Introduction to Nonlinear Control

Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett School of Engineering, Australian National University, Canberra, Australia

Part II:

Chapter 9: Control Lyapunov Functions 9.1 Control Affine Systems 9.2 ISS Redesign via L_gV Damping 9.3 Sontag's Universal Formula 9.4 Backstepping 9.5 Forwarding

Control Lyapunov Functions

P. Braun & C.M. Kellett (ANU)

Control Lyapunov Functions

Control Affine Systems

- 2 ISS Redesign via $L_g V$ Damping
- Sontag's Universal Formula

Backstepping

- Avoiding Cancellations
- Convergence Structure

5 Forwarding

Convergence Structure

Consider the nonlinear system

$$\dot{x} = f(x, u)$$

- $\bullet \ f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$
- state x and control input u
- Goal: Define a feedback control law u = k(x) which asymptotically stabilizes the origin.

Consider the nonlinear system

$$\dot{x} = f(x, u)$$

- $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$
- state x and control input u
- Goal: Define a feedback control law u = k(x) which asymptotically stabilizes the origin.

Control Lyapunov function: $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$

• In terms of a feedback law u = k(x),

 $\frac{d}{dt}V(x(t)) = \langle \nabla V(x), f(x, k(x)) \rangle < 0, \qquad \forall \ x \neq 0$

 $\rightsquigarrow V$ is a Lyapunov function for $\dot{x}=f(x,k(x))=\tilde{f}(x)$

• For each $x \neq 0$ we can find u such that

$$\frac{d}{dt}V(x(t)) = \langle \nabla V(x), f(x,u) \rangle < 0$$

Consider the nonlinear system

 $\dot{x} = f(x, u)$

- $\bullet \ f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$
- state x and control input u
- Goal: Define a feedback control law u = k(x) which asymptotically stabilizes the origin.

Control Lyapunov function: $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$

• In terms of a feedback law u = k(x),

 $\frac{d}{dt}V(x(t)) = \langle \nabla V(x), f(x,k(x))\rangle < 0, \qquad \forall \ x \neq 0$

 $\rightsquigarrow V$ is a Lyapunov function for $\dot{x}=f(x,k(x))=\tilde{f}(x)$

• For each $x \neq 0$ we can find u such that

 $\tfrac{d}{dt}V(x(t)) = \langle \nabla V(x), f(x,u)\rangle < 0$

Definition (Control Lyapunov function (CLF))

Consider the nonlinear system and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$. A continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is called control Lyapunov function for the system if

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|), \qquad \forall x \in \mathbb{R}^n,$

and for all $x \in \mathbb{R}^n \setminus \{0\}$ there exists $u \in \mathbb{R}^m$ such that

 $\langle \nabla V(x), f(x,u) \rangle < 0.$

Section 1

Control Affine Systems

Control affine systems

$$\dot{x} = f(x) + g(x)u$$

Assumptions:

- for simplicity we focus on $u \in \mathbb{R}$
- $f, g: \mathbb{R}^n \to \mathbb{R}^n$ (locally Lipschitz)
- f(0) = 0 without loss of generality

Control affine systems

 $\dot{x} = f(x) + g(x)u$

Assumptions:

- for simplicity we focus on $u \in \mathbb{R}$
- $f, g: \mathbb{R}^n \to \mathbb{R}^n$ (locally Lipschitz)
- f(0) = 0 without loss of generality

Lie derivative notation

$$\langle \nabla V(x), f(x) \rangle = L_f V(x)$$

Definition (Control Lyapunov function (CLF))

Consider the nonlinear system $\dot{x} = f(x, u)$ and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$. A continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is called control Lyapunov function for the $\dot{x} = f(x, u)$ if

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|), \quad \forall x \in \mathbb{R}^n,$

and for all $x \in \mathbb{R}^n \setminus \{0\}$ there exists $u \in \mathbb{R}^m$ such that

 $\langle \nabla V(x), f(x,u) \rangle < 0.$

Control affine systems

 $\dot{x} = f(x) + g(x)u$

Assumptions:

- for simplicity we focus on $u \in \mathbb{R}$
- $f, g: \mathbb{R}^n \to \mathbb{R}^n$ (locally Lipschitz)
- f(0) = 0 without loss of generality Lie derivative notation

 $\langle \nabla V(x), f(x) \rangle = L_f V(x)$

It holds that: ($a_1, a_2 \in \mathbb{R}$, $v, v_1, v_2 \in \mathbb{R}^n$)

 $\langle v, a_1v_1 + a_2v_2 \rangle = a_1 \langle v, v_1 \rangle + a_2 \langle v, v_2 \rangle.$

The decrease condition:

$$\begin{split} \dot{V}(x) &= \langle \nabla V(x), f(x) + g(x)u \rangle \\ &= L_f V(x) + L_g V(x)u < 0, \quad \forall \ x \neq 0. \end{split}$$

Definition (Control Lyapunov function (CLF))

Consider the nonlinear system $\dot{x} = f(x, u)$ and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$. A continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is called control Lyapunov function for the $\dot{x} = f(x, u)$ if

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|), \quad \forall x \in \mathbb{R}^n,$

and for all $x \in \mathbb{R}^n \setminus \{0\}$ there exists $u \in \mathbb{R}^m$ such that

 $\langle \nabla V(x), f(x, u) \rangle < 0.$

Control affine systems

 $\dot{x} = f(x) + g(x)u$

Assumptions:

- for simplicity we focus on $u \in \mathbb{R}$
- $f, g: \mathbb{R}^n \to \mathbb{R}^n$ (locally Lipschitz)
- f(0) = 0 without loss of generality Lie derivative notation

 $\langle \nabla V(x), f(x) \rangle = L_f V(x)$

It holds that: ($a_1, a_2 \in \mathbb{R}$, $v, v_1, v_2 \in \mathbb{R}^n$)

 $\langle v, a_1v_1 + a_2v_2 \rangle = a_1 \langle v, v_1 \rangle + a_2 \langle v, v_2 \rangle.$

The decrease condition:

$$\begin{split} \dot{V}(x) &= \langle \nabla V(x), f(x) + g(x) u \rangle \\ &= L_f V(x) + L_g V(x) u < 0, \quad \forall \ x \neq 0. \end{split}$$

Definition (Control Lyapunov function (CLF))

Consider the nonlinear system $\dot{x} = f(x, u)$ and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$. A continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is called control Lyapunov function for the $\dot{x} = f(x, u)$ if

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|), \qquad \forall x \in \mathbb{R}^n,$

and for all $x \in \mathbb{R}^n \setminus \{0\}$ there exists $u \in \mathbb{R}^m$ such that

 $\langle \nabla V(x), f(x,u) \rangle < 0.$

The decrease condition for control affine systems:

 $L_f V(x) < 0 \quad \forall \ x \in \mathbb{R}^n \setminus \{0\}$ such that $L_g V(x) = 0$

In other words

- If $L_g V(x) = 0$ (i.e., we have no control authority)
- then $L_f V(x) < 0$ needs to be satisfied

Section 2

ISS Redesign via $L_g V$ Damping

Question:

What about robustness of asymptotically stabilizing feedback laws?

Question:

• What about robustness of asymptotically stabilizing feedback laws?

We begin with an example:

$$\dot{x} = x + (x^2 + 1)u.$$

One possible feedback stabilizer is given by

$$u = k(x) = -\frac{2x}{x^2 + 1}$$

which results in the closed-loop system $\dot{x} = -x$.

Question:

• What about robustness of asymptotically stabilizing feedback laws?

We begin with an example:

$$\dot{x} = x + (x^2 + 1)u.$$

One possible feedback stabilizer is given by

$$u = k(x) = -\frac{2x}{x^2 + 1}$$

which results in the closed-loop system $\dot{x} = -x$.

• Feedback law subject to disturbances

$$u = k(x) + w$$

• Closed-loop system:

$$\dot{x} = -x + (x^2 + 1)w.$$

 \rightsquigarrow The system is not ISS (and admits finite escape time for w(t) = 1 for all $t \ge 0$, for example)

Question:

• What about robustness of asymptotically stabilizing feedback laws?

We begin with an example:

$$\dot{x} = x + (x^2 + 1)u.$$

One possible feedback stabilizer is given by

$$u = k(x) = -\frac{2x}{x^2 + 1}$$

which results in the closed-loop system $\dot{x} = -x$.

• Feedback law subject to disturbances

$$u = k(x) + w$$

• Closed-loop system:

$$\dot{x} = -x + (x^2 + 1)w.$$

- The system is not ISS (and admits finite escape time for w(t) = 1 for all $t \ge 0$, for example)
- Suppose V(x) is a Lyapunov function for w = 0 so that V satisfies

$$\dot{V}(x) = L_f V(x) + L_g V(x) k(x).$$

• Candidate ISS-Lyapunov function V would satisfy

 $\dot{V}(x) = L_f V(x) + L_g V(x) k(x) + L_g V(x) w$ $\leq L_f V(x) + L_g V(x) k(x) + \frac{1}{2} (L_g V(x))^2 + \frac{1}{2} w^2$

• If the controller has an additional term of the form $-L_g V(x)$, this dominates $\frac{1}{2} (L_g V(x))^2$ $\rightsquigarrow V(x)$ is an ISS-Lyapunov function.

