02
−4.12 −0.02 4.18

 .

is returned as the solution of the LMI

Solution of the Lyapunov equation with Q = −2I:

P =

 3.10 −3.20 1.77
−3.20 5.50 −1.80
1.77 −1.80 1.37

 .

Estimation (using Young’s inequality):

∥z∥2L2[0,t)
= ∥Cx+ Fw∥2L2[0,t)

=
(∫ t

0 xTCCx+ 2xTCTFw + wTFTFw dτ
)2

≤
(∫ t

0 2xTCCx+ 2wTFTFw dτ
)2

≤
(∫ t

0 2λmax(CTC)xT x+ 2λmax(FTF )wTw dτ
)2

= 2λmax(C
TC)∥x∥2L2[0,t)

+ 2λmax(F
TF )∥w∥2L2[0,t)

≤ 2
(
λmax(C

TC)∥PE∥2 + λmax(F
TF )

)
∥w∥2L2[0,t)

= 2711 · ∥w∥2L2[0,t)
.

Hence, γ =
√
2711 = 52.07

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 8: LMI Based Controller and Antiwindup Designs 10 / 32



Feedback Synthesis

Consider: (⇝ Design static state feedback K)

ẋ = Ax+Bu+ Ew

z = Cx+Du+ Fw

u = Kx.

In closed-loop form:

ẋ = (A+BK)x+ Ew

z = (C +DK)x+ Fw.

Same approach as before: (P > 0, V (x) = xTPx)

V̇ (x) = xT
(
(A+BK)TP + P (A+BK)

)
x+ 2xTPEw

< −γ
(

1
γ2 z

T z − wTw
)

∀ (x,w) ̸= 0

(Unknowns: P , K, γ)
STEP 1: Asymptotic stability (i.e., w = 0)

0 > (A+BK)TP + P (A+BK)

= ATP + PA+KTBTP + PBK

Define Λ = P−1: (left and right multiplication with Λ)

ΛATPΛ + ΛPAΛ + ΛKTBTPΛ + ΛPBKΛ

= ΛAT +AΛ + Λ(BK)T +BKΛ

= He (AΛ +BKΛ)

Define X = KΛ. Then

He (AΛ +BKΛ) = He (AΛ +BX)

is linear in the unknowns Λ = P−1 and X = KΛ
The condition

He (AΛ +BX) < 0

guarantees that A+BK is Hurwitz (with Lyapunov function
V (x) = xTPx)
STEP 2: L2-gain optimization
Recall the condition (for known K)

He

 P (A+BK) PE 0
0 − γ

2
I 0

C +DK F − γ
2
I

 < 0
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Feedback Synthesis (2)

Recall the condition:

He

 P (A+BK) PE 0
0 − γ

2
I 0

C +DK F − γ
2
I

 < 0

Define Λ = P−1 (left and right multiplication): Λ 0 0
0 I 0
0 0 I

He

 P (A+BK) PE 0
0 − γ

2
I 0

C +DK F − γ
2
I

 Λ 0 0
0 I 0
0 0 I

 = He

 AΛ +BKΛ E 0
0 − γ

2
I 0

CΛ +DKΛ F − γ
2
I

 < 0

Again, define X = KΛ:

He

 AΛ +BX E 0
0 − γ

2
I 0

CΛ +DX F − γ
2
I

 < 0.

Corresponding optimization/feasibility problem:

min
Λ, X, γ

γ

subject to 0 < Λ symmetric
0 < γ

0 > He

 (AΛ +BX) E 0
0 − γ

2
I 0

CΛ +DX F − γ
2
I


⇝ Lyapunov function V (x) = xTΛ−1x and a feedback

gain matrix K = XΛ−1 such that γ is minimal
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Feedback Synthesis (Example)

Consider:

ẋ =

 1 2 −2
−1 2 −1
−3 2 2

x+

 3
2

−1

u+

 2 −2
1 3
3 −2

w

z =
[

1 0 0
]
x+

[
−3 2

]
w.

Solution of the LMI:

γ = 8.1910

K =
[

−7.32 6.64 4.62
]

P =

 1.18 −1.19 −0.62
−1.19 1.33 0.71
−0.62 0.71 0.40

 .

