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Control Lyapunov Functions

Consider the nonlinear system

ẋ = f(x, u)

f : Rn × Rm → Rn

state x and control input u

Goal: Define a feedback control law u = k(x) which
asymptotically stabilizes the origin.

Control Lyapunov function: V : Rn → R≥0

In terms of a feedback law u = k(x),
d
dt
V (x(t)) = ⟨∇V (x), f(x, k(x))⟩ < 0, ∀ x ̸= 0

⇝ V is a Lyapunov function for ẋ = f(x, k(x)) = f̃(x)

For each x ̸= 0 we can find u such that
d
dt
V (x(t)) = ⟨∇V (x), f(x, u)⟩ < 0

Definition (Control Lyapunov function (CLF))
Consider the nonlinear system and α1, α2 ∈ K∞. A
continuously differentiable function V : Rn → R≥0 is called
control Lyapunov function for the system if

α1(|x|) ≤ V (x) ≤ α2(|x|), ∀ x ∈ Rn,

and for all x ∈ Rn\{0} there exists u ∈ Rm such that

⟨∇V (x), f(x, u)⟩ < 0.
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Control Affine Systems
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Control Affine Systems

Control affine systems

ẋ = f(x) + g(x)u

Assumptions:
for simplicity we focus on u ∈ R
f, g : Rn → Rn (locally Lipschitz)

f(0) = 0 without loss of generality

Lie derivative notation

⟨∇V (x), f(x)⟩ = LfV (x)

It holds that: (a1, a2 ∈ R, v, v1, v2 ∈ Rn)

⟨v, a1v1 + a2v2⟩ = a1⟨v, v1⟩+ a2⟨v, v2⟩.

The decrease condition:

V̇ (x) = ⟨∇V (x), f(x) + g(x)u⟩
= LfV (x) + LgV (x)u < 0, ∀ x ̸= 0.

Definition (Control Lyapunov function (CLF))
Consider the nonlinear system ẋ = f(x, u) and
α1, α2 ∈ K∞. A continuously differentiable function
V : Rn → R≥0 is called control Lyapunov function for the
ẋ = f(x, u) if

α1(|x|) ≤ V (x) ≤ α2(|x|), ∀ x ∈ Rn,

and for all x ∈ Rn\{0} there exists u ∈ Rm such that

⟨∇V (x), f(x, u)⟩ < 0.

The decrease condition for control affine systems:

LfV (x) < 0 ∀ x ∈ Rn\{0} such that LgV (x) = 0

In other words
If LgV (x) = 0 (i.e., we have no control authority)

then LfV (x) < 0 needs to be satisfied
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ISS Redesign via LgV Damping

Question:
What about robustness of asymptotically stabilizing
feedback laws?

We begin with an example:

ẋ = x+ (x2 + 1)u.

One possible feedback stabilizer is given by

u = k(x) = −
2x

x2 + 1

which results in the closed-loop system ẋ = −x.

+ ẋ = x+ (x2 + 1)u

k(x) = −
2x

x2 + 1

w u = ũ+ w x

ũ

Feedback law subject to disturbances

u = k(x) + w

Closed-loop system:

ẋ = −x+ (x2 + 1)w.

⇝ The system is not ISS (and admits finite escape time
for w(t) = 1 for all t ≥ 0, for example)

Suppose V (x) is a Lyapunov function for w = 0 so
that V satisfies

V̇ (x) = LfV (x) + LgV (x)k(x).

Candidate ISS-Lyapunov function V would satisfy

V̇ (x) = LfV (x) + LgV (x)k(x) + LgV (x)w

≤ LfV (x) + LgV (x)k(x) + 1
2
(LgV (x))2 + 1

2
w2

If the controller has an additional term of the form
−LgV (x), this dominates 1

2
(LgV (x))2

⇝ V (x) is an ISS-Lyapunov function.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 9: Control Lyapunov Functions 7 / 31



ISS Redesign via LgV Damping

Question:
What about robustness of asymptotically stabilizing
feedback laws?

