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Control Lyapunov Functions

° Control Affine Systems
e ISS Redesign via L,V Damping

e Sontag’s Universal Formula

o Backstepping
@ Avoiding Cancellations
@ Convergence Structure

e Forwarding
@ Convergence Structure
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Control Lyapunov Functions

Consider the nonlinear system
z = f(z,u)
@ f:R" xR™ — R"
@ state z and control input u

@ Goal: Define a feedback control law u = k(x) which
asymptotically stabilizes the origin.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control

Ch. 9: Control Lyapunov Functions

3/31



Control Lyapunov Functions

Consider the nonlinear system
&= f(z,u)
@ f:R" x R™ — R™
@ state z and control input u

@ Goal: Define a feedback control law u = k(x) which
asymptotically stabilizes the origin.

Control Lyapunov function: V' : R™ — Rxq
@ In terms of a feedback law u = k(z),

LV (x(t) = (VV(2), f(z, k(x))) <0, Va#0
~ V is a Lyapunov function for & = f(x, k(z)) = f(x)
@ For each = # 0 we can find « such that
SV () = (VV(2), f(z,u) <0
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Control Lyapunov Functions

Consider the nonlinear system
Definition (Control Lyapunov function (CLF))

&= f(z,u)
@ f:R" xR™ — R" Consider the nonlinear system and a1, a2 € Koo A
. continuously differentiable function V' : R™ — R is called
@ state = and control input u control Lyapunov function for the system if
@ Goal: Define a feedback control law u = k(x) which a1(|z]) € V(z) < az(|z)), Vz € R,

asymptotically stabilizes the origin.
and for all z € R™\{0} there exists © € R™ such that

Control Lyapunov function: V' : R™ — Rxq (VV(z), f(z,u)) <O0.

@ In terms of a feedback law u = k(z),
HV(@(®) = (VV(2), f(z, k(x)) <O,  Va#0
~~ V is a Lyapunov function for & = f(z, k(z)) = f(z)
@ For each = # 0 we can find « such that
SV () = (VV(2), f(z,u) <0
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Section 1

Control Affine Systems
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Control Affine Systems

Control affine systems
&= f(z) +g(z)u
Assumptions:
@ for simplicity we focus on u € R
@ f,g:R™ — R" (locally Lipschitz)
@ f(0) = 0 without loss of generality
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Control Affine Systems

Control affine systems
&= f(z) +g(z)u

Assumptions:

@ for simplicity we focus on u € R

@ f,g:R"™ — R"” (locally Lipschitz)

@ f(0) = 0 without loss of generality
Lie derivative notation

(VV(2), f(z)) = LyV(x)

Definition (Control Lyapunov function (CLF))

Consider the nonlinear system & = f(z, ) and

a1, a2 € Kso. A continuously differentiable function

V :R™ — R is called control Lyapunov function for the
% = f(z,u)if

ai(lz]) < V(z) < aa(lz]), VaeR",
and for all z € R™\{0} there exists u € R™ such that
(VV (=), f(z,u)) <O0.
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Control Affine Systems

Control affine systems

= (@) + g(a)u Definition (Control Lyapunov function (CLF))

Consider the nonlinear system & = f(z, ) and

Assumptions: a1, a2 € Kso. A continuously differentiable function
@ for simplicity we focus on v € R V : R™ — R is called control Lyapunov function for the
@ f,g:R"™ — R (locally Lipschitz) &= f(z,u) if
@ f(0) = 0 without loss of generality a1(|z|) £ V(z) < az(|z|), VzeR",

Lie derivative notation and for all z € R™\{0} there exists u € R™ such that

(VV(2), f(z)) = LyV(2) (VV(2), f(z,u)) <O.

It holds that: (a1, a2 € R, v,v1,v2 € R?)

(v,a1v1 + a2v2) = a1{v,v1) + a2 (v, v2).

The decrease condition:

V(z) = (VV(2), f() + g(e)u)
=LsV(x)+ LyV(x)u <0, Va#O0.
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Control Affine Systems

Control affine systems

= (@) + g(a)u Definition (Control Lyapunov function (CLF))

Consider the nonlinear system & = f(z, ) and

Assumptions: a1, a2 € Kso. A continuously differentiable function
@ for simplicity we focus on v € R V : R™ — R is called control Lyapunov function for the
@ f,g:R"™ — R (locally Lipschitz) &= f(z,u) if
@ f(0) = 0 without loss of generality a1(|z|) £ V(z) < az(|z|), VazeR",
Lie derivative notation and for all z € R™\{0} there exists u € R™ such that
(VV(z), f(z)) = LyV(x) (VV (=), f(z,u)) <0.
It holds that: (a1, a2 € R, v,v1,vs € R™) ’
(v,a1v1 + a2v2) = a1(v,v1) + a2 (v, v2). The decrease condition for control affine systems:
The decrease condition: LyV(z) <0 V z€R"\{0} suchthat L,V (z) =0
V(z) = (VV(2), f(z) + g(x)u) In other words
=LsV(x)+ LyV(x)u <0, Va#O0. @ If LyV(z) = 0 (i.e., we have no control authority)

@ then L;V () < 0 needs to be satisfied
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ISS Redesign via L,V Damping
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ISS Redesign via L,V Damping

Question:

@ What about robustness of asymptotically stabilizing
feedback laws?
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ISS Redesign via L,V Damping

Question:

@ What about robustness of asymptotically stabilizing
feedback laws?

We begin with an example:
=z + 2+ u.
One possible feedback stabilizer is given by
2x
22 41
which results in the closed-loop system & = —z.

u=k(z)=—

t=z+ (2 +1u
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ISS Redesign via L,V Damping

Question: @ Feedback law subject to disturbances
@ What about robustness of asymptotically stabilizing u=k(z) +w
feedback laws?
We begin with an example: @ Closed-loop system:
=z + 2+ u. &= —z+ (2% + w.
One possible feedback stabilizer is given by ~+ The system is not ISS (and admits finite escape time
2 for w(t) = 1 for all ¢ > 0, for example)
u=k(z) = -
x? +1

which results in the closed-loop system & = —z.

t=z+ (2 +1u
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ISS Redesign via L,V Damping

Question:

@ What about robustness of asymptotically stabilizing
feedback laws?