Question:

• What about robustness of asymptotically stabilizing feedback laws?

We begin with an example:

$$\dot{x} = x + (x^2 + 1)u.$$

One possible feedback stabilizer is given by

$$u = k(x) = -\frac{2x}{x^2 + 1}$$

which results in the closed-loop system $\dot{x} = -x$.

Back to the example:

• Take
$$V_1(x) = \frac{1}{2}x^2$$
 and augment controller:

$$u = k_1(x) = k(x) - L_g V_1(x) = -\frac{2x}{x^2 + 1} - x(x^2 + 1)$$

Question:

• What about robustness of asymptotically stabilizing feedback laws?

We begin with an example:

$$\dot{x} = x + (x^2 + 1)u.$$

One possible feedback stabilizer is given by

$$u = k(x) = -\frac{2x}{x^2 + 1}$$

which results in the closed-loop system $\dot{x} = -x$.

Back to the example:

• Take $V_1(x) = \frac{1}{2}x^2$ and augment controller:

$$u = k_1(x) = k(x) - L_g V_1(x) = -\frac{2x}{x^2 + 1} - x(x^2 + 1)$$

• The closed-loop system with disturbance:

$$\dot{x} = -x - x(x^2 + 1)^2 + (x^2 + 1)w \doteq f_1(x, w).$$

• The new closed-loop system is ISS: $\langle \nabla V_1(x), f_1(x, w) \rangle = -x^2 - x^2 (x^2 + 1)^2 + x(x^2 + 1)w$ $\leq -x^2 - \frac{1}{2}x^2(x^2 + 1)^2 + \frac{1}{2}w^2$

• Consider

$$\dot{x} = f(x) + g(x)k(x), \qquad u = k(x)$$

(with asymptotically stable origin, i.e., stabilizing feedback u = k(x))

 $\bullet~$ Corresponding Lyapunov function $V:\mathbb{R}^n\to\mathbb{R}_{\geq 0}$ so that

$$L_f V(x) + L_g V(x) k(x) \le -\alpha(|x|)$$

where $\alpha \in \mathcal{K}_{\infty}$.

• Define the augmented feedback

$$u = k(x) - L_g V(x)$$

• Then, the system

$$\dot{x} = f(x) + g(x) (k(x) - L_g V(x)) + g(x)w$$

is ISS.

Consider

$$\dot{x} = f(x) + g(x)k(x), \qquad u = k(x)$$

(with asymptotically stable origin, i.e., stabilizing feedback u = k(x))

• Corresponding Lyapunov function $V:\mathbb{R}^n\to\mathbb{R}_{\geq 0}$ so that

$$L_f V(x) + L_g V(x) k(x) \le -\alpha(|x|)$$

where $\alpha \in \mathcal{K}_{\infty}$.

• Define the augmented feedback

$$u = k(x) - L_g V(x)$$

• Then, the system

$$\dot{x} = f(x) + g(x) (k(x) - L_g V(x)) + g(x)w$$

is ISS.

• Indeed, V is an ISS-Lyapunov function:

$$\begin{split} \langle \nabla V(x), f(x) + g(x) \left(k(x) - L_g V(x) \right) + g(x) w \rangle \\ &= L_f V(x) + L_g V(x) k(x) - (L_g V(x))^2 + L_g V(x) w \\ &\leq L_f V(x) + L_g V(x) k(x) - \frac{1}{2} \left(L_g V(x) \right)^2 + \frac{1}{2} w^2 \\ &\leq -\alpha(|x|) + \frac{1}{2} w^2. \end{split}$$

Note that: The method is also known as

- onlinear damping
- Jurdjevic-Quinn controller.

Section 3

Sontag's Universal Formula

Consider a control affine system ($u \in \mathbb{R}$)

 $\dot{x} = f(x) + g(x)u$

with corresponding CLF V, i.e.,

$$L_f V(x) < 0 \quad \forall \ x \in \mathbb{R}^n \setminus \{0\}$$
 such that $L_g V(x) = 0$

Then, for $\kappa>0$ define the feedback law

$$k(x) = \begin{cases} -\left(\kappa + \frac{L_f V(x) + \sqrt{L_f V(x)^2 + L_g V(x)^4}}{L_g V(x)^2}\right) L_g V(x), & L_g V(x) \neq 0\\ 0, & L_g V(x) = 0 \end{cases}$$

Consider a control affine system ($u \in \mathbb{R}$)

 $\dot{x} = f(x) + g(x)u$

with corresponding CLF V, i.e.,

$$L_f V(x) < 0 \quad \forall \ x \in \mathbb{R}^n \setminus \{0\}$$
 such that $L_g V(x) = 0$

Then, for $\kappa > 0$ define the feedback law

$$k(x) = \begin{cases} -\left(\kappa + \frac{L_f V(x) + \sqrt{L_f V(x)^2 + L_g V(x)^4}}{L_g V(x)^2}\right) L_g V(x), & L_g V(x) \neq 0\\ 0, & L_g V(x) = 0 \end{cases}$$

The feedback law

- asymptotically stabilizes the origin
- inherits the regularity properties of the CLF except at the origin
- is continuous at the origin if the CLF satisfies a small control property (i.e., |k(x)| → 0 for |x| → 0)

Consider a control affine system ($u \in \mathbb{R}$)

 $\dot{x} = f(x) + g(x)u$

with corresponding CLF V, i.e.,

$$L_f V(x) < 0 \quad \forall \ x \in \mathbb{R}^n \setminus \{0\}$$
 such that $L_g V(x) = 0$

Then, for $\kappa>0$ define the feedback law

$$k(x) = \begin{cases} -\left(\kappa + \frac{L_f V(x) + \sqrt{L_f V(x)^2 + L_g V(x)^4}}{L_g V(x)^2}\right) L_g V(x), & L_g V(x) \neq 0\\ 0, & L_g V(x) = 0 \end{cases}$$

Sketch of the proof: For $\kappa = 0$ it holds that

$$\begin{split} \dot{V}(x) &= L_f V(x) + L_g V(x) k(x) \\ &= L_f V(x) - L_g V(x) \left(\frac{L_f V(x) + \sqrt{L_f V(x)^2 + L_g V(x)^4}}{L_g V(x)^2} \right) L_g V(x) \\ &= L_f V(x) - L_f V(x) - \sqrt{L_f V(x)^2 + L_g V(x)^4} = -\sqrt{L_f V(x)^2 + L_g V(x)^4} \end{split}$$

 $\kappa>0$ adds a term $-\kappa (L_gV(x))^2,$ as in the ISS redesign \leadsto closed-loop system is ISS

P. Braun & C.M. Kellett (ANU)

The feedback law

- asymptotically stabilizes the origin
- inherits the regularity properties of the CLF except at the origin
- is continuous at the origin if the CLF satisfies a small control property (i.e., $|k(x)| \rightarrow 0$ for $|x| \rightarrow 0$)

Consider a control affine system ($u \in \mathbb{R}$)

 $\dot{x} = f(x) + g(x)u$

with corresponding CLF V, i.e.,

$$L_f V(x) < 0 \quad \forall \ x \in \mathbb{R}^n \setminus \{0\}$$
 such that $L_g V(x) = 0$

Then, for $\kappa>0$ define the feedback law

$$k(x) = \begin{cases} -\left(\kappa + \frac{L_f V(x) + \sqrt{L_f V(x)^2 + L_g V(x)^4}}{L_g V(x)^2}\right) L_g V(x), & L_g V(x) \neq 0\\ 0, & L_g V(x) = 0 \end{cases}$$

Sketch of the proof: For $\kappa = 0$ it holds that

$$\begin{split} \dot{V}(x) &= L_f V(x) + L_g V(x) k(x) \\ &= L_f V(x) - L_g V(x) \left(\frac{L_f V(x) + \sqrt{L_f V(x)^2 + L_g V(x)^4}}{L_g V(x)^2} \right) L_g V(x) \\ &= L_f V(x) - L_f V(x) - \sqrt{L_f V(x)^2 + L_g V(x)^4} = -\sqrt{L_f V(x)^2 + L_g V(x)^4}. \end{split}$$

 $\kappa>0$ adds a term $-\kappa (L_gV(x))^2,$ as in the ISS redesign \rightsquigarrow closed-loop system is ISS

P. Braun & C.M. Kellett (ANU)

ntroduction to Nonlinear Control

The feedback law

- asymptotically stabilizes the origin
- inherits the regularity properties of the CLF except at the origin
- is continuous at the origin if the CLF satisfies a small control property (i.e., $|k(x)| \rightarrow 0$ for $|x| \rightarrow 0$)

Note that: Formula known as

- Universal formula
- Sontag's formula

(Derived by Eduardo Sontag)

Section 4

Backstepping

Backstepping (How to find CLFs?)

