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Nonlinear Systems - Fundamentals

@ Finite-Time Stability

e Basic Sliding Mode Control
@ Terminology
@ Chattering & Chattering Avoidance

0 A More General Structure
° Estimating the Disturbance

e Output Tracking
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Sliding Mode Control

We consider systems of the form
= f(z,u,(t, x))
y = h(z)
with
@ state z € R"
@ inputu € R™
@ outputy e R

@ potentially time and state dependent unknown
disturbance ¢ : R>o x R® — R™

We will be interested in
@ stabilizing the origin
@ output tracking
despite the presence of the disturbance.

~ First we have to discuss finite-time stability.
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Section 1

Finite-Time Stability
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Finite-Time Stability

Consider (f : R™ — R")
z = f(z), z(0) =xz9 € R"
We assume f(0) = 0, and thus z¢ = 0 is an equilibrium.

Definition (Finite-time stability)

The origin is said to be finite-time stable if there exist an
open neighborhood D C R™ of the origin and a function

T : D\{0} — (0, ), called the settling-time function, such
that the following statements hold:

@ (Stability) For every £ > 0 there exists a § > 0 such
that, for every z(0) = zo € Bs N D\{0}, z(t) € B for
allt € [0,T(z0))-

@ (Finite-time convergence) For every
z(0) = z9 € D\{0}, =(-) is defined on [0, T'(z0)),
z(t) € D\{0} for all t € [0, T (z0)), and z(¢) — 0O for
T — T(:Eo)
The origin is said to be a globally finite-time stable if it is
finite-time stable with D = R™.
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Finite-Time Stability

Consider (f : R™ — R™)
z = f(x), z(0) =29 € R"
We assume f(0) = 0, and thus z¢ = 0 is an equilibrium.

Definition (Finite-time stability)

The origin is said to be finite-time stable if there exist an
open neighborhood D C R™ of the origin and a function

T : D\{0} — (0, ), called the settling-time function, such
that the following statements hold:

@ (Stability) For every £ > 0 there exists a § > 0 such
that, for every z(0) = z¢ € Bs N D\{0}, z(t) € B. for
allt € [0,T(z0))-

@ (Finite-time convergence) For every
z(0) = z9 € D\{0}, =(-) is defined on [0, T'(z0)),
z(t) € D\{0} for all t € [0, T (z0)), and z(¢) — 0O for
T — T(:Eo)
The origin is said to be a globally finite-time stable if it is
finite-time stable with D = R™.

Example
Consider

i=f(x) =—Vz2,  (with £(0) =0)
Note that

@ fis not Lipschitz at the origin
@ uniqueness of solutions can only be guaranteed if
z(t) #0
We can verify that
2(t) = — 55 (t — 3sign(2(0)) ¥/]2(0)])*

is a solution for all z € R.
However, for z(0) > 0

2(t) :{ — & (t=3YRO)D? it <3Y[()]
0 if t > 3%/]z(0)]

is also a solution.
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Finite-Time Stability (2)
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Example

Consider
i=f(z)=—Va2,  (with £(0) = 0)
Note that
@ fis not Lipschitz at the origin
@ uniqueness of solutions can only be guaranteed if
z(t) =0
We can verify that
a(t) = — 55 (t — 3sign(z(0)) ¥/]z(0)])

is a solution for all z € R.
However, for z(0) > 0

) = { —5:(t —=3¥/12(0)])?® ift <3%/]z(0)]
A= 0 if t > 33/[2(0)]

is also a solution.
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Finite-Time Stability (3)

2
N\
Example ; N
S SO
Consider = T E——
& = f(z) = —sign(z) Va2. K /////
We can verify K e
/
_ [—5-sign(x(0))(t — 3/[z(0)])3 it < 3%/]x(0)] 2/
z(t) = . 5 /
0 if t > 33/|z(0)] 0 1 2 3 4 5
~» The ODE admits unique solutions 6 ¢
Once the equilibrium is reached, the inequalities
5
—sign(x) Va2 < Oforallz >0, and
4
— sign(z) Va2 > 0 forall z < 0 =
— 3
ensure that the origin is attractive. &
It follows from the explicit solution that 2 |
@ The origin is finite-time stable ! Y
@ Settling time T'(z) = 3 ¥/|z| 0
y -5 0 5
x
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Finite-Time Stability (4)

Theorem (Lyapunov fcn for finite-time stability)

Consider z = f(x) with f(0) = 0. Assume there exist a
continuous function V' : R™ — R, which is continuously
differentiable on R\ {0}, a1, a2 € Koo and a constant

Kk > 0 such that

i (lz]) < V(x) < aa(lz]),
V(z) = (VV(z), f(z)) < —k/V () Va # 0.
Then the origin is globally finite-time stable.