We begin with an example:
=z + 2+ u.
One possible feedback stabilizer is given by
2x
22 +1
which results in the closed-loop system & = —z.

u=k(z)=—

t=z+ (2 +1u
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Introduction to Nonlinear Control

Feedback law subject to disturbances
u=k(z)+w
Closed-loop system:
& =—z+ (2 + 1w
The system is not ISS (and admits finite escape time
for w(t) = 1 forall ¢t > 0, for example)

Suppose V' (z) is a Lyapunov function for w = 0 so
that V' satisfies
V(z) = LyV(z) + LgV (2)k(x).

Candidate ISS-Lyapunov function V' would satisfy
V(z) = LyV(z) + LgV(2)k(x) + LoV (z)w

< LyV(@) + LgV (2)k(z) + 5 (LgV (2))* + S
If the controller has an additional term of the form
—LgV (), this dominates £ (L, V (2))”
~ V(z) is an ISS-Lyapunov function.
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ISS Redesign via L,V Damping (2)

Question:

@ What about robustness of asymptotically stabilizing
feedback laws?

We begin with an example: Back to the example:
&=x+ 22+ Du @ Take Vi(x) = %x2 and augment controller:
One possible feedback stabilizer is given by u=ki(x) = k(z)—LyVi(z) = = —z(z? + 1)
2x
=k(z) = —
u (z) 21

which results in the closed-loop system & = —z.

z=z+ (2?2 +1u
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ISS Redesign via L,V Damping (2)

Question:

@ What about robustness of asymptotically stabilizing
feedback laws?

We begin with an example:
t=z+ (2 + 1u.
One possible feedback stabilizer is given by
2x
T2
which results in the closed-loop system & = —z.

u=k(z)=

z=z+ (2?2 +1u

P. Braun & C.M. Kellett (ANU)
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Back to the example:
@ Take Vi(z) = 222 and augment controller:

u=ki(z) =k(z)—LgVi(z) = — —z(z? 4+ 1)

2 +1
@ The closed-loop system with disturbance:

t=—z—z@?+1)2+ @2+ Dw = fi(z,w).
@ The new closed-loop system is ISS:

(VVi(2), f1(z,w)) = —z?—2? (2 + 1)? + 2(2® + Dw

< —a?—1a%(a® +1)% + Lu?
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ISS Redesign via L,V Damping (General Procedure)

@ Consider
i = f(2) + g(@)k(x),  u=kz)

(with asymptotically stable origin, i.e., stabilizing
feedback u = k(z))

@ Corresponding Lyapunov function V' : R™ — Rx( S0
that

LyV(z) + LoV (z)k(z) < —a(|])
where a € K.
@ Define the augmented feedback
u=k(z) — LyV(x)

@ Then, the system
& = f(z) + g(z) (k(z) — LgV (2)) + g(z)w
is ISS.
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ISS Redesign via L,V Damping (General Procedure)

@ Consider @ Indeed, V is an ISS-Lyapunov function:
&= f(z) +g9(@)k(z),  u=k(z) (VV (), f(z) + g(z) (k(z) — LgV (2)) + g(z)w)
(with asymptotically stable origin, i.e., stabilizing = LiV(z) + LgV(x)k(z) — (LgV () + LV (a)w

feedback u = k(z))

@ Corresponding Lyapunov function V' : R™ — Rx( S0

< LiV(z) + LgV (2)k(z) — 5 (LgV (2))? + Sw?
that < —a(jz]) + Lw?.

LyV (@) + LyV (2)k(z) < —a(lz])

where a € Keo. Note that: The method is also known as
@ Define the augmented feedback @ nonlinear damping
u=k(z) — LyV(x) @ Jurdjevic-Quinn controller.

@ Then, the system
& = f(z) + g(z) (k(z) — LgV(2)) + g(z)w
is ISS.
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Sontag’s Universal Formula

Consider a control affine system (u € R)
i = f(z) + g()u
with corresponding CLF V, i.e.,
LyV(z) <0 V ze€R™"\{0} suchthat L,V (z) =0
Then, for k > 0 define the feedback law

k() = { _ (,i_,'_ LfV(x)+\/LfV(w)2+LgV(w)4) LoV(z), LgV(z)#0

LgyV(x)2
07 LgV((L‘) =0
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Sontag’s Universal Formula

Consider a control affine system (u € R)

&= f(z)+ g(z)u The feedback law
with corresponding CLF V, i.e., @ asymptotically stabilizes the origin
LyV(z) <0 V ze€R™"\{0} suchthat L,V (z) =0 @ inherits the regularity properties of

the CLF except at the origin
Then, for x > 0 define the feedback law . . P !
@ is continuous at the origin if the CLF

ro) — { B (n n LfV(z)+\/LfV(z)‘2+LgV(z)*4) LyV(z), LyV(x)#0 satisfies a small control property (i.e.,

LgyV(x)2
0, LyV(z)=0

|k(z)| — 0 for |z| — 0)
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Sontag’s Universal Formula

Consider a control affine system (u € R)

&= f(z) +g(@)u The feedback law
with corresponding CLF V/, i.e., @ asymptotically stabilizes the origin
LyV(z) <0 V ze€R™"\{0} suchthat L,V (z) =0 @ inherits the regularity properties of

the CLF except at the origin
@ is continuous at the origin if the CLF

ko) — { B (’i n LfV(z)+\/LfV(z)‘2+LgV(z)*4) LyV(), LyV(z)#0 satisfies a small control property (i.e.,

Then, for k > 0 define the feedback law

LgV(x)? |k(x)| — 0 for |z| — 0)
0, LgV(z) =0

Sketch of the proof: For x = 0 it holds that
V(z) = LyV(z)+ LgV(2)k(x)

LyV(x) +/LiV(z)? + LgV(z)*
L,V (z)?