Eigenvalues of A:

{4, 0.5± 1.32j}

Eigenvalues of A+BK:

{−4.78± 0.90j,−0.15}

Eigenvalues of P :

{0.02, 0.07, 2.34}
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Section 2

Systems with Saturation
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Systems with Saturation

Consider:

ẋ = Ax+B sat(u)

u = Kx

Saturation: (we will suppress the limit ū in the following)

sat(u)
.
=

 −1, u < −1
u, −1 ≤ u ≤ 1
1, 1 < u.

satū(u)
.
=

 −ū, u < −ū
u, −ū ≤ u ≤ ū
ū, ū < u.

Deadzone: (q = dz(u))

dz(u) = u− sat(u) and dzū(u) = u− satū(u),

We assume to have decentralized saturations
i.e., for u ∈ Rnu we assume that each input has its
own saturation function, possibly with different
saturation levels ūi on the ith input.

uu

sat(u) dz(u)

Note that:
u ∈ R and q = u− sat(u), satisfies

dz(u) sat(u) ≥ 0 or equivalently q(u− q) ≥ 0.

In particular sign(dz(u)) = sign(sat(u)) or
equivalently sign(q) = sign(u− q)

Moreover,

wq(u− q) ≥ 0 for w > 0

A vector version: (W > 0, diagonal)

dz(u)TW sat(u) ≥ 0, qTW (u− q) ≥ 0
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LMI-Based Saturated Linear State Feedback Design

Controller design u = Kx: (q = u− sat(u))
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LMI-Based Saturated Linear State Feedback Design (2)

Controller design u = Kx: (q = u− sat(u))

ẋ = Ax+B sat(Kx) = (A+BK)x−B dz(Kx)

If there exists K, P , W such that[
x
q

]T
He

[
PA+ PBK −PB

WK −W

] [
x
q

]
< 0

then u = Kx defines a stabilizing control law.

Multiplying with diag(P−1,W−1):

0 >

[
P−1 0
0 W−1

]
He

[
PA+ PBK −PB

WK −W

] [
P−1 0
0 W−1

]
= He

[
AP−1 +BKP−1 −BW−1

KP−1 W−1

]
=He

[
AΛ+BX −BD

X D

]
where Λ = P−1, X = KP−1, D = W−1

If there exist Λ, X, D so that

He

[
AΛ +BX −BD

X −D

]
< 0, 0 < Λ, 0 < D diagonal

then the bounded input sat(Kx), K = XΛ−1 globally
asymptotically stabilizes the origin.

How likely is it that the LMI has a solution?
If the LMI has a solution then

0 >

[
I −B
0 I

]
He

[
AΛ +BX −BD

X −D

] [
I 0

−BT I

]
= He

[
AΛ BD
X −D

]
.

Then the Schur complement implies that

AΛ + ΛAT = −Q < 0

2D + (XT +BD)Q−1(X +DTBT ) < 0

⇝ A is Hurwitz (since Λ > 0)

⇝ The origin is globally asymptotically stable with
K = 0.

⇝We need local approaches
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Global Asymptotic Stability Analysis
Consider

ẋ = Ax+Bq + Ew
z = Cx+Dq + Fw
u = Kx+ Lq +Gw
q = u− sat(u)

but we start with w = 0.
For K, L given, how do we establish global asymptotic

stability of the orign?

Candidate Lyapunov function V (x) = xTPx

We want that the sector condition implies a decrease,
i.e.,

qTW (u− q) ≥ 0 ⇒

V̇ (x) = xT (ATP + PA)x+ 2xTPBq < 0, (x, q) ̸= 0

S-Procedure: (W > 0 diagonal)

xT (ATP + PA)x+ 2xTPBq + 2qTW (u− q) < 0

Using the definition of u:

xT (ATP + PA)x+ 2xTPBq

+ 2qTW (Kx− Lq − q) < 0

Corresponding LMI:

He

[
PA PB
WK −W +WL

]
< 0.

⇝ Feasibility (unknowns P > 0, W > 0 diagonal)
implies global asymptotic stability

Note that: The Schur complement implies

−2W +WL+ LTW < 0

Recall: Well-posedness of the algebraic loop

u = Kx+ L(u− sat(u)) +Gw

Lemma (A sufficient condition)
Consider the algebraic loop for L ∈ Rnu×nu and
u, µ ∈ Rnu . If there exists a positive definite matrix
W ∈ Snu

>0 satisfying the matrix inequality

1
∥W∥

(
LTW +WL− 2W

)
< 0,

then the algebraic loop is well-posed.
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Global Asymptotic Stability Analysis (2)
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He

[
PA PB
WK −W +WL

]
< 0.