We begin with an example:
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ISS Redesign via LgV Damping (2)

Question:
What about robustness of asymptotically stabilizing
feedback laws?

We begin with an example:

ẋ = x+ (x2 + 1)u.

One possible feedback stabilizer is given by

u = k(x) = −
2x

x2 + 1

which results in the closed-loop system ẋ = −x.

+ ẋ = x+ (x2 + 1)u

k(x) = −
2x

x2 + 1

w u = ũ+ w x

ũ

Back to the example:
Take V1(x) =

1
2
x2 and augment controller:

u = k1(x) = k(x)−LgV1(x) = −
2x

x2 + 1
−x(x2 + 1)

The closed-loop system with disturbance:

ẋ = −x− x(x2 + 1)2 + (x2 + 1)w
.
= f1(x,w).

The new closed-loop system is ISS:

⟨∇V1(x), f1(x,w)⟩ = −x2−x2(x2 + 1)2 + x(x2 + 1)w

≤ −x2− 1
2
x2(x2 + 1)2 + 1

2
w2
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ISS Redesign via LgV Damping (General Procedure)

Consider

ẋ = f(x) + g(x)k(x), u = k(x)

(with asymptotically stable origin, i.e., stabilizing
feedback u = k(x))

Corresponding Lyapunov function V : Rn → R≥0 so
that

LfV (x) + LgV (x)k(x) ≤ −α(|x|)

where α ∈ K∞.

Define the augmented feedback

u = k(x)− LgV (x)

Then, the system

ẋ = f(x) + g(x) (k(x)− LgV (x)) + g(x)w

is ISS.

Indeed, V is an ISS-Lyapunov function:

⟨∇V (x), f(x) + g(x) (k(x)− LgV (x)) + g(x)w⟩

= LfV (x) + LgV (x)k(x)− (LgV (x))2 + LgV (x)w

≤ LfV (x) + LgV (x)k(x)− 1
2
(LgV (x))2 + 1

2
w2

≤ −α(|x|) + 1
2
w2.

Note that: The method is also known as
nonlinear damping

Jurdjevic-Quinn controller.
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Section 3

Sontag’s Universal Formula
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Sontag’s Universal Formula

Consider a control affine system (u ∈ R)

ẋ = f(x) + g(x)u

with corresponding CLF V , i.e.,

LfV (x) < 0 ∀ x ∈ Rn\{0} such that LgV (x) = 0

Then, for κ > 0 define the feedback law

k(x) =

 −
(
κ+

LfV (x)+
√

LfV (x)2+LgV (x)4

LgV (x)2

)
LgV (x), LgV (x) ̸= 0

0, LgV (x) = 0

The feedback law
asymptotically stabilizes the origin

inherits the regularity properties of
the CLF except at the origin

is continuous at the origin if the CLF
satisfies a small control property (i.e.,
|k(x)| → 0 for |x| → 0)

Sketch of the proof: For κ = 0 it holds that

V̇ (x) = LfV (x) + LgV (x)k(x)

= LfV (x)− LgV (x)

(
LfV (x) +

√
LfV (x)2 + LgV (x)4

LgV (x)2

)
LgV (x)

= LfV (x)− LfV (x)−
√

LfV (x)2 + LgV (x)4 = −
√

LfV (x)2 + LgV (x)4.

κ > 0 adds a term −κ(LgV (x))2, as in the ISS redesign
⇝ closed-loop system is ISS

Note that: Formula known as
Universal formula

Sontag’s formula

(Derived by Eduardo Sontag)
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is continuous at the origin if the CLF
satisfies a small control property (i.e.,
|k(x)| → 0 for |x| → 0)

Sketch of the proof: For κ = 0 it holds that
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√
LfV (x)2 + LgV (x)4
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√

LfV (x)2 + LgV (x)4 = −
√

LfV (x)2 + LgV (x)4.