=LsV(z) — LyV(x) < ) L,V (x)

= LyV(@) = LV (@) = /LiV(@)2 + LV (@)t = =/ L;V(2)? + LoV ().

x> 0 adds aterm —«x(L,V (x))2, as in the ISS redesign
~ closed-loop system is ISS
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Sontag’s Universal Formula

Consider a control affine system (u € R)

&= f(z) +g(@)u The feedback law
with corresponding CLF V/, i.e., @ asymptotically stabilizes the origin
LyV(z) <0 V z€R"\{0} suchthat LyV(z) =0 @ inherits the regularity properties of

the CLF except at the origin
@ is continuous at the origin if the CLF

ko) — { B (’i n LfV(z)+\/LfV(z)‘2+LgV(z)*4) LyV(), LyV(z)#0 satisfies a small control property (i.e.,

Then, for k > 0 define the feedback law

LgV(z)? |k(x)| — 0 for |z| — 0)
0, LgV(z) =0

Sketch of the proof: For x = 0 it holds that

V(z) = LyV(z)+ LgV(2)k(x)
Note that: Formula known as

LV LiV(z)2+ LyV(x)?
=LsV(z) — LyV(x) ( V@) + \/L fv((;)l + Ly V(@) ) L,V (x) @ Universal formula
i @ Sontag’s formula
=LgV(z)—LfV(z) - \/LfV(ff)2 +LgV()* = *\/LfV(fEV + LgV(2)*. (Derived by Eduardo Sontag)

x> 0 adds aterm —«x(L,V (x))2, as in the ISS redesign
~ closed-loop system is ISS
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Backstepping (How to find CLFs?)

Systems in strict feedback form:

1 = fi(w1,z2)

to = fa(w1,w2,73)

u

~»

T

Ep—1 = fn-1(21,22,...,Tn-1,%n)
Tn = fn(xl7w27 e 7xn7u)-
Backstepping idea (based on an example):
& =a +
€=u.

P. Braun & C.M. Kellett (ANU)
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Backstepping (How to find CLFs?)

Systems in strict feedback form:

i1 = fi(o1,02) 2l ﬁ»/ NS ‘”»/ =N 1»/ !
T2 :f2($17$2,l‘3) T? A ? ?
Tpn—1= frn-1(x1,22,...,Tn—1,%n)
Tn = fn(x1,T2,...,Tn,u).
Backstepping idea (based on an example):
& =a +
f=u

Step 1: Define Virtual Control. Suppose that £ is a control
input for the z-subsystem (i.e., £ as a virtual control for x)
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Backstepping (How to find CLFs?)

Systems in strict feedback form:

i1 = fi(@1,22) Ll n P [ e [ e e S
T2 :f2($17$2,l‘3) T? A ? ?
Tn—1 = fn-1(T1,%2,...,Tn-1,Tn)
-in:fn(xl7w27~-~yxnvu)-
Backstepping idea (based on an example):
& =a +
E=u.

Step 1: Define Virtual Control. Suppose that £ is a control
input for the z-subsystem (i.e., £ as a virtual control for x)

@ Define stabilizer: ¢ = k(z) = —2x2
@ Which would satisfy: & = 2% — 223 = —3

@ Simple Lyapunov function: V (z) = %zQ
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Backstepping (How to find CLFs?)

Systems in strict feedback form:

i1 = fi(@1,22) Ll n P [ e [ e e S
T2 :f2($17$2,l‘3) T? A ? ?
Tn—1 = fn-1(T1,%2,...,Tn-1,Tn)
-in:fn(xl7w27~-~yxnvu)-
Backstepping idea (based on an example):
& =a +
E=u.

Step 1: Define Virtual Control. Suppose that £ is a control
input for the z-subsystem (i.e., £ as a virtual control for x)

@ Define stabilizer: ¢ = k(z) = —2x2
@ Which would satisfy: & = 2% — 223 = —3
@ Simple Lyapunov function: V (z) = %zQ

@ Actually the z-dynamics satisfy:

&= a3 4 zk(z) — ck(x) + 2€ = —23 + (€ + 22?).
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Backstepping (How to find CLFs?)

Systems in strict feedback form:

u T3 x3 o x2 T1 T
i1 = fi(a1,m2) Ll n P [ e e [ s
&2 = fa(x1,22,73) Tf A ? f
Epn—1 = frn-1(T1,%2,...,Tn-1,%n)
Tn = fn(xl7w27 e yxnvu)-
Backstepping idea (based on an example): Step 2: Define an Error Variable.
R

@ Of course £ is a state
§=u. @ Idea: Drive (error) z = £ — k(x) = £ + 222 to zero

Step 1: Define Virtual Control. Suppose that £ is a control
input for the z-subsystem (i.e., £ as a virtual control for x)

@ Define stabilizer: ¢ = k(z) = —2x2
@ Which would satisfy: & = 2% — 223 = —3
@ Simple Lyapunov function: V (z) = %zQ

@ Actually the z-dynamics satisfy:

&= a3 4 zk(z) — ck(x) + 2€ = —23 + (€ + 22?).
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Backstepping (How to find CLFs?)

Systems in strict feedback form:

. u T3 x3 o x2 T1 T
21 = fi(z1,22) —» f3 —P »| fo P » f1 P
&2 = fa(x1,22,73) Tf A ? f
Ep—1 = fa-1(x1,22,...,Tn—1,%n)
Tn = fn(xh T2, .- yxnvu)-
Backstepping idea (based on an example): Step 2: Define an Error Variable.
s .3 .
& =a” 4 x€ @ Of course ¢ is a state
§=u. @ Idea: Drive (error) z = £ — k(x) = £ + 222 to zero
Step 1: Define Virtual Control. Suppose that £ is a control @ We calculate
input for the z-subsystem (i.e., £ as a virtual control for x) .
@ Define stabilizer: ¢ = k(z) = —2x2 =€ k(x) =u— k@)t =u+ dx(z® + 2€)
@ Which would satisfy: ¢ = 23 — 223 = —23 = u+ dz(—23 + 22) = u — 4z* + 4222

@ Simple Lyapunov function: V (z) = %zQ

@ Actually the z-dynamics satisfy:

&= a3 4 zk(z) — ck(x) + 2€ = —23 + (€ + 22?).
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Backstepping (How to find CLFs?)