Note that: The Schur complement implies

−2W +WL+ LTW < 0

Recall: Well-posedness of the algebraic loop

Lemma (A sufficient condition)
Consider the algebraic loop for L ∈ Rnu×nu and
u, µ ∈ Rnu . If there exists a positive definite matrix
W ∈ Snu

>0 satisfying the matrix inequality

1
∥W∥

(
LTW +WL− 2W

)
< 0,

then the algebraic loop is well-posed.

Introducing a robustness margin: (ν ∈ (0, 1])

xT (ATP + PA)x+ 2xTPBq + 2qTW (Kx− Lq − q) ≤

xT (ATP + PA)x+ 2xTPBq + 2qTW (Kx− Lq − νq) ≤ 0

Corresponding LMI:

He

[
PA PB
WK −νW +WL

]
< 0 (2)

The Schur Complement implies:

−2νW +WL+ LTW < 0.

If (2) is satisfied, then

1
∥W∥

(
LTW +WL− 2W

)
< −2(1− ν) W

∥W∥ < 0
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L2-Stability and L2-Gain Optimization

Consider
ẋ = Ax+Bq + Ew
z = Cx+Dq + Fw
u = Kx+ Lq +Gw
q = u− sat(u)

L2-stability problem (for given K, L). We perform the same steps as before

qTW (u− q) ≥ 0 ⇒ xT (ATP + PA)x+ 2xTP (Bq + Ew) < −γ
(

1
γ2 z

T z − wTw
)

(S-Procedure) xT (ATP + PA)x+ 2xTP (Bq + Ew) + 2qTW (u− q) + γ
(

1
γ2 z

T z − wTw
)
< 0

(Definition of u) xT (ATP + PA)x+ 2xTP (Bq + Ew) + 2qTW (Gw +Kx+ Lq − q) + 1
γ
zT z − γwTw < 0

Corresponding matrix notation: x
q
w

T  ATP + PA PB +KTW PE
BTP +WK −2W +WL+ LTW WG

ETP GTW −γI

+
1

γ

 CT

DT

FT

 [C D F ]

 x
q
w

 < 0.

Schur complement

He


PA PB PE 0
WK −W +WL WG 0
0 0 − γ

2
I 0

C D F − γ
2
I

 < 0.
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L2-Stability and L2-Gain Optimization (Optimization Problem & Example)

Overall Optimization problem: (ν ∈ (0, 1])

min
P,W,γ

γ

subject to 0 < P symmetric
0 < W diagonal
0 < γ

0 > He


PA PB PE 0
WK −νW +WL WG 0
0 0 − γ

2
I 0

C D F − γ
2
I


Example:
Consider

ẋ =

 −1 −2 2
1 −2 1
3 −2 −2

x+

 3
2

−1

 q +

 2 −2
1 3
3 −2

w

z =
[

1 0 0
]
x+

[
−3 2

]
w

u =
[

−1 −2 1
]
x+

[
2 −3

]
w

q = u− sat(u).

Solution: γ = 7.8607 (for ν = 1)
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Section 3

Regional Analysis
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Regional Analysis

Lemma
Let u ∈ R and q = u− sat(u). For an arbitrary row vector
H ∈ R1×n, for all x ∈ Rn such that sat(Hx) = Hx, the
sector condition

(u− q +Hx)q ≥ 0 holds.

Proof.
Let x ∈ Rn such that sat(Hx) = Hx is satisfied. Then

(u− q +Hx)q = (u− u+ sat(u) +Hx)(u− sat(u))

= (sat(u) +Hx)(u− sat(u))

= (sat(u) + sat(Hx))(u− sat(u))

Now, consider two cases:
1 u = sat(u): Then (sat(u)+ sat(Hx))(u− sat(u)) = 0

2 u ̸= sat(u): Both terms on the right have the same
sign or are zero. Specifically: (1) if u > sat(u) then
sat(u) ≥ sat(Hx); (2) if u = sat(u) the right term
vanishes; (3) if u < sat(u) then sat(u) ≤ sat(Hx).