κ > 0 adds a term −κ(LgV (x))2, as in the ISS redesign
⇝ closed-loop system is ISS

Note that: Formula known as
Universal formula

Sontag’s formula

(Derived by Eduardo Sontag)
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Section 4

Backstepping
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Backstepping (How to find CLFs?)
Systems in strict feedback form:

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2, x3)

...
ẋn−1 = fn−1(x1, x2, . . . , xn−1, xn)

ẋn = fn(x1, x2, . . . , xn, u).

f3

∫
f2

∫
f1

∫
u ẋ3 ẋ2 ẋ1x3 x2 x1

Backstepping idea (based on an example):

ẋ = x3 + xξ

ξ̇ = u.

Step 1: Define Virtual Control. Suppose that ξ is a control
input for the x-subsystem (i.e., ξ as a virtual control for x)

Define stabilizer: ξ = k(x) = −2x2

Which would satisfy: ẋ = x3 − 2x3 = −x3

Simple Lyapunov function: V (x) = 1
2
x2

Actually the x-dynamics satisfy:

ẋ = x3 + xk(x)− xk(x) + xξ = −x3 + x(ξ + 2x2).

Step 2: Define an Error Variable.
Of course ξ is a state

Idea: Drive (error) z = ξ − k(x) = ξ + 2x2 to zero

We calculate

ż = ξ̇ −
˙︷︸︸︷

k(x) = u− ∂
∂x

k(x)ẋ = u+ 4x(x3 + xξ)

= u+ 4x(−x3 + xz) = u− 4x4 + 4x2z

System in (x, z) coordinates:

ẋ = −x3 + xz

ż = u− 4x4 + 4x2z
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ż = u− 4x4 + 4x2z

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 9: Control Lyapunov Functions 13 / 31



Backstepping (How to find CLFs?)
Systems in strict feedback form:
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ẋ = −x3 + xz
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ż = ξ̇ −
˙︷︸︸︷

k(x) = u− ∂
∂x
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Simple Lyapunov function: V (x) = 1
2
x2

Actually the x-dynamics satisfy:
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ż = u− 4x4 + 4x2z

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 9: Control Lyapunov Functions 13 / 31



Backstepping (How to find CLFs?) (2)
Backstepping idea (based on an example):

ẋ = x3 + xξ

ξ̇ = u.

Step 1: Define Virtual Control. Suppose that ξ is a control
input for the x-subsystem (i.e., ξ as a virtual control for x)

Define stabilizer: ξ = k(x) = −2x2

Which would satisfy: ẋ = x3 − 2x3 = −x3

Simple Lyapunov function: V (x) = 1
2
x2

Actually the x-dynamics satisfy:

ẋ = x3 + xk(x)− xk(x) + xξ = −x3 + x(ξ + 2x2).

Step 2: Define an Error Variable.
Of course ξ is a state

Idea: Drive (error) z = ξ − k(x) = ξ + 2x2 to zero

We calculate

ż = ξ̇ −
˙︷︸︸︷

k(x) = u− ∂
∂x

k(x)ẋ = u+ 4x(x3 + xξ)

= u+ 4x(−x3 + xz) = u− 4x4 + 4x2z

System in (x, z) coordinates:

ẋ = −x3 + xz

ż = u− 4x4 + 4x2z

Step 3: Construct a Control Lyapunov Function.

Va(x, z) = V (x) + 1
2
z2 = 1

2
x2 + 1

2
z2.

It holds that

V̇a(x, z) = −x4 + x2z + z(u− 4x4 + 4x2z)

= −x4 + z(u+ x2 − 4x4 + 4x2z).