Systems in strict feedback form:

. u T3 x3 o x2 T1 T
21 = fi(z1,22) —» f3 —P »| fo P » f1 P
&2 = fa(x1,22,73) Tf A ? f
Ep—1 = fa-1(x1,22,...,Tn—1,%n)
Tn = fn(xh T2, .- yxnvu)-
Backstepping idea (based on an example): Step 2: Define an Error Variable.
s .3 .
& =a” 4 x€ @ Of course ¢ is a state
§=u. @ Idea: Drive (error) z = £ — k(x) = £ + 222 to zero
Step 1: Define Virtual Control. Suppose that £ is a control @ We calculate
input for the z-subsystem (i.e., £ as a virtual control for x) .
@ Define stabilizer: ¢ = k(z) = —2x2 =€ k(x) =u— k@)t =u+ dx(z® + 2€)
@ Which would satisfy: ¢ = 23 — 223 = —23 = u+ dz(—23 + 22) = u — 4z* + 4222

@ Simple Lyapunov function: V (z) = %zQ

@ Systemi dinates:
@ Actually the z-dynamics satisfy: ystemin (x, z) coordinates

& =—z°+ 2

&= a3 4 zk(z) — ck(x) + 2€ = —23 + (€ + 22?).

2 =u— 4zt + 4222
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Backstepping (How to find CLFs?) (2)

Backstepping idea (based on an example): Step 2: Define an Error Variable.
&= +a¢ @ Of course ¢ is a state
= @ Idea: Drive (error) z = & — k(x) = £ + 222 to zero
Step 1: Define Virtual Control. Suppose that ¢ is a control ° We calculaten
input for the z-subsystem (i.e., £ as a virtual control for x) o~
@ Define stabilizer: £ = k(z) = —2a2 £ =€~ k(2) = u— FLk(2)i = u+ (2’ + z£)

@ Which would satisfy: & = 3 — 223 = —2? =u+4x(—2® + 22) = u — 42" + 42”2
@ Simple Lyapunov function: V (z) = %xQ @ System in (z, z) coordinates:
@ Actually the z-dynamics satisfy: &= —a> + a2

& = 2% + ak(x) — ok(z) + z€ = —2> + 2(€ + 222). 2 =u— 4zt 4 4222

Step 3: Construct a Control Lyapunov Function.
Va(z,z) = V(z) + %22 = %xQ + %zQ.
It holds that
Va(z,2) = —2* + 222 + z(u — 4z + 42%2)
= —2* + 2(u + 2% — 42t + 4222).

~~ The derivative is negative for v appropriate
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Backstepping (How to find CLFs?) (2)

Backstepping idea (based on an example):

x':x3+a:£
E=u.

Step 1: Define Virtual Control. Suppose that £ is a control
input for the z-subsystem (i.e., £ as a virtual control for x)

@ Define stabilizer: ¢ = k(z) = —222
@ Which would satisfy: & = 23 — 223

— _ .3
@ Simple Lyapunov function: V (z) = %xz

—x

@ Actually the z-dynamics satisfy:
&=z 4 ck(z) — ck(z) + o€ = —x3 + (€ + 22?).

Step 3: Construct a Control Lyapunov Function.
Va(z,z) = V(z) + %22 = %xQ + %zQ.
It holds that
Va(z,2) = —2* + 222 + z(u — 4z + 42%2)
= —2* + 2(u + 2% — 42t + 4222).
~~ The derivative is negative for v appropriate

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

Step 2: Define an Error Variable.
@ Of course £ is a state
@ Idea: Drive (error) z = £ — k(x) = £ + 222 to zero
@ We calculate

. . N 9 . 3
2=¢€—k(z) =u— g-k(z)d = u+ dz(z” + x§)
=u+4z(—2® + z2) = u — 4zt + 4222
@ System in (z, z) coordinates:
i =—z2+ a2

3 =u— 4zt + 4232

Step 4: Construct a feedback stabilizer. Define (for example)
w=ki(z,2) = —z? +4z* — 4222 — 2
then
Vo(z,2) = —a* — 22
In the original variables:
u=—z% + 4zt — 42%(¢ + 22%) — (£ + 22?)

Ch. 9: Control Lyapunov Functions 14/31



Backstepping (How to find CLFs?) (3)

Backstepping idea (based on an example):
& =a + a2 = —z® 4+ x(& + 22?)
€=
Introduce error dynamics
zzf—k(z):§+2w2
System in (z, z) coordinates:
i=—x2 4z
5 =u— 4zt + 4222
In the original variables:

u=—z%4+4z* — 422 — 2

= —z? 4 42* — 422 (€ 4 222) — (€ + 22?)

P. Braun & C.M. Kellett (ANU)
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4 6
t
50
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—u(t)
-100
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t
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Backstepping (How to find CLFs?) (4)

System in strict feedback form:

1 = fi(x1,x2)
&2 = fa(x1,z2,23)

Tp_1 = fn—l(xlyx27 ... 7xn—17xn)
Tn = fn($17$27 cee 773nau)'
Error dynamics
) _ fi(z0,k1(20))
# f2(z0, 21, k2(20, 21))

Zi fit1(z0,21, .- Zi—1, Tit1)

for:=1,...,n,is used.

P. Braun & C.M. Kellett (ANU)

Input: Define zp = =1, xp+1 = u, fl = f1and, Vp = 0.
Output: Stabilizing feedback law .
Fori=1,2,...,n

@ Consider error dynamics & virtual control ;11 = ki(z0,...,2i_1)
@ Define k; in such a way that the origin of the error dynamics is

asymptotically stable and define V;(zo, ..., z;_1) so that

Vi(20, -+ 2im1) = Vic1(20, - s 2zi—2) + Vi(20,- - -, 2i—1)
is a Lyapunov function.
@ Ifi # n, define the error dynamics z; = 2,41 — ki (20, ..., 2i—1)
with
Zi = &ip1 — %ki(zo, CeZie1)
= fix1(z1,..., @iq1) — %ki(zo, CeZie1)
= fir1 (20,5 zim1,@ig1)

@ If i = n return the input
w(@1, ..., xn) = kn(20,.--,2n—1)

and the CLF V(z1,...,2n) = Va(20,. .., 2n—1).

Introduction to Nonlinear Control Ch. 9: Control Lyapunov Functions
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Backstepping: Avoiding Cancellations

Consider:

&= f(z) +g(x)¢
£=u.