Systems in strict feedback form:

$$\dot{x} = x^3 + x\xi$$
$$\dot{\xi} = u.$$

Backstepping (How to find CLFs?)

Systems in strict feedback form:

 $\dot{x}_{1} = f_{1}(x_{1}, x_{2})$ $\dot{x}_{2} = f_{2}(x_{1}, x_{2}, x_{3})$ \vdots $\dot{x}_{n-1} = f_{n-1}(x_{1}, x_{2}, \dots, x_{n-1}, x_{n})$ $\dot{x}_{n} = f_{n}(x_{1}, x_{2}, \dots, x_{n}, u).$ Backstepping idea (based on an example):

$$\dot{x} = x^3 + x\xi$$
$$\dot{\xi} = u.$$

Step 1: Define Virtual Control. Suppose that ξ is a control input for the *x*-subsystem (i.e., ξ as a virtual control for *x*)

 $\dot{x}_1 = f_1(x_1, x_2)$ $\dot{x}_2 = f_2(x_1, x_2, x_3)$

 $\dot{x}_{n-1} = f_{n-1}(x_1, x_2, \dots, x_{n-1}, x_n)$ $\dot{x}_n = f_n(x_1, x_2, \dots, x_n, u).$

Backstepping idea (based on an example):

$$\dot{x} = x^3 + x\xi$$
$$\dot{\xi} = u.$$

Step 1: Define Virtual Control. Suppose that ξ is a control input for the *x*-subsystem (i.e., ξ as a virtual control for *x*)

- Define stabilizer: $\xi = k(x) = -2x^2$
- Which would satisfy: $\dot{x} = x^3 2x^3 = -x^3$
- Simple Lyapunov function: $V(x) = \frac{1}{2}x^2$

 $\dot{x}_1 = f_1(x_1, x_2)$ $\dot{x}_2 = f_2(x_1, x_2, x_3)$

 $\dot{x}_n = f_n(x_1, x_2, \dots, x_n, u).$ Backstepping idea (based on an example):

 $\dot{x}_{n-1} = f_{n-1}(x_1, x_2, \dots, x_{n-1}, x_n)$

$$\dot{x} = x^3 + x\xi$$
$$\dot{\xi} = u.$$

Step 1: Define Virtual Control. Suppose that ξ is a control input for the *x*-subsystem (i.e., ξ as a virtual control for *x*)

- Define stabilizer: $\xi = k(x) = -2x^2$
- Which would satisfy: $\dot{x} = x^3 2x^3 = -x^3$
- Simple Lyapunov function: $V(x) = \frac{1}{2}x^2$
- Actually the *x*-dynamics satisfy:

$$\dot{x} = x^3 + xk(x) - xk(x) + x\xi = -x^3 + x(\xi + 2x^2).$$

 $\dot{x}_1 = f_1(x_1, x_2)$ $\dot{x}_2 = f_2(x_1, x_2, x_3)$ \vdots $\dot{x}_{n-1} = f_{n-1}(x_1, x_2, \dots, x_{n-1}, x_n)$ $\dot{x}_n = f_n(x_1, x_2, \dots, x_n, u).$

Backstepping idea (based on an example):

$$\dot{x} = x^3 + x\xi$$
$$\dot{\xi} = u.$$

Step 1: Define Virtual Control. Suppose that ξ is a control input for the *x*-subsystem (i.e., ξ as a virtual control for *x*)

- Define stabilizer: $\xi = k(x) = -2x^2$
- Which would satisfy: $\dot{x} = x^3 2x^3 = -x^3$
- Simple Lyapunov function: $V(x) = \frac{1}{2}x^2$
- Actually the *x*-dynamics satisfy:

$$\dot{x} = x^3 + xk(x) - xk(x) + x\xi = -x^3 + x(\xi + 2x^2).$$

Step 2: Define an Error Variable.

- Of course ξ is a state
- Idea: Drive (error) $z = \xi k(x) = \xi + 2x^2$ to zero

 $\dot{x}_1 = f_1(x_1, x_2)$ $\dot{x}_2 = f_2(x_1, x_2, x_3)$ \vdots $\dot{x}_{n-1} = f_{n-1}(x_1, x_2, \dots, x_{n-1}, x_n)$

 $\dot{x}_n = f_n(x_1, x_2, \dots, x_n, u).$ Backstepping idea (based on an example):

$$\dot{x} = x^3 + x\xi$$
$$\dot{\xi} = u.$$

Step 1: Define Virtual Control. Suppose that ξ is a control input for the *x*-subsystem (i.e., ξ as a virtual control for *x*)

- Define stabilizer: $\xi = k(x) = -2x^2$
- Which would satisfy: $\dot{x} = x^3 2x^3 = -x^3$
- Simple Lyapunov function: $V(x) = \frac{1}{2}x^2$
- Actually the *x*-dynamics satisfy:

 $\dot{x} = x^3 + xk(x) - xk(x) + x\xi = -x^3 + x(\xi + 2x^2).$

Step 2: Define an Error Variable.

- Of course ξ is a state
- Idea: Drive (error) $z = \xi k(x) = \xi + 2x^2$ to zero
- We calculate

$$\dot{z} = \dot{\xi} - \dot{k(x)} = u - \frac{\partial}{\partial x}k(x)\dot{x} = u + 4x(x^3 + x\xi)$$
$$= u + 4x(-x^3 + xz) = u - 4x^4 + 4x^2z$$

 $\dot{x}_1 = f_1(x_1, x_2)$ $\dot{x}_2 = f_2(x_1, x_2, x_3)$ \vdots

$$\dot{x}_{n-1} = f_{n-1}(x_1, x_2, \dots, x_{n-1}, x_n)$$
$$\dot{x}_n = f_n(x_1, x_2, \dots, x_n, u).$$

Backstepping idea (based on an example):

$$\dot{x} = x^3 + x\xi$$
$$\dot{\xi} = u.$$

Step 1: Define Virtual Control. Suppose that ξ is a control input for the *x*-subsystem (i.e., ξ as a virtual control for *x*)

- Define stabilizer: $\xi = k(x) = -2x^2$
- Which would satisfy: $\dot{x} = x^3 2x^3 = -x^3$
- Simple Lyapunov function: $V(x) = \frac{1}{2}x^2$
- Actually the *x*-dynamics satisfy:

$$\dot{x} = x^3 + xk(x) - xk(x) + x\xi = -x^3 + x(\xi + 2x^2).$$

Step 2: Define an Error Variable.

- Of course ξ is a state
- Idea: Drive (error) $z = \xi k(x) = \xi + 2x^2$ to zero
- We calculate

$$\dot{z} = \dot{\xi} - \overbrace{k(x)}^{\cdot} = u - \frac{\partial}{\partial x}k(x)\dot{x} = u + 4x(x^3 + x\xi)$$
$$= u + 4x(-x^3 + xz) = u - 4x^4 + 4x^2z$$

• System in (*x*, *z*) coordinates:

$$\dot{x} = -x^3 + xz$$
$$\dot{z} = u - 4x^4 + 4x^2z$$

Backstepping idea (based on an example):

$$\dot{x} = x^3 + x\xi$$
$$\dot{\xi} = u.$$

Step 1: Define Virtual Control. Suppose that ξ is a control input for the *x*-subsystem (i.e., ξ as a virtual control for *x*)

- Define stabilizer: $\xi = k(x) = -2x^2$
- Which would satisfy: $\dot{x} = x^3 2x^3 = -x^3$
- Simple Lyapunov function: $V(x) = \frac{1}{2}x^2$
- Actually the *x*-dynamics satisfy:

$$\dot{x} = x^3 + xk(x) - xk(x) + x\xi = -x^3 + x(\xi + 2x^2).$$

Step 3: Construct a Control Lyapunov Function.

$$V_a(x,z) = V(x) + \frac{1}{2}z^2 = \frac{1}{2}x^2 + \frac{1}{2}z^2.$$

It holds that

$$\dot{V}_a(x,z) = -x^4 + x^2 z + z(u - 4x^4 + 4x^2 z)$$

= $-x^4 + z(u + x^2 - 4x^4 + 4x^2 z).$

 \leadsto The derivative is negative for u appropriate

Step 2: Define an Error Variable.