⇝ The derivative is negative for u appropriate

Step 4: Construct a feedback stabilizer. Define (for example)

u = k1(x, z) = −x2 + 4x4 − 4x2z − z

then

V̇a(x, z) = −x4 − z2

In the original variables:

u = −x2 + 4x4 − 4x2(ξ + 2x2)− (ξ + 2x2)
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Backstepping (How to find CLFs?) (3)

Backstepping idea (based on an example):

ẋ = x3 + xξ = −x3 + x(ξ + 2x2)

ξ̇ = u.

Introduce error dynamics

z = ξ − k(x) = ξ + 2x2

System in (x, z) coordinates:

ẋ = −x3 + xz

ż = u− 4x4 + 4x2z

In the original variables:

u = −x2 + 4x4 − 4x2z − z

= −x2 + 4x4 − 4x2(ξ + 2x2)− (ξ + 2x2)
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Backstepping (How to find CLFs?) (4)

System in strict feedback form:

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2, x3)

...
ẋn−1 = fn−1(x1, x2, . . . , xn−1, xn)

ẋn = fn(x1, x2, . . . , xn, u).

Error dynamics
ż0
ż1
...
żi

 =


f̃1(z0, k1(z0))

f̃2(z0, z1, k2(z0, z1))
...

f̃i+1(z0, z1, . . . , zi−1, xi+1)


for i = 1, . . . , n, is used.

Input: Define z0 = x1, xn+1 = u, f̃1 = f1 and, V0 = 0.
Output: Stabilizing feedback law u.
For i = 1, 2, . . . , n

1 Consider error dynamics & virtual control xi+1 = ki(z0, . . . , zi−1)

2 Define ki in such a way that the origin of the error dynamics is
asymptotically stable and define Ṽi(z0, . . . , zi−1) so that

Vi(z0, . . . , zi−1)
.
= Vi−1(z0, . . . , zi−2) + Ṽi(z0, . . . , zi−1)

is a Lyapunov function.
3 If i ̸= n, define the error dynamics zi = xi+1 − ki(z0, . . . , zi−1)

with

żi = ẋi+1 − d
dt
ki(z0, . . . , zi−1)

= fi+1(x1, . . . , xi+1)− d
dt
ki(z0, . . . , zi−1)

= f̃i+1(z0, . . . , zi−1, xi+1).

4 If i = n return the input

u(x1, . . . , xn)
.
= kn(z0, . . . , zn−1)

and the CLF V (x1, . . . , xn)
.
= Vn(z0, . . . , zn−1).
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Backstepping: Avoiding Cancellations
Consider:

ẋ = f(x) + g(x)ξ

ξ̇ = u.

Virtual stabilizing feedback ξ = k(x) & error variable z =
ξ − k(x):

ẋ = f(x) + g(x)k(x) + g(x)z

ż = u− ∂
∂x

k(x)ẋ.

Feedback derived on previous slides :

u(x, z) = −LgV (x) + ∂
∂x

k(x) (f(x) + g(x)(k(x) + z))− z

(Based on Va(x, z) = V (x) + 1
2
z2)

Instead, consider

Va(x, z) = V (x) + 1
2
z2 +W (x)

where W (x) satisfies

LfW (x) + LgW (x)k(x) < 0 ∀x ̸= 0

⟨∇W (x), g(x)⟩ = ∂
∂x

k(x)ẋ
∣∣∣
z=0

= ∂
∂x

k(x)(f(x) + g(x)k(x))

Time derivative:

V̇a(x, z) = LfV (x) + LgV (x)k(x) + LgV (x)z + LfW (x)

+ LgW (x)k(x) + LgW (x)z + z
(
u− ∂k

∂x
(x)ẋ

)
= LfV (x) + LgV (x)k(x) + LfW (x) + LgW (x)k(x)

+ z
(
u+ LgV − ∂k

∂x
(f(x) + g(x)k(x)− g(x)z) + LgW

)
= LfV + LgV k(x) + LfW + LgWk(x) + z (u+ LgV

+ ∂k
∂x

g(x)z− ∂k
∂x

(f(x) + g(x)k(x)) + LgW
)
.