Virtual stabilizing feedback ¢ = k(x) & error variable z =
£ — k(2):

&= f(z) + g(@)k(z) + g(z)2

t=u— Zk(x)i.
Feedback derived on previous slides :
u(@,z) = —LgV(2) + k(@) (f (@) + () (k(z) + 2)) — 2
(Based on Vi (z, 2) = V(x) + $22)

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control
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Backstepping: Avoiding Cancellations

Consider:
&= f(z) + g(2)§
§=u.

Virtual stabilizing feedback ¢ = k(x) & error variable z =
£ — k(2):

&= f(z) + g(@)k(z) + g(z)2

t=u— Zk(x)i.
Feedback derived on previous slides :
u(@,z) = —LgV(2) + k(@) (f (@) + () (k(z) + 2)) — 2
(Based on Vi (z, 2) = V(x) + $22)
Instead, consider

Va(z,2) =V (z) + 32° + W(x)

where W (z) satisfies
LW (z) 4+ LgW (x)k(z) <0 Vx #0
(VW (2),9(x)) = Zk(x)d o k(@) (f(z) + g(@)k(z))
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Backstepping: Avoiding Cancellations

Consider:

&= f(z) +g(x)¢
£=u.

Virtual stabilizing feedback ¢ = k(x) & error variable z =
£ — k(2):

&= f(z) + g(@)k(z) + g(z)2

t=u— Zk(x)i.
Feedback derived on previous slides :
u(@,z) = —LgV(2) + k(@) (f (@) + () (k(z) + 2)) — 2
(Based on Vi (z, 2) = V(x) + $22)
Instead, consider

Va(z,2) =V (z) + 32° + W(x)

where W (z) satisfies
LW (z) 4+ LgW (x)k(z) <0 Vx #0
(VW (2),9(x)) = Zk(x)d o ak(@)(f(z) + g(@)k(x))

P. Braun & C.M. Kellett (ANU)
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Time derivative:
Va(z,2) = LV (2) + LgV (x)k(z) + LgV (2)z + Ly W (z)
+ LW (@)k(2) + LoW ()2 + 2 (u — 9% (2)#)
= LV (x) + LV (2)k(z) + LW (x) + LW (2)k(z)
2 (ut LoV = BE (f(2) + g(2)h(x) — g(2)2) + LgW)
=L;V+ LyVk(x) + LW + LyWk(z) 4+ z(u+ LgV
+8Eg(@)z— 3k (f(2) + g(a)k(x)) + LyW ) .
Cancelling
Va(x,2) = LV + LgVk(z) + LW + LgWk(x)
+z (u +LgV + %g(x)z)
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Backstepping: Avoiding Cancellations

Consider:

&= f(z) +g(x)¢
£=u.

Virtual stabilizing feedback ¢ = k(x) & error variable z =
£ — k(2):

&= f(z) + g(@)k(z) + g(z)2

t=u— Zk(x)i.
Feedback derived on previous slides :
u(@,z) = —LgV(2) + k(@) (f (@) + () (k(z) + 2)) — 2
(Based on Vi (z, 2) = V(x) + $22)
Instead, consider

Va(z,2) =V (z) + 32° + W(x)

where W (z) satisfies
LW (z) 4+ LgW (x)k(z) <0 Vx #0
(VW (2),9(x)) = Zk(x)d o ak(@)(f(z) + g(@)k(x))

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

Time derivative:
Va(z,2) = LV (2) + LgV (x)k(z) + LgV (2)z + Ly W (z)
+ LW (@)k(2) + LoW ()2 + 2 (u — 9% (2)#)
= L;V(z) + LyV(2)k(z) + Ly W (x) + LgW (z)k(z)
2 (ut LoV = BE (f(2) + g(2)h(x) — g(2)2) + LgW)
=LV + LyVE(x) + LW 4+ LyWk(z) + 2z (u+ LgV
+8Eg(@)z— 3k (f(2) + g(a)k(x)) + LyW ) .
Cancelling
Va(x,2) = LV + LgVk(z) + LW + LgWk(x)
+z (u +LgV + %g(x)z)
Feedback stabilizer

u(x,z) = —LgV(x) — %(m)g(w)z -z
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Backstepping: Avoiding Cancellations

Consider:

&= f(z) +g(x)¢
£=u.

Virtual stabilizing feedback ¢ = k(x) & error variable z =
& — k(x):

&= f(z) + g(@)k(z) + g(z)2

t=u— Zk(x)i.
Feedback derived on previous slides :
u(@,z) = —LgV(2) + k(@) (f (@) + () (k(z) + 2)) — 2
(Based on Vi (z, 2) = V(x) + $22)
Instead, consider

Va(z,2) =V (z) + 32° + W(x)

where W (z) satisfies
LW (z) 4+ LgW (x)k(z) <0 Vx #0
(VW (2),9(x)) = Zk(x)d o ak(@)(f(z) + g(@)k(x))

P. Braun & C.M. Kellett (ANU)
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Time derivative:
Va(z,2) = LiV(z) + LgV (2)k(z) + LgV(z)z + LW ()
+ LW (@)k(2) + LoW ()2 + 2 (u — 9% (2)#)
=LV (z)+ LgV(x)k(z) + LW () + LW (x)k(x)
2 (ut LoV = BE (f(2) + g(2)h(x) — g(2)2) + LgW)
=LV + LyVE(x) + LW 4+ LyWk(z) + 2z (u+ LgV
+8Eg(@)z— 3k (f(2) + g(a)k(x)) + LyW ) .
Cancelling
Va(x,2) = LV + LgVk(z) + LW + LgWk(x)
+z (u +LgV + %g(x)z)
Feedback stabilizer
u(x,z) = —LgV(x) —
Note that
@ Simpler feedback
@ More complicated CLF

I (2)g(a)z — =
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Backstepping: Avoiding Cancellations (2)

Recall the example:
&=+ 26 = —z° 4+ 2(& + 222)
£ =u.
Error dynamics
z2=¢—k(z) = €+ 222
CLF and feedback law: (avoiding cancellation)

CLF and feedback law:
Va(z,2) = 222 427 + %22

=3 Va(:c,z):%x2+%z2
w(z,z) = —x? — a2 — 2. uw(x,z) = —x? + 4zt — 4222 — 2
10 10
50 | 50
5 s,
0 f‘\\ 0
o%—— 0 R ———— |
i | T
e — \ / )| o
sp/ —e() 5h —&(t)
i (1) V (1) —u®)
-100 —— -100
0 2 4 6 0 2 4 6 0 2 4 6 2 4 6
t ¢

P. Braun & C.M. Kellett (ANU)
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Exact Backstepping and a High-Gain Alternative

Consider the example with an additional integrator

@ =%+ x&1, &1 = &, E=u
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Exact Backstepping and a High-Gain Alternative

Consider the example with an additional integrator
& =a® + at, 1=, fa=u
So far, we have defined: &1 = k1 (z) = —222
21 =& — ki(z) = & + 222
Error dynamics and CLF:
i =—a°+ Tz
2 =6 — P(2) (2 + 221) = & — 42t + 4%

1,2, .4, 1.2
V(z,21) = 52" +2° + 521

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control
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Exact Backstepping and a High-Gain Alternative

We continue

Consider the example with an additional integrator .