- Of course ξ is a state
- Idea: Drive (error) $z = \xi k(x) = \xi + 2x^2$ to zero
- We calculate

$$\dot{z} = \dot{\xi} - \overbrace{k(x)}^{\cdot} = u - \frac{\partial}{\partial x}k(x)\dot{x} = u + 4x(x^3 + x\xi)$$
$$= u + 4x(-x^3 + xz) = u - 4x^4 + 4x^2z$$

• System in (x, z) coordinates:

$$\dot{x} = -x^3 + xz$$
$$\dot{z} = u - 4x^4 + 4x^2z$$

Backstepping idea (based on an example):

$$\dot{x} = x^3 + x\xi$$
$$\dot{\xi} = u.$$

Step 1: Define Virtual Control. Suppose that ξ is a control input for the *x*-subsystem (i.e., ξ as a virtual control for *x*)

- Define stabilizer: $\xi = k(x) = -2x^2$
- Which would satisfy: $\dot{x} = x^3 2x^3 = -x^3$
- Simple Lyapunov function: $V(x) = \frac{1}{2}x^2$
- Actually the *x*-dynamics satisfy:

$$\dot{x} = x^3 + xk(x) - xk(x) + x\xi = -x^3 + x(\xi + 2x^2).$$

Step 3: Construct a Control Lyapunov Function.

$$V_a(x,z) = V(x) + \frac{1}{2}z^2 = \frac{1}{2}x^2 + \frac{1}{2}z^2.$$

It holds that

$$\dot{V}_a(x,z) = -x^4 + x^2 z + z(u - 4x^4 + 4x^2 z)$$

= $-x^4 + z(u + x^2 - 4x^4 + 4x^2 z).$

 \rightsquigarrow The derivative is negative for u appropriate

Step 2: Define an Error Variable.

- Of course ξ is a state
- Idea: Drive (error) $z = \xi k(x) = \xi + 2x^2$ to zero
- We calculate

$$\dot{z} = \dot{\xi} - \overbrace{k(x)}^{\cdot} = u - \frac{\partial}{\partial x}k(x)\dot{x} = u + 4x(x^3 + x\xi)$$
$$= u + 4x(-x^3 + xz) = u - 4x^4 + 4x^2z$$

• System in (x, z) coordinates:

$$\dot{x} = -x^3 + xz$$
$$\dot{z} = u - 4x^4 + 4x^2z$$

Step 4: Construct a feedback stabilizer. Define (for example)

$$u = k_1(x, z) = -x^2 + 4x^4 - 4x^2z - z$$

then

$$\dot{V}_a(x,z) = -x^4 - z^2$$

In the original variables:

$$u = -x^{2} + 4x^{4} - 4x^{2}(\xi + 2x^{2}) - (\xi + 2x^{2})$$

Backstepping (How to find CLFs?) (3)

Backstepping idea (based on an example):

$$\dot{x} = x^3 + x\xi = -x^3 + x(\xi + 2x^2)$$

 $\dot{\xi} = u.$

Introduce error dynamics

$$z = \xi - k(x) = \xi + 2x^2$$

System in (x, z) coordinates:

$$\dot{x} = -x^3 + xz$$
$$\dot{z} = u - 4x^4 + 4x^2z$$

In the original variables:

$$u = -x^{2} + 4x^{4} - 4x^{2}z - z$$

= $-x^{2} + 4x^{4} - 4x^{2}(\xi + 2x^{2}) - (\xi + 2x^{2})$

Backstepping (How to find CLFs?) (4)

System in strict feedback form:

$$\dot{x}_1 = f_1(x_1, x_2)$$

$$\dot{x}_2 = f_2(x_1, x_2, x_3)$$

$$\vdots$$

$$\dot{x}_{n-1} = f_{n-1}(x_1, x_2, \dots, x_{n-1}, x_n)$$

$$\dot{x}_n = f_n(x_1, x_2, \dots, x_n, u).$$

Error dynamics

$$\begin{bmatrix} \dot{z}_0 \\ \dot{z}_1 \\ \vdots \\ \dot{z}_i \end{bmatrix} = \begin{bmatrix} \tilde{f}_1(z_0, k_1(z_0)) \\ \tilde{f}_2(z_0, z_1, k_2(z_0, z_1)) \\ \vdots \\ \tilde{f}_{i+1}(z_0, z_1, \dots, z_{i-1}, x_{i+1}) \end{bmatrix}$$
for $i = 1, \dots, n$, is used.

Input: Define $z_0 = x_1$, $x_{n+1} = u$, $\tilde{f}_1 = f_1$ and, $V_0 = 0$. **Output:** Stabilizing feedback law u. **For** i = 1, 2, ..., n

Oconsider error dynamics & virtual control $x_{i+1} = k_i(z_0, ..., z_{i-1})$

② Define k_i in such a way that the origin of the error dynamics is asymptotically stable and define $\tilde{V}_i(z_0, \ldots, z_{i-1})$ so that

$$V_i(z_0,\ldots,z_{i-1}) \doteq V_{i-1}(z_0,\ldots,z_{i-2}) + \tilde{V}_i(z_0,\ldots,z_{i-1})$$

is a Lyapunov function.

If $i \neq n$, define the error dynamics $z_i = x_{i+1} - k_i(z_0, \dots, z_{i-1})$ with

$$\begin{aligned} \dot{z}_i &= \dot{x}_{i+1} - \frac{d}{dt} k_i(z_0, \dots, z_{i-1}) \\ &= f_{i+1}(x_1, \dots, x_{i+1}) - \frac{d}{dt} k_i(z_0, \dots, z_{i-1}) \\ &= \tilde{f}_{i+1}(z_0, \dots, z_{i-1}, x_{i+1}). \end{aligned}$$

④ If i = n return the input

$$u(x_1,\ldots,x_n)\doteq k_n(z_0,\ldots,z_{n-1})$$

and the CLF
$$V(x_1, \ldots, x_n) \doteq V_n(z_0, \ldots, z_{n-1}).$$

Consider:

$$\dot{x} = f(x) + g(x)\xi$$

 $\dot{\xi} = u.$

Virtual stabilizing feedback $\xi = k(x)$ & error variable $z = \xi - k(x)$:

$$\begin{split} \dot{x} &= f(x) + g(x)k(x) + g(x)z\\ \dot{z} &= u - \frac{\partial}{\partial x}k(x)\dot{x}. \end{split}$$

Feedback derived on previous slides :

$$\begin{split} u(x,z)&=-L_gV(x)+\tfrac{\partial}{\partial x}k(x)\left(f(x)+g(x)(k(x)+z)\right)-z\\ (\text{Based on }V_a(x,z)&=V(x)+\tfrac{1}{2}z^2) \end{split}$$

Consider:

$$\dot{x} = f(x) + g(x)\xi$$

 $\dot{\xi} = u.$

Virtual stabilizing feedback $\xi = k(x)$ & error variable $z = \xi - k(x)$:

$$\begin{split} \dot{x} &= f(x) + g(x)k(x) + g(x)z\\ \dot{z} &= u - \frac{\partial}{\partial x}k(x)\dot{x}. \end{split}$$

Feedback derived on previous slides :

$$\begin{split} u(x,z) &= -L_g V(x) + \frac{\partial}{\partial x} k(x) \left(f(x) + g(x)(k(x)+z)\right) - z \\ (\text{Based on } V_a(x,z) &= V(x) + \frac{1}{2} z^2) \end{split}$$

Instead, consider

$$V_a(x,z) = V(x) + \frac{1}{2}z^2 + W(x)$$

where W(x) satisfies

$$\begin{split} L_{f}W(x) + L_{g}W(x)k(x) < 0 \quad \forall x \neq 0 \\ \langle \nabla W(x), g(x) \rangle &= \left. \frac{\partial}{\partial x}k(x)\dot{x} \right|_{z=0} = \left. \frac{\partial}{\partial x}k(x)(f(x) + g(x)k(x)) \right. \end{split}$$

Consider:

$$\begin{split} \dot{x} &= f(x) + g(x)\xi \\ \dot{\xi} &= u. \end{split}$$

Virtual stabilizing feedback $\xi = k(x)$ & error variable $z = \xi - k(x)$:

$$\begin{split} \dot{x} &= f(x) + g(x)k(x) + g(x)z\\ \dot{z} &= u - \frac{\partial}{\partial x}k(x)\dot{x}. \end{split}$$

Feedback derived on previous slides :

$$\begin{split} u(x,z) &= -L_g V(x) + \frac{\partial}{\partial x} k(x) \left(f(x) + g(x)(k(x) + z)\right) - z \\ (\text{Based on } V_a(x,z) &= V(x) + \frac{1}{2} z^2) \end{split}$$

Instead, consider

$$V_a(x,z) = V(x) + \frac{1}{2}z^2 + W(x)$$

where W(x) satisfies

$$\begin{split} L_{f}W(x) + L_{g}W(x)k(x) &< 0 \quad \forall x \neq 0 \\ \langle \nabla W(x), g(x) \rangle &= \left. \frac{\partial}{\partial x}k(x)\dot{x} \right|_{z=0} = \frac{\partial}{\partial x}k(x)(f(x) + g(x)k(x)) \end{split}$$