Cancelling

V̇a(x, z) = LfV + LgV k(x) + LfW + LgWk(x)

+ z
(
u+ LgV + ∂k

∂x
g(x)z

)
Feedback stabilizer

u(x, z) = −LgV (x)− ∂k
∂x

(x)g(x)z − z

Note that
Simpler feedback

More complicated CLF

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 9: Control Lyapunov Functions 17 / 31



Backstepping: Avoiding Cancellations
Consider:
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+ ∂k
∂x

g(x)z− ∂k
∂x

(f(x) + g(x)k(x)) + LgW
)
.

Cancelling

V̇a(x, z) = LfV + LgV k(x) + LfW + LgWk(x)

+ z
(
u+ LgV + ∂k

∂x
g(x)z

)
Feedback stabilizer

u(x, z) = −LgV (x)− ∂k
∂x

(x)g(x)z − z

Note that
Simpler feedback

More complicated CLF
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Backstepping: Avoiding Cancellations (2)

Recall the example:

ẋ = x3 + xξ = −x3 + x(ξ + 2x2)

ξ̇ = u.

Error dynamics

z = ξ − k(x) = ξ + 2x2

CLF and feedback law: (avoiding cancellation)

Va(x, z) =
1
2
x2 + x4 + 1

2
z2

u(x, z) = −x2 − 4x2z − z.
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CLF and feedback law:

Va(x, z) =
1
2
x2 + 1

2
z2

u(x, z) = −x2 + 4x4 − 4x2z − z
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Exact Backstepping and a High-Gain Alternative

Consider the example with an additional integrator

ẋ = x3 + xξ1, ξ̇1 = ξ2, ξ̇2 = u

So far, we have defined: ξ1 = k1(x) = −2x2

z1 = ξ1 − k1(x) = ξ1 + 2x2

Error dynamics and CLF:

ẋ = −x3 + xz1

ż1 = ξ2 − ∂k1
∂x

(x)
(
−x3 + xz1

)
= ξ2 − 4x4 + 4x2z1

V (x, z1) =
1
2
x2 + x4 + 1

2
z21

We continue with

ξ2 = k2(x, z1) = −x2 − 4x2z1 − z1.

Define the error variable z2 = ξ2 − k2(x, z1) so that

ẋ = −x3 + xz1

ż1 = z2 + k2(x, z1)− 4x4 + 4x2z1 = −z1 + z2 − x2 − 4x4

ż2 = u−
˙︷ ︸︸ ︷

k2(x, z1).

We continue
˙︷ ︸︸ ︷

k2(x, z1) = (−8xz1 − 2x)ẋ+ (−4x2 − 1)ż1

= (−8xz1 − 2x)(−x3 + xz1)

+ (−4x2 − 1)(z2 − x2 − z1 − 4x4).

The CLF (extending the previous one)

V (x, z1, z2) =
1
2
x2 + x4 + 1

2
z21 + 1

2
z22

naturally leads to (⇝ exact backstepping)

u = −z1 − z2 +
˙︷ ︸︸ ︷

k2(x, z1)

As an alternative:
Instead of cancelling k̇1 dominate it with a linear term

In other words, consider the virtual control

ξ2 = −κz1, κ > 0
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= (−8xz1 − 2x)(−x3 + xz1)

+ (−4x2 − 1)(z2 − x2 − z1 − 4x4).