3 i ) —N— . 9 .

T =z° 4z, & = &a, Eo=u ko(z,2z1) = (—8zz1 — 2x)& + (—4z* — 1)%
So far, we have defined: ¢ = k1 (x) = —222 = (—8zz1 — 2z)(—2% + 221)
2 2 4

2 =6 —ki(2) =& +22° + (—42” —1)(22 — 27 — 21 — 42”).

Error dynamics and CLF: The CLF (extending the previous one)
&= —a° 4+ x2; V(x, 21,22) = %9:24-14—&-%,2%—4-%2'%

21 =& — %(x) (_x3 taz) =& — 4zt 4 4222 naturally leads to (~ exact backstepping)

V(z,z1) = 327 +a' + 2 u=—z1 — 22 + ka(z, 21)
We continue with
&o = ka(x,21) = —x? — 42?21 — 21.
Define the error variable z2 = &2 — k2(z, z1) so that
& =—z° + 221

21 = z2 + ka(z, 21) —da* + 4222 = —21 + 29 — 22 — d2*

. “ N
Zo = u — ka(z, 21).

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 9: Control Lyapunov Functions 19/31



Exact Backstepping and a High-Gain Alternative

We continue

Consider the example with an additional integrator .

3 i ) —N— . 9 .

T =z° 4z, & = &a, Eo=u ko(z,2z1) = (—8zz1 — 2x)& + (—4z* — 1)%
So far, we have defined: ¢ = k1 (x) = —222 = (—8zz1 — 2z)(—2% + 221)
2 2 4

2 =6 —ki(2) =& +22° + (—42” —1)(22 — 27 — 21 — 42”).

Error dynamics and CLF: The CLF (extending the previous one)
& =—2®+an V(z,21,22) = 32° +a* + 27 + 525

3 =g — %(x) (—x3 taz) =& — 4ot + 42?2 naturally leads to (~~ exact backstepping)

_ 1.2 41,2 ——
Viz,z1) = 37 +a7 + 521 u=—z1 — 22 + ka(z, 21)
We continue with
As an alternative:

@ Instead of cancelling k; dominate it with a linear term

@ In other words, consider the virtual control

& = ka(x,21) = —2% — 422z — z1.
Define the error variable z2 = &2 — k2(z, z1) so that
i=—2%+12 €= —hz1, k>0
21 = z2 + ka(z,21) — 4ot + 42221 = —21 + 20 — 2% — 4z

. . N
Zo = u — ka(z, 21).
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Exact Backstepping and a High-Gain Alternative (2)

Consider the example with an additional integrator
t=a+a6, &=& fa=u
So far, we have defined: ¢, = ki (z) = —222
21 =& —ki(z) =& + 227
Error dynamics and CLF:
& =—2° 42
2 =& — %(x) (fx3 + :rzl) =& — 4zt + 4222

1.2, 4, 1.2
V(z,21) = 52° +2° + 521

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control
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Exact Backstepping and a High-Gain Alternative (2)

Consider the example with an additional integrator Then

V(z,z1)

=z + :I:2z1 — 45 + 4x4z1 — nz% — 4w4z1 + 4x2z%

i=a+a&, &1=&, &=u
So far, we have defined: ¢, = ki (z) = —222
z1 =& — kl(it) =& + 222
Error dynamics and CLF:

< —azt — 425 4 %w‘l + %z% — nzf + 41?22%

—%x4 — 425 — zf (n - % - 4302)

i=—z° + xz1
21 =& — %(x) (fa:3 + :tzl) =& — 4zt + 4222
V(z,z1) = %x2 +at 4 %zf

Consider virtual control

§2=—rz1, k>0
We have
&= —z° + xz1
21 = —Kz1 — 4x4 + 4x2z1.
CLF

1.2, 04 1.2 1.2
V(z,21,22) = 52" +2° + 521 + 523
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Exact Backstepping and a High-Gain Alternative (2)

Consider the example with an additional integrator
&1 = &,
So far, we have defined: ¢, = ki (z) = —222

2 =& —ki(z) =& + 222
Error dynamics and CLF:

&= a3+ z€y, b2 =u

i=—z° + xz1
21 =& — %(x) (7933 + :tzl) =& — 4zt + 4222
V(z,z1) = %x2 +at 4 %z%

Consider virtual control

§2=—rz1, k>0
We have
&= —z° + xz1
21 = —Kz1 — 4x4 + 41:2z1.
CLF

1.2, 04 1.2 1.2
V(z,21,22) = 52" +2° + 521 + 523

P. Braun & C.M. Kellett (ANU)
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Then
V(Z,Zl)
=z + :I:2z1 — 45 + 4x4z1 — nz% — 4az4z1 + 4x2z%
< —azt — 425 4 %x‘l + %z% — nzf + 41722%

—%x4 — 425 — zf (n - % - 4302)
Therefore, if

1
k> 2 +42% orequivalently z® < KT?

then the origin is locally asymptotically stable
~ Increasing «, increases the region of attraction
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Exact Backstepping and a High-Gain Alternative (2)

Consider the example with an additional integrator
&1 = &,
So far, we have defined: ¢, = ki (z) = —222

2 =& —ki(z) =& + 222
Error dynamics and CLF:

&= a3+ z€y, b2 =u

i=—z° + xz1
21 =& — %(x) (7:133 + le) =& — dz* + 4222,
V(z,z1) = %w2 +at 4 %z%

Consider virtual control

§2=—rz1, k>0
We have
i =—z3+ xz1
21 = —Kz1 — 4x4 + 41:2z1.
CLF

1.2, 04 1.2 1.2
V(z,21,22) = 52" +2° + 521 + 523
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Then
V(Z,Zl)
=z + :L‘2z1 — 45 + 4x4z1 — nz% — 4az4z1 + 4x2z%
< —azt — 425 4 %x‘l + %z% — nzf + 41722%

—%az4 — 425 — zf (n - % - 4302)

Therefore, if

1
k> 2 +42% orequivalently z® < KT?

then the origin is locally asymptotically stable
~ Increasing «, increases the region of attraction

Subsequent step: Let zo = €2 + Kk2z1. Then
i=—z° + xz1
21 = —Kz21 — 4z — 4x2z1 + 22
Zo=u-+kK (—nzl — 4zt — 4m221 + 22) .