Time derivative:

$$\begin{split} \dot{V}_a(x,z) &= L_f V(x) + L_g V(x) k(x) + L_g V(x) z + L_f W(x) \\ &+ L_g W(x) k(x) + L_g W(x) z + z \left(u - \frac{\partial k}{\partial x}(x) \dot{x} \right) \\ &= L_f V(x) + L_g V(x) k(x) + L_f W(x) + L_g W(x) k(x) \\ &+ z \left(u + L_g V - \frac{\partial k}{\partial x} \left(f(x) + g(x) k(x) - g(x) z \right) + L_g W \right) \\ &= L_f V + L_g V k(x) + L_f W + L_g W k(x) + z \left(u + L_g V \\ &+ \frac{\partial k}{\partial x} g(x) z - \frac{\partial k}{\partial x} \left(f(x) + g(x) k(x) \right) + L_g W \right). \end{split}$$

Cancelling

$$\dot{V}_a(x,z) = L_f V + L_g V k(x) + L_f W + L_g W k(x)$$
$$+ z \left(u + L_g V + \frac{\partial k}{\partial x} g(x) z \right)$$

Consider:

$$\begin{split} \dot{x} &= f(x) + g(x)\xi \\ \dot{\xi} &= u. \end{split}$$

Virtual stabilizing feedback $\xi=k(x)$ & error variable $z=\xi-k(x)$:

$$\begin{split} \dot{x} &= f(x) + g(x)k(x) + g(x)z\\ \dot{z} &= u - \frac{\partial}{\partial x}k(x)\dot{x}. \end{split}$$

Feedback derived on previous slides :

$$\begin{split} u(x,z) &= -L_g V(x) + \frac{\partial}{\partial x} k(x) \left(f(x) + g(x)(k(x) + z)\right) - z \\ (\text{Based on } V_a(x,z) &= V(x) + \frac{1}{2} z^2) \end{split}$$

Instead, consider

$$V_a(x,z) = V(x) + \frac{1}{2}z^2 + W(x)$$

where W(x) satisfies

$$\begin{split} L_{f}W(x) + L_{g}W(x)k(x) &< 0 \quad \forall x \neq 0 \\ \langle \nabla W(x), g(x) \rangle &= \left. \frac{\partial}{\partial x}k(x)\dot{x} \right|_{z=0} = \left. \frac{\partial}{\partial x}k(x)(f(x) + g(x)k(x)) \right. \end{split}$$

Time derivative:

$$\begin{split} \dot{V}_a(x,z) &= L_f V(x) + L_g V(x) k(x) + L_g V(x) z + L_f W(x) \\ &+ L_g W(x) k(x) + L_g W(x) z + z \left(u - \frac{\partial k}{\partial x}(x) \dot{x} \right) \\ &= L_f V(x) + L_g V(x) k(x) + L_f W(x) + L_g W(x) k(x) \\ &+ z \left(u + L_g V - \frac{\partial k}{\partial x} \left(f(x) + g(x) k(x) - g(x) z \right) + L_g W \right) \\ &= L_f V + L_g V k(x) + L_f W + L_g W k(x) + z \left(u + L_g V \\ &+ \frac{\partial k}{\partial x} g(x) z - \frac{\partial k}{\partial x} \left(f(x) + g(x) k(x) \right) + L_g W \right). \end{split}$$

Cancelling

$$\begin{split} \dot{V}_a(x,z) &= L_f V + L_g V k(x) + L_f W + L_g W k(x) \\ &+ z \left(u + L_g V + \frac{\partial k}{\partial x} g(x) z \right) \end{split}$$

Feedback stabilizer

$$u(x,z) = -L_g V(x) - \frac{\partial k}{\partial x}(x)g(x)z - z$$

Consider:

$$\begin{split} \dot{x} &= f(x) + g(x)\xi \\ \dot{\xi} &= u. \end{split}$$

Virtual stabilizing feedback $\xi = k(x)$ & error variable $z = \xi - k(x)$:

$$\begin{split} \dot{x} &= f(x) + g(x)k(x) + g(x)z\\ \dot{z} &= u - \frac{\partial}{\partial x}k(x)\dot{x}. \end{split}$$

Feedback derived on previous slides :

$$\begin{split} u(x,z) &= -L_g V(x) + \frac{\partial}{\partial x} k(x) \left(f(x) + g(x)(k(x) + z)\right) - z \\ (\text{Based on } V_a(x,z) &= V(x) + \frac{1}{2} z^2) \end{split}$$

Instead, consider

$$V_a(x,z) = V(x) + \frac{1}{2}z^2 + W(x)$$

where W(x) satisfies

$$\begin{split} L_{f}W(x) + L_{g}W(x)k(x) &< 0 \quad \forall x \neq 0 \\ \langle \nabla W(x), g(x) \rangle &= \left. \frac{\partial}{\partial x}k(x)\dot{x} \right|_{z=0} = \frac{\partial}{\partial x}k(x)(f(x) + g(x)k(x)) \end{split}$$

Time derivative:

$$\begin{split} \dot{V}_a(x,z) &= L_f V(x) + L_g V(x) k(x) + L_g V(x) z + L_f W(x) \\ &+ L_g W(x) k(x) + L_g W(x) z + z \left(u - \frac{\partial k}{\partial x}(x) \dot{x} \right) \\ &= L_f V(x) + L_g V(x) k(x) + L_f W(x) + L_g W(x) k(x) \\ &+ z \left(u + L_g V - \frac{\partial k}{\partial x} \left(f(x) + g(x) k(x) - g(x) z \right) + L_g W \right) \\ &= L_f V + L_g V k(x) + L_f W + L_g W k(x) + z \left(u + L_g V \\ &+ \frac{\partial k}{\partial x} g(x) z - \frac{\partial k}{\partial x} \left(f(x) + g(x) k(x) \right) + L_g W \right). \end{split}$$

Cancelling

$$\dot{V}_a(x,z) = L_f V + L_g V k(x) + L_f W + L_g W k(x)$$

 $+ z \left(u + L_g V + \frac{\partial k}{\partial x} g(x) z \right)$

Feedback stabilizer

$$u(x,z) = -L_g V(x) - \frac{\partial k}{\partial x}(x)g(x)z - z$$

Note that

- Simpler feedback
- More complicated CLF

Recall the example:

$$\dot{x} = x^3 + x\xi = -x^3 + x(\xi + 2x^2)$$

 $\dot{\xi} = u.$

Error dynamics

$$z = \xi - k(x) = \xi + 2x^2$$

CLF and feedback law: (avoiding cancellation)

$$V_a(x,z) = \frac{1}{2}x^2 + x^4 + \frac{1}{2}z^2$$
$$u(x,z) = -x^2 - 4x^2z - z.$$

CLF and feedback law:

$$V_a(x,z) = \frac{1}{2}x^2 + \frac{1}{2}z^2$$
$$u(x,z) = -x^2 + \frac{4x^4}{4x^4} - \frac{4x^2z}{4x^2} - z$$

Exact Backstepping and a High-Gain Alternative

Consider the example with an additional integrator

 $\dot{x} = x^3 + x\xi_1, \qquad \dot{\xi}_1 = \xi_2, \qquad \dot{\xi}_2 = u$

Consider the example with an additional integrator

$$\dot{x} = x^3 + x\xi_1, \qquad \dot{\xi}_1 = \xi_2, \qquad \dot{\xi}_2 = u$$

So far, we have defined: $\xi_1 = k_1(x) = -2x^2$

$$z_1 = \xi_1 - k_1(x) = \xi_1 + 2x^2$$

Error dynamics and CLF:

$$\dot{x} = -x^3 + xz_1$$

$$\dot{z}_1 = \xi_2 - \frac{\partial k_1}{\partial x}(x) \left(-x^3 + xz_1\right) = \xi_2 - 4x^4 + 4x^2z_1$$

$$V(x, z_1) = \frac{1}{2}x^2 + x^4 + \frac{1}{2}z_1^2$$

Exact Backstepping and a High-Gain Alternative

Consider the example with an additional integrator

$$\dot{x} = x^3 + x\xi_1, \qquad \dot{\xi}_1 = \xi_2, \qquad \dot{\xi}_2 = u$$

So far, we have defined: $\xi_1 = k_1(x) = -2x^2$

$$z_1 = \xi_1 - k_1(x) = \xi_1 + 2x^2$$

Error dynamics and CLF:

$$\dot{x} = -x^3 + xz_1$$

$$\dot{z}_1 = \xi_2 - \frac{\partial k_1}{\partial x}(x) \left(-x^3 + xz_1\right) = \xi_2 - 4x^4 + 4x^2 z_1$$

$$V(x, z_1) = \frac{1}{2}x^2 + x^4 + \frac{1}{2}z_1^2$$

We continue with

$$\xi_2 = k_2(x, z_1) = -x^2 - 4x^2 z_1 - z_1.$$

Define the error variable $z_2 = \xi_2 - k_2(x, z_1)$ so that

$$\dot{x} = -x^3 + xz_1$$

$$\dot{z}_1 = z_2 + k_2(x, z_1) - 4x^4 + 4x^2 z_1 = -z_1 + z_2 - x^2 - 4x^4$$

$$\dot{z}_2 = u - \overbrace{k_2(x, z_1)}^{\cdot}.$$

We continue

$$\vec{k_2(x,z_1)} = (-8xz_1 - 2x)\dot{x} + (-4x^2 - 1)\dot{z}_1$$
$$= (-8xz_1 - 2x)(-x^3 + xz_1)$$
$$+ (-4x^2 - 1)(z_2 - x^2 - z_1 - 4x^4).$$