Vector version and positive scaling W > 0 diagonal:

(u− q +Hx)TWq ≥ 0

Visualization of the sector condition:

Domain where sat(Hx) = Hx is satisfied.
Here Hb = [1, 1] (blue) and Hr = [1,−1] (red).
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Local Asymptotic Stability

Candidate Lyapunov function:

V (x) = xTPx

We want

V (x) = xTPx ≤ 1 ⇒ V̇ (x) < 0, x ̸= 0

Note that: (ūi saturation level)
1
ū2
i

xTHT
i Hix < xTPx, ∀ x ̸= 0, ∀i = 1, . . . , nu

implies (i ∈ {1, . . . , nu})

satūi (Hix) = Hix ∀ x ∈ {x ∈ Rnu | xTPx ≤ 1}

Schur complement: (unknowns P , Hi)

0 <

[
P HT

i
Hi ū2

i

]
, i = 1, . . . , nu

Consider (with w = 0)

ẋ = Ax+Bq + Ew
z = Cx+Dq + Fw
u = Kx+ Lq +Gw
q = u− sat(u)

⇝We can proceed as before.
We want that the sector condition implies a decrease, i.e.,

qTW (u− q +Hx) ≥ 0 ⇒

V̇ (x) = xT (ATP + PA)x+ 2xTPBq < 0, (x, q) ̸= 0

and we apply the S-procedure

xT (ATP + PA)x+ 2xTPBq

+ 2qTW (Kx− Lq − q +Hx) < 0 ∀ (x, q) ̸= 0

and obtain the matrix representation

He

[
PA PB

WK +WH −W +WL

]
< 0

⇝ Not an LMI due to WH
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Note that: (ūi saturation level)
1
ū2
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Local Asymptotic Stability (2)

Define set of new unknowns:

Λ1 = P−1, Λ2 = W−1, Γ = HP−1

Note that:  Γ1

...
Γnu

 = Γ = HP−1 =

 H1P−1

...
HnuP

−1



0 <

[
P−1 0
0 1

] [
P HT

i
Hi ū2

i

] [
P−1 0
0 1

]
=

[
P−1 P−1HT

i
HiP

−1 ū2
i

]
=

[
Λ1 ΓT

i
Γi ū2

i

]

0 >

[
P−1 0
0 W−1

]
He

[
PA PB

WK +WH −W +WL

][
P−1 0
0 W−1

]
= He

[
AP−1 BW−1

KP−1 +HP−1 −W−1 + LW−1

]
= He

[
AΛ1 BΛ2

KΛ1 + Γ −Λ2 + LΛ2

]

Corresponding optimization problem:

min
Λ1,Λ2,Γ,k

k

subject to 0 < Λ1 symmetric
0 < Λ2 diagonal
0 < k

0 < kI − Λ1

0< He

[ 1
2
Λ1 0

Γi
1
2
ū2
i

]
, i = 1, . . . , nu

0 > He

[
AΛ1 BΛ2

KΛ1 + Γ −Λ2 + LΛ2

]
If the the optimization problem is feasible then
the origin is locally asymptotically stable

Estimate of the region of attraction
{x ∈ Rn : xTPx ≤ 1} (with P = Λ−1

1 )

The smallest eigenvalue of P is maximized:

0 < kI − Λ1 ⇐⇒ 1
k
I < P

ν ∈ (0, 1) can be incorporated
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Local Asymptotic Stability (Example)

Consider

ẋ = Ax+B sat(u) + Ew

z = Cx+D sat(u) + Fw

u = Kx.

Using the deadzone operator:

ẋ = Ax+BKx−Bq + Ew = (A+BK)x−Bq + Ew

z = Cx+DBx−Dq + Fw = (C +DB)x−Dq + Fw

u = Kx

q = u− sat(u)

We continue with an earlier example (which we have
stabilized in the unconstrained case):

ẋ =

−20.93 21.92 11.83
−15.62 15.28 8.22

4.31 −4.64 −2.61

x+

−3
−2
1

 q +

2 −2
1 3
3 −2

w

z =
[

1 0 0
]
x+

[
−3 2

]
w

u =
[

−7.31 6.64 4.61
]
x+

[
2 −3

]
w

q = u− sat(u)

(For w = 0) the system without saturation is globally
asymptotically stable

Saturation level ū = 1, (| sat(Hx)| = 1)

We obtain V (x) = xTPx with

P =

 21.93 −22.11 −10.78
−22.11 26.01 12.83
−10.78 12.83 9.43


H = [2.75,−1.98,−2.06]
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L2-Stability and L2-Gain Optimization

We continue with:

ẋ = Ax+Bq + Ew
z = Cx+Dq + Fw
u = Kx+ Lq +Gw
q = u− sat(u)

Local asymptotic stability: V (x) = xTPx,

V̇ (x) < 0 ∀x ∈ {x ∈ Rn\{0}| V (x) ≤ 1}

Local L2-stability: For s > 0 fixed, find V (x) = xTPx
and γ > 0 such that

∥z∥L2
≤ γ∥w∥L2

∀ ∥w∥L2
≤ s

(and x(0) = 0).