We again use a dominating linear term v = —kz2 which
leads to

U= —kK (52 + k(&1 + 2302))
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Exact Backstepping and a High-Gain Alternative (3)

Theorem (High-gain backstepping)
Consider the system
& = f(z) + g9(z)&1
Li=6&

én =u
in strict feedback form, let k € R~ be a design parameter and assume there

exists a feedback stabilizer &1 = k(x) and an associated control Lyapunov
function V (x). Let

PA) = A"+ an_1 A"+ a1+ ao
be an arbitrary Hurwitz polynomial. Then the feedback
u=—k(an—1&n + K (an—26n—1 + K (--- + £(a1&2 + kao (&1 — k(x))) -+ )))

achieves semiglobal stabilization of [zT,¢T]T = 0.

V.

(Semiglobal refers to the fact that we have a design parameter, «, which can be
tuned to make the region of attraction for the origin as large as we wish.)

P. Braun & C.M. Kellett (ANU)
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High-gain backstepping « = 20
VAN

ot (1) H
—&()
-20
&()
-40
0 05 1 15 2
500
0
-500 —)
-1000
0 05 1 15 2

t
Exact backstepping

0f———— —a(t) H
—&()
-20
&(t)
40
0 0.5 1 1.5 2
500
5 =0
-500
-1000
0 0.5 1 1.5 2
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Backstepping: Convergence Structure

Consider again the example:
&=z + x€
f=u
with error dynamics
z =&~ k(z) = £ +22°
Exact backstepping:
u(z, €) = —z? + 4z* — 42?(€ + 222) — (€ + 22?)
High-gain backstepping: (x > 0, p(A) = X + 1)
u(z, &) = —r2(€ 4 222) = -2z
using high-gain backstepping.
The set where z vanishes:
Z:={z,f]T eR?:0=¢— 2%}
For large « > 0 we observe two phases:
@ convergence to Z
@ slide along Z to the origin

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control
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Section 5

Forwarding
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Forwarding

Strict feedforward form:

21 = fi(x2,®3,...,Tn,u) »| »/ 5’33> 2 ﬂb2>/ z2> £ 1 / 1
T2 = fo(x3,T4,...,Tn,u) i f

Tp—1 = fnfl(af'n, u)
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Forwarding

Strict feedforward form:

&1 = f1(z2,23,...,2Tn,u) 2> f3 z'3> / ™ 1 562’ / = h - / -
&2 = fa(x3,T4,...,%n,u) A f

En—1= frn—1(xn,u)
To introduce the idea consider:
Z=h(z) +L(zx)u
&= f(@) + gla)u Y . i . .
(System in feedforward form) —»| S (@) + 9(z)u — / P h(z) + L(z)u > / >

Suppose that ?
@ Forz = f(z), 0is asympt. stable

@ V is a corresponding Lyap. fcn

@ M(x) is a solution to the partial
differential equation (M (0) = 0)

LiM(2) = (VM(x), f(2) = h(z)
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Forwarding (2)

To introduce the idea consider:
z=h(z)+L(z)u
& = f(z) + g9(z)u
Suppose that
@ For & = f(z), 0is asympt. stable
@ V is a corresponding Lyap. fcn

@ M(z) is a solution to the partial
differential equation (M (0) = 0)

LyM(2) = (VM(2), f(2) = h(z)

@ If we are able to find a solution to
the PDE with ¢(0) — Ly M(0) # 0

@ Then a CLF for the overall system
is given by

W(z,2) =V(z) + % (z— ./\/I(m))2

P. Braun & C.M. Kellett (ANU)

| f(2) + g(z)u —]

h(z) + £@)u 2»/

Introduction to Nonlinear Control
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Forwarding (2)

u T T z z
To introduce the idea consider: — /@) +g(z)u » / > h(z) + lz)u > / >
2= h(z) + Lx)u f
&= f(z) +g(@)u
Suppose that
@ For & = f(z), 0is asympt. stable
) ) Indeed, the time derivative of W yields:

@ V is a corresponding Lyap. fcn )

@ M(z) is a solution to the partial Wi(z,2) = LV (2) + LgV (2)u + (z = M(2)) (2 = Ly M(2) = LgM()u)
differential equation (M (0) = 0) =LsV(z)+ LgV(a)u+ (z — M(x)) (h(z) + €(z)u — Ly M(x) — LgM(z)u)
LiM(z) = (VM(z), f(z)) = h(z) = LgV(z)+ LgV(@)u+ (2 — M(z)) (U(z)u — LgM(z)u)

@ If we are able to find a solution to =LiV(@) +ulLeV(@) + (2 = M(@)) (E(z) — LeM(@))]

the PDE with £(0) — L4 M(0) % 0

@ Then a CLF for the overall system
is given by

W(z,2) =V(z) + % (z— ./\/I(m))2
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Forwarding (2)

To introduce the idea consider:
z=h(z)+L(z)u
& = f(z) + g9(z)u
Suppose that
@ For & = f(z), 0is asympt. stable
@ V is a corresponding Lyap. fcn

@ M(z) is a solution to the partial
differential equation (M (0) = 0)

LiM(2) = (VM(x), f(2) = h(z)

@ If we are able to find a solution to
the PDE with ¢(0) — Ly M(0) # 0

@ Then a CLF for the overall system
is given by

W(z,2) =V(z) + % (z— ./\/I(m))2

P. Braun & C.M. Kellett (ANU)

—> f(z)+g(:v)u—>/ »! h(z) + £(x)u }/ >

Indeed, the time derivative of W yields:

Wz, z) = LyV(z) + LgV(z)u+ (z — M(z)) (2 — Ly M(z) — LyM(z)u)
=LsV(z)+ LgV(a)u+ (z — M(x)) (h(z) + €(z)u — Ly M(x) — LgM(z)u)
=LsV(z)+ LyV(z)u+ (2 — M(z)) (b(z)u — LgM(z)u)

=LiV(z) +ul[LgV(z) + (z = M(2)) (€(z) — LgM())]

Note that:
@ The condition £(0) — Ly M (0) # 0 is required to guarantee a decrease in z.