The CLF (extending the previous one)

$$V(x, z_1, z_2) = \frac{1}{2}x^2 + x^4 + \frac{1}{2}z_1^2 + \frac{1}{2}z_2^2$$

naturally leads to (~ exact backstepping)

$$u = -z_1 - z_2 + \overbrace{k_2(x, z_1)}^{\cdot}$$

Exact Backstepping and a High-Gain Alternative

Consider the example with an additional integrator

$$\dot{x} = x^3 + x\xi_1, \qquad \dot{\xi}_1 = \xi_2, \qquad \dot{\xi}_2 = u$$

So far, we have defined: $\xi_1 = k_1(x) = -2x^2$

$$z_1 = \xi_1 - k_1(x) = \xi_1 + 2x^2$$

Error dynamics and CLF:

$$\dot{x} = -x^3 + xz_1$$

$$\dot{z}_1 = \xi_2 - \frac{\partial k_1}{\partial x}(x) \left(-x^3 + xz_1\right) = \xi_2 - 4x^4 + 4x^2 z_1$$

$$V(x, z_1) = \frac{1}{2}x^2 + x^4 + \frac{1}{2}z_1^2$$

We continue with

$$\xi_2 = k_2(x, z_1) = -x^2 - 4x^2 z_1 - z_1.$$

Define the error variable $z_2 = \xi_2 - k_2(x, z_1)$ so that

$$\dot{x} = -x^3 + xz_1$$

$$\dot{z}_1 = z_2 + k_2(x, z_1) - 4x^4 + 4x^2 z_1 = -z_1 + z_2 - x^2 - 4x^4$$

$$\dot{z}_2 = u - \overbrace{k_2(x, z_1)}^{\cdot}.$$

We continue

$$\vec{k_2(x,z_1)} = (-8xz_1 - 2x)\dot{x} + (-4x^2 - 1)\dot{z}_1
= (-8xz_1 - 2x)(-x^3 + xz_1)
+ (-4x^2 - 1)(z_2 - x^2 - z_1 - 4x^4).$$

The CLF (extending the previous one)

$$V(x, z_1, z_2) = \frac{1}{2}x^2 + x^4 + \frac{1}{2}z_1^2 + \frac{1}{2}z_2^2$$

naturally leads to (~ exact backstepping)

$$u = -z_1 - z_2 + \overbrace{k_2(x, z_1)}^{\bullet}$$

As an alternative:

- Instead of cancelling \dot{k}_1 dominate it with a linear term
- In other words, consider the virtual control

$$\xi_2 = -\kappa z_1, \qquad \kappa > 0$$

Consider the example with an additional integrator

$$\dot{x} = x^3 + x\xi_1, \qquad \dot{\xi}_1 = \xi_2, \qquad \dot{\xi}_2 = u$$

So far, we have defined: $\xi_1 = k_1(x) = -2x^2$

$$z_1 = \xi_1 - k_1(x) = \xi_1 + 2x^2$$

Error dynamics and CLF:

$$\dot{x} = -x^3 + xz_1$$

$$\dot{z}_1 = \xi_2 - \frac{\partial k_1}{\partial x}(x) \left(-x^3 + xz_1 \right) = \xi_2 - 4x^4 + 4x^2 z_1$$

$$V(x, z_1) = \frac{1}{2}x^2 + x^4 + \frac{1}{2}z_1^2$$

Exact Backstepping and a High-Gain Alternative (2)

Consider the example with an additional integrator

$$\dot{x} = x^3 + x\xi_1, \qquad \dot{\xi}_1 = \xi_2, \qquad \dot{\xi}_2 = u$$

So far, we have defined: $\xi_1 = k_1(x) = -2x^2$

$$z_1 = \xi_1 - k_1(x) = \xi_1 + 2x^2$$

Error dynamics and CLF:

$$\dot{x} = -x^3 + xz_1$$

$$\dot{z}_1 = \xi_2 - \frac{\partial k_1}{\partial x}(x) \left(-x^3 + xz_1\right) = \xi_2 - 4x^4 + 4x^2 z_1$$

$$V(x, z_1) = \frac{1}{2}x^2 + x^4 + \frac{1}{2}z_1^2$$

Consider virtual control

 $\xi_2 = -\kappa z_1, \qquad \kappa > 0$

We have

$$\dot{x} = -x^3 + xz_1$$

$$\dot{z}_1 = -\kappa z_1 - 4x^4 + 4x^2 z_1.$$

CLF

$$V(x, z_1, z_2) = \frac{1}{2}x^2 + x^4 + \frac{1}{2}z_1^2 + \frac{1}{2}z_2^2$$

Then

$$\begin{split} \dot{V}(x,z_1) \\ &= -x^4 + x^2 z_1 - 4x^6 + 4x^4 z_1 - \kappa z_1^2 - 4x^4 z_1 + 4x^2 z_1^2 \\ &\leq -x^4 - 4x^6 + \frac{1}{2}x^4 + \frac{1}{2}z_1^2 - \kappa z_1^2 + 4x^2 z_1^2 \\ &= -\frac{1}{2}x^4 - 4x^6 - z_1^2 \left(\kappa - \frac{1}{2} - 4x^2\right) \end{split}$$

Exact Backstepping and a High-Gain Alternative (2)

Consider the example with an additional integrator

$$\dot{x} = x^3 + x\xi_1, \qquad \dot{\xi}_1 = \xi_2, \qquad \dot{\xi}_2 = u$$

So far, we have defined: $\xi_1 = k_1(x) = -2x^2$

$$z_1 = \xi_1 - k_1(x) = \xi_1 + 2x^2$$

Error dynamics and CLF:

$$\dot{x} = -x^3 + xz_1$$

$$\dot{z}_1 = \xi_2 - \frac{\partial k_1}{\partial x}(x) \left(-x^3 + xz_1\right) = \xi_2 - 4x^4 + 4x^2 z_1$$

$$V(x, z_1) = \frac{1}{2}x^2 + x^4 + \frac{1}{2}z_1^2$$

Consider virtual control

$$\xi_2 = -\kappa z_1, \qquad \kappa > 0$$

We have

$$\dot{x} = -x^3 + xz_1$$

 $\dot{z}_1 = -\kappa z_1 - 4x^4 + 4x^2 z_1$

CLF

$$V(x, z_1, z_2) = \frac{1}{2}x^2 + x^4 + \frac{1}{2}z_1^2 + \frac{1}{2}z_2^2$$

P. Braun & C.M. Kellett (ANU)

Then

$$\begin{aligned} \dot{V}(x,z_1) \\ &= -x^4 + x^2 z_1 - 4x^6 + 4x^4 z_1 - \kappa z_1^2 - 4x^4 z_1 + 4x^2 z_1^2 \\ &\leq -x^4 - 4x^6 + \frac{1}{2}x^4 + \frac{1}{2}z_1^2 - \kappa z_1^2 + 4x^2 z_1^2 \\ &= -\frac{1}{2}x^4 - 4x^6 - z_1^2 \left(\kappa - \frac{1}{2} - 4x^2\right) \end{aligned}$$

Therefore, if

$$\kappa > \frac{1}{2} + 4x^2$$
 or equivalently $x^2 < \frac{\kappa - \frac{1}{2}}{4}$

then the origin is locally asymptotically stable \rightsquigarrow Increasing κ , increases the region of attraction

Exact Backstepping and a High-Gain Alternative (2)