Derive conditions based on

V̇ (x(t)) ≤ wTw ∀x ∈ {x ∈ Rn : V (x) ≤ s2}

Corresponding LMI:

0 <

[
P HT

i

Hi
ū2
i

s2

]
, i = 1, . . . , nu.

Overall optimization problem:

min
Λ1,Λ2,Γ,δ

δ

subject to 0 < Λ1 symmetric
0 < Λ2 diagonal
0 < δ

0 < He

[
1
2
Λ1 0

Γi
ū2
i

2s2

]
i = 1, . . . , nu

0 > He


AΛ1 BΛ2 E 0

Γ +KΛ1 −Λ2 + LΛ2 G 0
0 0 − 1

2
I 0

CΛ1 DΛ2 F − δ
2
I


Feasibility for fixed s > 0 implies:

The local L2-bound for γ =
√
δ

local asymptotic stablility for all x ∈ Rn contained in
the sublevel set {x ∈ Rn : xTPx ≤ s2}.
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L2-Stability and L2-Gain Optimization (Example)

We continue with the example:

ẋ = Ax+B sat(u) + Ew

z = Cx+D sat(u) + Fw

u = Kx.

Using the deadzone operator:

ẋ = Ax+BKx−Bq + Ew = (A+BK)x−Bq + Ew

z = Cx+DBx−Dq + Fw = (C +DB)x−Dq + Fw

u = Kx

q = u− sat(u)

We continue with an earlier example (which we have
stabilized in the unconstrained case):

ẋ =

−20.93 21.92 11.83
−15.62 15.28 8.22

4.31 −4.64 −2.61

x+

−3
−2
1

 q +

2 −2
1 3
3 −2

w

z =
[

1 0 0
]
x+

[
−3 2

]
w

u =
[

−7.31 6.64 4.61
]
x+

[
2 −3

]
w

q = u− sat(u)

Optimal L2-gain γ (with respect to s):

0 0.02 0.04 0.06

0

50

100

150

200
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Section 4

Antiwindup Synthesis
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Antiwindup Synthesis
Plant & Controller:

P :

 ẋp = Apxp +Bp sat(u) +Bww
y = Cp,yxp +Dp,yw
z = Cp,zxp +Dp,zw

C :

{
ẋc = Acxc +Bcy +Daw,1q
u = Ccxc +Dc,yy +Daw,2q

Anti-windup injection terms
Daw,1 and Daw,2 are to be designed to improve the
closed-loop performance.

P

Daw

C

+

sat(u)

z

y

w

q

u

−

Updated system dynamics:

ẋ = Ax+ (B +BawDaw)q + Ew
z = Cx+Dq + Fw
u = Kx+ (L+ LawDaw)q +Gw
q = u− sat(u)

Design parameter:

Daw =

[
Daw,1

Daw,2

]
System/Controller parameter:

Baw =

[
0 Bp

Inc 0

]
, Law = [0 Inu ].
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Global Antiwindup Synthesis

Optimization problem:

min
Λ1,Λ2,X,γ

γ

subject to 0 < Λ1 symmetric
0 < Λ2 diagonal
0 < γ

0 > He


AΛ1 BΛ2 +BawX E 0
KΛ1 −νΛ2 + LΛ2 + LawX G 0
0 0 − γ

2
I 0

CΛ1 D F − γ
2
I


⇝ If the optimization problem is feasible, the antiwindup injection term Daw = XΛ−1

2

⇝ ν ∈ (0, 1] can be used/decreased to obtain an implementable Daw,2 (well-posedness of algebraic loop)

⇝ Local analysis can be performed using the same tricks discussed before
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Global Antiwindup Synthesis (Example)

Consider the plant/controller defined through the dynamics (subject to the disturbances): Ap Bp Bw

Cp,y Dp,y

Cp,z Dp,z

 =

 −0.2 −0.2 0.6 3
1 0 0.4 3

−0.4 −0.9 0
−0.4 −0.9 0

 ,

[
Ac Bc

Cc Dc,y

]
=

[
0 1
2 2

]
, w(t) =

{
1, if t ≤ 1
0, if t > 1

⇝ Daw,1 = −127.30, Daw,2 = 0.45.
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