The CLF (extending the previous one)

V (x, z1, z2) =
1
2
x2 + x4 + 1

2
z21 + 1

2
z22

naturally leads to (⇝ exact backstepping)

u = −z1 − z2 +
˙︷ ︸︸ ︷

k2(x, z1)

As an alternative:
Instead of cancelling k̇1 dominate it with a linear term

In other words, consider the virtual control

ξ2 = −κz1, κ > 0

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 9: Control Lyapunov Functions 19 / 31



Exact Backstepping and a High-Gain Alternative

Consider the example with an additional integrator
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Exact Backstepping and a High-Gain Alternative (2)

Consider the example with an additional integrator

ẋ = x3 + xξ1, ξ̇1 = ξ2, ξ̇2 = u

So far, we have defined: ξ1 = k1(x) = −2x2

z1 = ξ1 − k1(x) = ξ1 + 2x2

Error dynamics and CLF:

ẋ = −x3 + xz1

ż1 = ξ2 − ∂k1
∂x

(x)
(
−x3 + xz1

)
= ξ2 − 4x4 + 4x2z1

V (x, z1) =
1
2
x2 + x4 + 1

2
z21

Consider virtual control

ξ2 = −κz1, κ > 0

We have

ẋ = −x3 + xz1

ż1 = −κz1 − 4x4 + 4x2z1.

CLF

V (x, z1, z2) =
1
2
x2 + x4 + 1

2
z21 + 1

2
z22

Then

V̇ (x, z1)

= −x4 + x2z1 − 4x6 + 4x4z1 − κz21 − 4x4z1 + 4x2z21

≤ −x4 − 4x6 + 1
2
x4 + 1

2
z21 − κz21 + 4x2z21

= − 1
2
x4 − 4x6 − z21

(
κ− 1

2
− 4x2

)
Therefore, if

κ > 1
2
+ 4x2 or equivalently x2 <

κ− 1
2

4

then the origin is locally asymptotically stable
⇝ Increasing κ, increases the region of attraction

Subsequent step: Let z2 = ξ2 + κz1. Then

ẋ = −x3 + xz1

ż1 = −κz1 − 4x4 − 4x2z1 + z2

ż2 = u+ κ
(
−κz1 − 4x4 − 4x2z1 + z2

)
.

We again use a dominating linear term u = −κz2 which
leads to

u = −κ
(
ξ2 + κ(ξ1 + 2x2)

)
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ż1 = ξ2 − ∂k1
∂x

(x)
(
−x3 + xz1

)
= ξ2 − 4x4 + 4x2z1

V (x, z1) =
1
2
x2 + x4 + 1

2
z21

Consider virtual control

ξ2 = −κz1, κ > 0

We have
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Exact Backstepping and a High-Gain Alternative (3)

Theorem (High-gain backstepping)
Consider the system

ẋ = f(x) + g(x)ξ1

ξ̇1 = ξ2

...

ξ̇n = u

in strict feedback form, let κ ∈ R>0 be a design parameter and assume there
exists a feedback stabilizer ξ1 = k(x) and an associated control Lyapunov
function V (x). Let

p(λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

be an arbitrary Hurwitz polynomial. Then the feedback

u = −κ (an−1ξn + κ (an−2ξn−1 + κ (· · ·+ κ(a1ξ2 + κa0(ξ1 − k(x))) · · · )))

achieves semiglobal stabilization of [xT , ξT ]T = 0.

(Semiglobal refers to the fact that we have a design parameter, κ, which can be
tuned to make the region of attraction for the origin as large as we wish.)

High-gain backstepping κ = 20
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Backstepping: Convergence Structure

Consider again the example:

ẋ = x3 + xξ

ξ̇ = u

with error dynamics

z = ξ − k(x) = ξ + 2x2

Exact backstepping:

u(x, ξ) = −x2 + 4x4 − 4x2(ξ + 2x2)− (ξ + 2x2)

High-gain backstepping: (κ > 0, p(λ) = λ+ 1)

u(x, ξ) = −κ2(ξ + 2x2) = −κ2z

using high-gain backstepping.
The set where z vanishes:

Z := {[x, ξ]T ∈ R2 : 0 = ξ − 2x2}

For large κ > 0 we observe two phases:
convergence to Z
slide along Z to the origin
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Section 5