Consider the example with an additional integrator

$$\dot{x} = x^3 + x\xi_1, \qquad \dot{\xi}_1 = \xi_2, \qquad \dot{\xi}_2 = u$$

So far, we have defined: $\xi_1 = k_1(x) = -2x^2$

$$z_1 = \xi_1 - k_1(x) = \xi_1 + 2x^2$$

Error dynamics and CLF:

$$\dot{x} = -x^3 + xz_1$$

$$\dot{z}_1 = \xi_2 - \frac{\partial k_1}{\partial x}(x) \left(-x^3 + xz_1\right) = \xi_2 - 4x^4 + 4x^2 z_1$$

$$V(x, z_1) = \frac{1}{2}x^2 + x^4 + \frac{1}{2}z_1^2$$

Consider virtual control

$$\xi_2 = -\kappa z_1, \qquad \kappa > 0$$

We have

$$\dot{x} = -x^3 + xz_1 \dot{z}_1 = -\kappa z_1 - 4x^4 + 4x^2 z_1.$$

CLF

$$V(x, z_1, z_2) = \frac{1}{2}x^2 + x^4 + \frac{1}{2}z_1^2 + \frac{1}{2}z_2^2$$

Then

$$\begin{split} \dot{V}(x,z_1) \\ &= -x^4 + x^2 z_1 - 4x^6 + 4x^4 z_1 - \kappa z_1^2 - 4x^4 z_1 + 4x^2 z_1^2 \\ &\leq -x^4 - 4x^6 + \frac{1}{2}x^4 + \frac{1}{2}z_1^2 - \kappa z_1^2 + 4x^2 z_1^2 \\ &= -\frac{1}{2}x^4 - 4x^6 - z_1^2 \left(\kappa - \frac{1}{2} - 4x^2\right) \end{split}$$

Therefore, if

$$\kappa > \frac{1}{2} + 4x^2$$
 or equivalently $x^2 < \frac{\kappa - \frac{1}{2}}{4}$

÷ .

then the origin is locally asymptotically stable \sim Increasing κ , increases the region of attraction

Subsequent step: Let
$$z_2 = \xi_2 + \kappa z_1$$
. Then
 $\dot{x} = -x^3 + xz_1$
 $\dot{z}_1 = -\kappa z_1 - 4x^4 - 4x^2 z_1 + z_2$
 $\dot{z}_2 = u + \kappa (-\kappa z_1 - 4x^4 - 4x^2 z_1 + z_2)$.

We again use a dominating linear term $u = -\kappa z_2$ which leads to

$$u = -\kappa \left(\xi_2 + \kappa (\xi_1 + 2x^2)\right)$$

P. Braun & C.M. Kellett (ANU)

T1

Exact Backstepping and a High-Gain Alternative (3)

Theorem (High-gain backstepping)

Consider the system

$$\dot{x} = f(x) + g(x)\xi_1$$
$$\dot{\xi}_1 = \xi_2$$
$$\vdots$$
$$\dot{\xi}_n = u$$

in strict feedback form, let $\kappa \in \mathbb{R}_{>0}$ be a design parameter and assume there exists a feedback stabilizer $\xi_1 = k(x)$ and an associated control Lyapunov function V(x). Let

$$p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$$

be an arbitrary Hurwitz polynomial. Then the feedback

$$u = -\kappa \left(a_{n-1}\xi_n + \kappa \left(a_{n-2}\xi_{n-1} + \kappa \left(\dots + \kappa (a_1\xi_2 + \kappa a_0(\xi_1 - k(x))) \dots \right) \right) \right)$$

achieves semiglobal stabilization of $[x^T, \xi^T]^T = 0$.

(Semiglobal refers to the fact that we have a design parameter, κ , which can be tuned to make the region of attraction for the origin as large as we wish.)

Backstepping: Convergence Structure

Consider again the example:

$$\dot{x} = x^3 + x\xi$$
$$\dot{\xi} = u$$

with error dynamics

$$z = \xi - k(x) = \xi + 2x^2$$

Exact backstepping:

$$u(x,\xi) = -x^2 + 4x^4 - 4x^2(\xi + 2x^2) - (\xi + 2x^2)$$

High-gain backstepping: ($\kappa > 0, p(\lambda) = \lambda + 1$)

$$u(x,\xi) = -\kappa^2(\xi + 2x^2) = -\kappa^2 z$$

using high-gain backstepping. The set where z vanishes:

$$\mathcal{Z} := \{ [x, \xi]^T \in \mathbb{R}^2 : 0 = \xi - 2x^2 \}$$

For large $\kappa > 0$ we observe two phases:

- ${\ensuremath{\bullet}}$ convergence to ${\ensuremath{\mathcal{Z}}}$
- $\bullet~$ slide along ${\mathcal Z}$ to the origin

Section 5

Forwarding

Forwarding

Strict feedforward form:

$$\dot{x}_1 = f_1(x_2, x_3, \dots, x_n, u)$$
$$\dot{x}_2 = f_2(x_3, x_4, \dots, x_n, u)$$
$$\vdots$$
$$\dot{x}_{n-1} = f_{n-1}(x_n, u)$$
$$\dot{x}_n = f_n(u)$$

Forwarding

Strict feedforward form:

$$\dot{x}_1 = f_1(x_2, x_3, \dots, x_n, u)$$
$$\dot{x}_2 = f_2(x_3, x_4, \dots, x_n, u)$$
$$\vdots$$
$$\dot{x}_{n-1} = f_{n-1}(x_n, u)$$
$$\dot{x}_n = f_n(u)$$

To introduce the idea consider:

$$\dot{z} = h(x) + \ell(x)u$$
$$\dot{x} = f(x) + g(x)u$$

(System in feedforward form) Suppose that

- For $\dot{x} = f(x)$, 0 is asympt. stable
- V is a corresponding Lyap. fcn
- $\mathcal{M}(x)$ is a solution to the partial differential equation ($\mathcal{M}(0) = 0$)

$$L_f \mathcal{M}(x) = \langle \nabla \mathcal{M}(x), f(x) \rangle = h(x)$$

Forwarding (2)

To introduce the idea consider:

$$\dot{z} = h(x) + \ell(x)u$$
$$\dot{x} = f(x) + g(x)u$$

Suppose that

- For $\dot{x} = f(x)$, 0 is asympt. stable
- V is a corresponding Lyap. fcn
- *M*(*x*) is a solution to the partial differential equation (*M*(0) = 0)

 $L_f \mathcal{M}(x) = \langle \nabla \mathcal{M}(x), f(x) \rangle = h(x)$

- If we are able to find a solution to the PDE with ℓ(0) − L_gM(0) ≠ 0
- Then a CLF for the overall system is given by

 $W(x, z) = V(x) + \frac{1}{2} (z - \mathcal{M}(x))^2$

Forwarding (2)

To introduce the idea consider:

$$\dot{z} = h(x) + \ell(x)u$$
$$\dot{x} = f(x) + g(x)u$$

Suppose that

- For $\dot{x} = f(x)$, 0 is asympt. stable
- V is a corresponding Lyap. fcn
- *M*(*x*) is a solution to the partial differential equation (*M*(0) = 0)

$$L_f \mathcal{M}(x) = \langle \nabla \mathcal{M}(x), f(x) \rangle = h(x)$$

- If we are able to find a solution to the PDE with $\ell(0) L_g \mathcal{M}(0) \neq 0$
- Then a CLF for the overall system is given by

 $W(x, z) = V(x) + \frac{1}{2} (z - \mathcal{M}(x))^2$

Indeed, the time derivative of W yields:

$$\begin{split} \dot{W}(x,z) &= L_f V(x) + L_g V(x) u + (z - \mathcal{M}(x)) \left(\dot{z} - L_f \mathcal{M}(x) - L_g \mathcal{M}(x) u \right) \\ &= L_f V(x) + L_g V(x) u + (z - \mathcal{M}(x)) \left(h(x) + \ell(x) u - L_f \mathcal{M}(x) - L_g \mathcal{M}(x) u \right) \\ &= L_f V(x) + L_g V(x) u + (z - \mathcal{M}(x)) \left(\ell(x) u - L_g \mathcal{M}(x) u \right) \\ &= L_f V(x) + u \left[L_g V(x) + (z - \mathcal{M}(x)) \left(\ell(x) - L_g \mathcal{M}(x) \right) \right] \end{split}$$

Forwarding (2)

To introduce the idea consider:

$$\begin{split} \dot{z} &= h(x) + \ell(x) u \\ \dot{x} &= f(x) + g(x) u \end{split}$$

Suppose that

- For $\dot{x} = f(x)$, 0 is asympt. stable
- V is a corresponding Lyap. fcn
- $\mathcal{M}(x)$ is a solution to the partial differential equation ($\mathcal{M}(0) = 0$)

 $L_f \mathcal{M}(x) = \langle \nabla \mathcal{M}(x), f(x) \rangle = h(x)$

- If we are able to find a solution to the PDE with $\ell(0) L_g \mathcal{M}(0) \neq 0$
- Then a CLF for the overall system is given by

 $W(x, z) = V(x) + \frac{1}{2} (z - \mathcal{M}(x))^2$

Indeed, the time derivative of W yields:

$$\begin{split} \dot{W}(x,z) &= L_f V(x) + L_g V(x) u + (z - \mathcal{M}(x)) \left(\dot{z} - L_f \mathcal{M}(x) - L_g \mathcal{M}(x) u \right) \\ &= L_f V(x) + L_g V(x) u + (z - \mathcal{M}(x)) \left(h(x) + \ell(x) u - L_f \mathcal{M}(x) - L_g \mathcal{M}(x) u \right) \\ &= L_f V(x) + L_g V(x) u + (z - \mathcal{M}(x)) \left(\ell(x) u - L_g \mathcal{M}(x) u \right) \\ &= L_f V(x) + u \left[L_g V(x) + (z - \mathcal{M}(x)) \left(\ell(x) - L_g \mathcal{M}(x) \right) \right] \end{split}$$

Note that:

• The condition $\ell(0) - L_g \mathcal{M}(0) \neq 0$ is required to guarantee a decrease in z.