Possible feedback law: (x > 0 design parameter)
u=—r(LgV(z) + (z — M(2)) ({(z) — LgM(x)))
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Forwarding (3)

Theorem

Consider the dynamical system and let V : R® — R~ be
a continuously differentiable positive definite Lyapunov
function for @ = f(x). Suppose there exists a solution

M : R™ — R™ to the PDE such that £(0) — Ly M(0) # 0.
Then W is a control Lyapunov function of the overall
system and v is a globally asymptotically stabilizing
feedback law.

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

System dynamics
z = h(z) + L(z)u
&= f(z) + g(z)u
Partial differential equation (PDE):
LiM(z) = (VM(z), f(2)) = h(z), M(0)=0
Control Lyapunov function:
W(z,2) = V(z) + 3 (= = M())*
Feedback law: (x > 0 design parameter)
u=—r(LgV(z) + (z — M(z)) ({(z) — LgM(x)))
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Forwarding (Example)

Consider Therefore, a control Lyapunov function is given by
t=z—cu W(a:,z):%x2+%(z+m+%:c3)2.
r=u Indeed,

Modify the input:
u=-—c+v :—x2+xv+(z+x+%f€3)

then 5

t=a—23(—z+v) = (z+2%) + (—z%)v = h(z) + £(z)v

z=—z+v=f(z)+ g(x)v.

Lyapunov function for & = —z:

~(:r+:1:3—m v—x+v—x3+x2v

:—m2+xv+(z+m+%13)v
:—:c2+(z+2a:+%a:3)v.

12 We choose the feedback stabilizer
V(z) = 5z
. — (z + 22 + %xg’)
PDE: (unknown M (z) with M(0) = 0, £(0) — Ly M(0) # 0)
Hence, the control law in terms of u is given by:
8/\/((:0) , s OM() s given by
h(z) = f(z), e, z+ax :7(_’3)~ u=-z+v=—z-3z+ 3z°
Thus
M(z) = =32 —z, with £(0) — LeM(0) = —1#0

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 9: Control Lyapunov Functions
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Forwarding (Example, 2)
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Forwarding: Recursive Application

Consider
29 = ha(z, z1) + L2(z, z1)u
z1 = hi(z) + 41 (z)u
&= f(z)+g(z)u
Note that

@ We have seen how to construct a CLF for (z, z1)

@ Once we have a CLF for the (z, z1) dynamics we can
relabel z as (z, z1) and z as z2 and apply the
forwarding procedure again

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control

Ch. 9: Control Lyapunov Functions

29/31



Forwarding: Convergence Structure

Time derivative of the CLF W:
W(z,z) = LyV(x)
+u(LgV(z) + (2 = M(2)) (U(z) — LgM(2)))
Feedback law (k = 1):
u=—(LgV(x) + (z — M(z)) (£(z) — LgM(x)))

@ In addition, assume that z = 0 is asymptotically
stable for ¢ = f(x)i.e., LyV(z) <Oforallz #0
and u = 0.

@ u(z,z) = 0 is satisfied on the forwarding manifold

n+m L,V (xz

{@a)er ™ 2= M@) + 1 R |-

~ w thus drives the system to the forwarding manifold

~ Ly¢V(z) < 0forall 2 # 0 guarantees convergence
to the origin (once (z, z) is close to the forwarding
manifold)

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control
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Forwarding: Convergence Structure

Time derivative of the CLF W: Recall
. _ 1.3 _
Wz, 2) = LpV(x) ® M(a)=—32° —a
+u(LV (@) + (2 = M(@) (Ux) - LgM(2))) @ v(,2) = (2 + 2z + 32°)
Feedback law (k = 1): @ 2 =uzx+ % — z2v, T=-x+v
u=—(LgV(x) + (2 — M(2)) ({(z) — LgM(2))) @ The forwarding manifold is defined through
z=—2x — %xg’
@ In addition, assume that z = 0 is asymptotically o0l \\
stable for ¢ = f(x)i.e., LyV(z) <Oforallz #0 \
and u = 0. 0l N \
@ u(z,z) = 0 is satisfied on the forwarding manifold \ \
ol
{(@2) €R™™ s 2 = M) + @ Y
10t
~ w thus drives the system to the forwarding manifold
~ LyV(z) < 0forall z # 0 guarantees convergence 20—z =—2z— 3
to the origin (once (z, z) is close to the forwarding 5 o 5
manifold) - s
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Forwarding: Saturated Control

@ Maintain the assumption that the origin is asymptotically stable for & = f(x).
@ Then, note that

u = —c-sat <7 (LgV (z) + (2 — M(z)) (b(z) — Lg./\/l(z)))> guarantees W (x,z) < 0, (x,2) # 0,V ¢ > 0
guarantees W (z, z) < 0, (x, z) # 0, for all values of ¢ > 0.

@ Note that u € [—c, ¢] and still guarantees asymptotic stability of the origin (under the assumption on f)
Example (Back to the example (c € {1,2}))

/’j;iﬁ, — 2 ‘\
7;/ = ofl\ _
- NG
| P -
- /’ 0 5 10 15 20
|
5 3 [
’ —v=—(2+2z + 12%) 0P
E ——v = —2sat(3(z + 2z + 1a%)) = | N\
v = —sat(z + 2z + 3a°) RN
0 R o —
5 > a4 o p P 0 5 10 15 20 0 5 10 15 20
T t t
Note that: v is bounded! However, u = —x + v is not bounded!
v
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