Forwarding
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Forwarding

Strict feedforward form:

ẋ1 = f1(x2, x3, . . . , xn, u)

ẋ2 = f2(x3, x4, . . . , xn, u)

...
ẋn−1 = fn−1(xn, u)

ẋn = fn(u)

f3

∫
f2

∫
f1

∫
u ẋ3 ẋ2 ẋ1x3 x2 x1

To introduce the idea consider:

ż = h(x) + ℓ(x)u

ẋ = f(x) + g(x)u

(System in feedforward form)
Suppose that

For ẋ = f(x), 0 is asympt. stable

V is a corresponding Lyap. fcn

M(x) is a solution to the partial
differential equation (M(0) = 0)

LfM(x) = ⟨∇M(x), f(x)⟩ = h(x)

f(x) + g(x)u

∫
h(x) + ℓ(x)u

∫
u ẋ ż zx
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Forwarding (2)

To introduce the idea consider:

ż = h(x) + ℓ(x)u

ẋ = f(x) + g(x)u

Suppose that
For ẋ = f(x), 0 is asympt. stable

V is a corresponding Lyap. fcn

M(x) is a solution to the partial
differential equation (M(0) = 0)

LfM(x) = ⟨∇M(x), f(x)⟩ = h(x)

If we are able to find a solution to
the PDE with ℓ(0)− LgM(0) ̸= 0

Then a CLF for the overall system
is given by

W (x, z) = V (x) + 1
2
(z −M(x))2

f(x) + g(x)u

∫
h(x) + ℓ(x)u

∫
u ẋ ż zx

Indeed, the time derivative of W yields:

Ẇ (x, z) = LfV (x) + LgV (x)u+ (z −M(x))
(
ż − LfM(x)− LgM(x)u

)
= LfV (x) + LgV (x)u+ (z −M(x))

(
h(x) + ℓ(x)u− LfM(x)− LgM(x)u

)
= LfV (x) + LgV (x)u+ (z −M(x)) (ℓ(x)u− LgM(x)u)

= LfV (x) + u [LgV (x) + (z −M(x)) (ℓ(x)− LgM(x))]

Note that:
The condition ℓ(0)−LgM(0) ̸= 0 is required to guarantee a decrease in z.

Possible feedback law: (κ > 0 design parameter)

u = −κ (LgV (x) + (z −M(x)) (ℓ(x)− LgM(x)))
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ż − LfM(x)− LgM(x)u

)
= LfV (x) + LgV (x)u+ (z −M(x))

(
h(x) + ℓ(x)u− LfM(x)− LgM(x)u

)
= LfV (x) + LgV (x)u+ (z −M(x)) (ℓ(x)u− LgM(x)u)

= LfV (x) + u [LgV (x) + (z −M(x)) (ℓ(x)− LgM(x))]

Note that:
The condition ℓ(0)−LgM(0) ̸= 0 is required to guarantee a decrease in z.

Possible feedback law: (κ > 0 design parameter)

u = −κ (LgV (x) + (z −M(x)) (ℓ(x)− LgM(x)))

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 9: Control Lyapunov Functions 25 / 31



Forwarding (2)

To introduce the idea consider:
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Forwarding (3)

Theorem
Consider the dynamical system and let V : Rn → R≥0 be
a continuously differentiable positive definite Lyapunov
function for ẋ = f(x). Suppose there exists a solution
M : Rn → Rn to the PDE such that ℓ(0)− LgM(0) ̸= 0.
Then W is a control Lyapunov function of the overall
system and u is a globally asymptotically stabilizing
feedback law.

System dynamics

ż = h(x) + ℓ(x)u

ẋ = f(x) + g(x)u

Partial differential equation (PDE):

LfM(x) = ⟨∇M(x), f(x)⟩ = h(x), M(0) = 0

Control Lyapunov function:

W (x, z) = V (x) + 1
2
(z −M(x))2

Feedback law: (κ > 0 design parameter)

u = −κ (LgV (x) + (z −M(x)) (ℓ(x)− LgM(x)))
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Forwarding (Example)

Consider

ż = x− x2u

ẋ = u.