Possible feedback law: ($\kappa > 0$ design parameter)

$$u = -\kappa \left(L_g V(x) + (z - \mathcal{M}(x)) \left(\ell(x) - L_g \mathcal{M}(x) \right) \right)$$

Theorem

Consider the dynamical system and let $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ be a continuously differentiable positive definite Lyapunov function for $\dot{x} = f(x)$. Suppose there exists a solution $\mathcal{M} : \mathbb{R}^n \to \mathbb{R}^n$ to the PDE such that $\ell(0) - L_g \mathcal{M}(0) \neq 0$. Then W is a control Lyapunov function of the overall system and u is a globally asymptotically stabilizing feedback law. System dynamics

$$\dot{z} = h(x) + \ell(x)u$$
$$\dot{x} = f(x) + g(x)u$$

Partial differential equation (PDE):

 $L_f \mathcal{M}(x) = \langle \nabla \mathcal{M}(x), f(x) \rangle = h(x), \quad \mathcal{M}(0) = 0$

Control Lyapunov function:

$$W(x,z) = V(x) + \frac{1}{2} \left(z - \mathcal{M}(x)\right)^2$$

Feedback law: ($\kappa > 0$ design parameter)

$$u = -\kappa \left(L_g V(x) + (z - \mathcal{M}(x)) \left(\ell(x) - L_g \mathcal{M}(x) \right) \right)$$

Forwarding (Example)

Consider

$$\dot{z} = x - x^2 u$$
$$\dot{x} = u.$$

Modify the input:

$$u = -x + v$$

then

$$\begin{split} \dot{z} &= x - x^2 (-x + v) = (x + x^3) + (-x^2)v = h(x) + \ell(x)v \\ \dot{x} &= -x + v = f(x) + g(x)v. \end{split}$$

Lyapunov function for $\dot{x} = -x$:

$$V(x) = \frac{1}{2}x^2$$

PDE: (unknown $\mathcal{M}(x)$ with $\mathcal{M}(0) = 0$, $\ell(0) - L_g \mathcal{M}(0) \neq 0$)

$$h(x) = \frac{\partial \mathcal{M}(x)}{\partial x} f(x), \quad \text{i.e.,} \quad x + x^3 = \frac{\partial \mathcal{M}(x)}{\partial x} (-x).$$

Thus

$$\mathcal{M}(x) = -\frac{1}{3}x^3 - x$$
, with $\ell(0) - L_g \mathcal{M}(0) = -1 \neq 0$

Therefore, a control Lyapunov function is given by

$$W(x,z) = \frac{1}{2}x^{2} + \frac{1}{2}\left(z + x + \frac{1}{3}x^{3}\right)^{2}.$$

Indeed,

$$\begin{split} \dot{W}(x,z) &= -x^2 + xv + \left(z + x + \frac{1}{3}x^3\right) \left(\dot{z} + \dot{x} + x^2 \dot{x}\right) \\ &= -x^2 + xv + \left(z + x + \frac{1}{3}x^3\right) \\ &\cdot \left(x + x^3 - x^2v - x + v - x^3 + x^2v\right) \\ &= -x^2 + xv + \left(z + x + \frac{1}{3}x^3\right)v \\ &= -x^2 + \left(z + 2x + \frac{1}{3}x^3\right)v. \end{split}$$

We choose the feedback stabilizer

$$v = -\left(z + 2x + \frac{1}{3}x^3\right)$$

Hence, the control law in terms of u is given by:

$$u = -x + v = -z - 3x + \frac{1}{3}x^3.$$

Forwarding: Recursive Application

Consider

$$egin{aligned} \dot{z}_2 &= h_2(x,z_1) + \ell_2(x,z_1) u \ \dot{z}_1 &= h_1(x) + \ell_1(x) u \ \dot{x} &= f(x) + g(x) u \end{aligned}$$

Note that

- We have seen how to construct a CLF for (x, z_1)
- Once we have a CLF for the (x, z_1) dynamics we can relabel x as (x, z_1) and z as z_2 and apply the forwarding procedure again

Time derivative of the CLF W:

$$\dot{W}(x,z) = L_f V(x)$$

$$+ u \left(L_g V(x) + (z - \mathcal{M}(x)) \left(\ell(x) - L_g \mathcal{M}(x) \right) \right)$$
Feedback law ($\kappa = 1$):

$$u = -\left(L_g V(x) + \left(z - \mathcal{M}(x)\right)\left(\ell(x) - L_g \mathcal{M}(x)\right)\right)$$

- In addition, assume that x = 0 is asymptotically stable for $\dot{x} = f(x)$ i.e., $L_f V(x) < 0$ for all $x \neq 0$ and u = 0.
- u(x,z) = 0 is satisfied on the *forwarding manifold* $\left\{ (x,z) \in \mathbb{R}^{n+m} : z = \mathcal{M}(x) + \frac{L_g V(x)}{\ell(x) - L_g \mathcal{M}(x)} \right\}.$
- $\rightsquigarrow u$ thus drives the system to the forwarding manifold
- $\rightsquigarrow L_f V(x) < 0$ for all $x \neq 0$ guarantees convergence to the origin (once (x, z) is close to the forwarding manifold)

Time derivative of the CLF W:

$$\begin{split} \dot{W}(x,z) &= L_f V(x) \\ &+ u \left(L_g V(x) + (z - \mathcal{M}(x)) \left(\ell(x) - L_g \mathcal{M}(x) \right) \right) \end{split}$$

Feedback law ($\kappa = 1$):

$$u = -\left(L_g V(x) + \left(z - \mathcal{M}(x)\right)\left(\ell(x) - L_g \mathcal{M}(x)\right)\right)$$

- In addition, assume that x = 0 is asymptotically stable for $\dot{x} = f(x)$ i.e., $L_f V(x) < 0$ for all $x \neq 0$ and u = 0.
- u(x,z) = 0 is satisfied on the *forwarding manifold* $\left\{ (x,z) \in \mathbb{R}^{n+m} : z = \mathcal{M}(x) + \frac{L_g V(x)}{\ell(x) - L_g \mathcal{M}(x)} \right\}.$
- $\rightsquigarrow u$ thus drives the system to the forwarding manifold
- $\rightsquigarrow L_f V(x) < 0$ for all $x \neq 0$ guarantees convergence to the origin (once (x, z) is close to the forwarding manifold)

Recall

- $\mathcal{M}(x) = -\frac{1}{3}x^3 x$
- $v(x,z) = (-z + 2x + \frac{1}{3}x^3)$

$$\bullet \ \dot{z}=x+x^3-x^2v, \qquad \dot{x}=-x+v$$

• The forwarding manifold is defined through $z = -2x - \frac{1}{3}x^3$

Forwarding: Saturated Control

- Maintain the assumption that the origin is asymptotically stable for $\dot{x} = f(x)$.
- Then, note that

$$u = -c \cdot \operatorname{sat}\left(\frac{1}{c} \left(L_g V(x) + (z - \mathcal{M}(x))\left(\ell(x) - L_g \mathcal{M}(x)\right)\right)\right) \qquad \text{guarantees } \dot{W}(x, z) < 0, \ (x, z) \neq 0, \ \forall \ c \in \mathbb{R}^{d}$$

guarantees $\dot{W}(x,z) < 0$, $(x,z) \neq 0$, for all values of c > 0.

• Note that $u \in [-c, c]$ and still guarantees asymptotic stability of the origin (under the assumption on f)

Example (Back to the example $(c \in \{1, 2\})$) 0 2 $-2x - \frac{1}{3}x^3$ x(t)-2 10 -2 Λ 10 15 20 v(t)-6 $v = -(z + 2x + \frac{1}{2}x^3)$ 10 z(t) $-2 \operatorname{sat}(\frac{1}{2}(z+2x+\frac{1}{2}x^3))$ -8 5 $v = -\operatorname{sat}(z + 2x + \frac{1}{2}x^3)$ 0 -10 0 5 10 15 20 í٥. 5 10 15 20 -3 -2 -1 2

Note that: v is bounded! However, u = -x + v is not bounded!

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

> 0

Introduction to Nonlinear Control

Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett School of Engineering, Australian National University, Canberra, Australia

Part II:

Chapter 9: Control Lyapunov Functions 9.1 Control Affine Systems 9.2 ISS Redesign via L_gV Damping 9.3 Sontag's Universal Formula 9.4 Backstepping 9.5 Forwarding