Modify the input:

u = −x+ v

then

ż = x− x2(−x+ v) = (x+ x3) + (−x2)v = h(x) + ℓ(x)v

ẋ = −x+ v = f(x) + g(x)v.

Lyapunov function for ẋ = −x:

V (x) = 1
2
x2

PDE: (unknown M(x) with M(0) = 0, ℓ(0)−LgM(0) ̸= 0)

h(x) =
∂M(x)

∂x
f(x), i.e., x+ x3 =

∂M(x)

∂x
(−x).

Thus

M(x) = − 1
3
x3 − x, with ℓ(0)− LgM(0) = −1 ̸= 0

Therefore, a control Lyapunov function is given by

W (x, z) = 1
2
x2 + 1

2

(
z + x+ 1

3
x3
)2

.

Indeed,

Ẇ (x, z) = −x2 + xv +
(
z + x+ 1

3
x3
) (

ż + ẋ+ x2ẋ
)

= −x2 + xv +
(
z + x+ 1

3
x3
)

·
(
x+ x3 − x2v − x+ v − x3 + x2v

)
= −x2 + xv +

(
z + x+ 1

3
x3
)
v

= −x2 +
(
z + 2x+ 1

3
x3
)
v.

We choose the feedback stabilizer

v = −
(
z + 2x+ 1

3
x3
)

Hence, the control law in terms of u is given by:

u = −x+ v = −z − 3x+ 1
3
x3.
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Forwarding (Example, 2)
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Forwarding: Recursive Application

Consider

ż2 = h2(x, z1) + ℓ2(x, z1)u

ż1 = h1(x) + ℓ1(x)u

ẋ = f(x) + g(x)u

Note that
We have seen how to construct a CLF for (x, z1)

Once we have a CLF for the (x, z1) dynamics we can
relabel x as (x, z1) and z as z2 and apply the
forwarding procedure again
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Forwarding: Convergence Structure

Time derivative of the CLF W :

Ẇ (x, z) = LfV (x)

+ u (LgV (x) + (z −M(x)) (ℓ(x)− LgM(x)))

Feedback law (κ = 1):

u = − (LgV (x) + (z −M(x)) (ℓ(x)− LgM(x)))

In addition, assume that x = 0 is asymptotically
stable for ẋ = f(x) i.e., LfV (x) < 0 for all x ̸= 0
and u = 0.

u(x, z) = 0 is satisfied on the forwarding manifold{
(x, z) ∈ Rn+m : z = M(x) +

LgV (x)

ℓ(x)−LgM(x)

}
.

⇝ u thus drives the system to the forwarding manifold

⇝ LfV (x) < 0 for all x ̸= 0 guarantees convergence
to the origin (once (x, z) is close to the forwarding
manifold)

Recall
M(x) = − 1

3
x3 − x

v(x, z) = (−z + 2x+ 1
3
x3)

ż = x+ x3 − x2v, ẋ = −x+ v

The forwarding manifold is defined through
z = −2x− 1

3
x3
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Forwarding: Saturated Control

Maintain the assumption that the origin is asymptotically stable for ẋ = f(x).
Then, note that

u = −c · sat
(
1

c
(LgV (x) + (z −M(x)) (ℓ(x)− LgM(x)))

)
guarantees Ẇ (x, z) < 0, (x, z) ̸= 0, ∀ c > 0

guarantees Ẇ (x, z) < 0, (x, z) ̸= 0, for all values of c > 0.
Note that u ∈ [−c, c] and still guarantees asymptotic stability of the origin (under the assumption on f )

Example (Back to the example (c ∈ {1, 2}))
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Note that: v is bounded! However, u = −x+ v is not bounded!
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