Moreover, the settling-time T'(x) : R™ — R>q is upper
bounded by

T(z) < 2+/az(|z).
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Finite-Time Stability (4)

Theorem (Lyapunov fcn for finite-time stability)

Consider z = f(x) with f(0) = 0. Assume there exist a
continuous function V' : R™ — R, which is continuously
differentiable on R\ {0}, a1, a2 € Koo and a constant

Kk > 0 such that

a1(lz]) < V(z) < az(|=)),
V(z) = (VV(2), f(2)) < —ry/V(z)

Then the origin is globally finite-time stable.
Moreover, the settling-time T'(x) : R™ — R>q is upper
bounded by

Vz # 0.

T(z) < 2+/az(|z).
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Proof.
Comparison principle:
tav( x(t)) f
W o K dt
leads to
VVGED) < VVGEO) - 5.

Using the lower and upper bound

|x(t)ga;1(( FEOIE ’”;t))

~ Finite-time convergence
Moreover,

implies |z(T)| < 0 forall T > %\/a2(|x(0)\)

O
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Finite-Time Stability (4)

Theorem (Lyapunov fcn for finite-time stability)

Consider = f(x) with f(0) = 0. Assume there exist a
continuous function'V : R™ — R, which is continuously
differentiable on R\ {0}, a1, a2 € Koo and a constant

Kk > 0 such that

a1(lz]) < V(z) < az(|=)),
V(z) = (VV(2), f(2)) < —ry/V(z)

Then the origin is globally finite-time stable.
Moreover, the settling-time T'(x) : R™ — R>q is upper
bounded by

Vz # 0.

T(z) <

2 /as(|=l).

For quadratic Lyapunov functions: (a1, a2 > 0)
a1|3:\2 < V( ) < az\a:|2
| (v 2|z(0)] — %5
2\/
T(jal) < 2| =2
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Proof.
Comparison principle:
tav( x(t)) f
W 0
leads to
VV((t) < VV(2(0) -

Using the lower and upper bound

l2(0)] < o (( R EO)

~ Finite-time convergence

Kk dt

)

Moreover,
Kt
az(z(O)) - 5 =0,
implies |z(T")| < 0 for all T > % az(|z(0)])
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Finite-Time Stability (5)

Example
Consider again
z = f(x) = —sign(x) V2
Candidate Lyapunov function (continuously differentiable for all = # 0)
V(z) = Va2
Define a1, a2 € Koo,
a1(s) = az(s) = Va2

Then, for all z # 0, it holds that

V(@) = (VV (2), - sign(w) Va2) = 2 sign(a) |zl =5 (~ sign(w)[a| §)

=-2jel? = -3/V@

~+ V' is a Lyapunov function & the origin is finite-time stable
Bound on the settling time

2 2
T(z) < 2\/as(|z]) = 2|3 = 3/|x]

2
3
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Section 2

Basic Sliding Mode Control
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Basic Sliding Mode Control

As an example, consider:
&=z + 2,
z=u+6(tz,z2).
@ Unknown disturbance § : R>¢ x R? — R
@ Assumption: there exists Ls € R~ such that
|6(t,z,2)| < Ls (t,z,z) € Rxg x R?

@ Thus, ¢ is bounded but not necessarily continuous
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Basic Sliding Mode Control

As an example, consider:
& =23+ z,
Z=u+0d(t x,z).
@ Unknown disturbance § : R>¢ x R? — R
@ Assumption: there exists Ls € R~ such that
16(t,,2)]| < Ls  (t,7,2) € Ryg x R?
@ Thus, ¢ is bounded but not necessarily continuous

Goal: Exponential stability of the z-subsystem

@ l.e., we want z to behave as © = —z (for all bounded
disturbances)

@ The desired behavior implies z + x = 0
@ Thus
22 +z4+2=0
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Basic Sliding Mode Control

. @ Then
As an example, consider:

& =23+ z,
Z=u+0d(t x,z).
@ Unknown disturbance § : R>¢ x R? — R
@ Assumption: there exists Ls € R~ such that
16(t,,2)]| < Ls  (t,7,2) € Ryg x R?
@ Thus, ¢ is bounded but not necessarily continuous

Goal: Exponential stability of the z-subsystem

@ l.e., we want z to behave as © = —z (for all bounded
disturbances)

@ The desired behavior implies z + x = 0
@ Thus
22 +z4+2=0
Approach: Define a new state

oc=z%+z42 and V(U):%a’

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control

V(o) =06 =0 (3a%% + 2 + &)

:a(3335+3x2z+u+5(t,x,z)+x3+z).
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Basic Sliding Mode Control

As an example, consider:
&=z + 2,
Z=u+0d(t x,z).
@ Unknown disturbance § : R>¢ x R? — R
@ Assumption: there exists Ls € R~ such that

@ Then
V(o) =06 =0 (3a%% + 2 + &)
=0 (33:5 +322z+u+d(t,x,2) + 22 +z).
@ To cancel the known terms define

u=v—32z> —32%2—23 -2

6(t,z,2)| <Ls  (t,2,2) € Rug x R sothat V(o) =0 (v+8(t,z,2)) (with new input v)

@ Thus, ¢ is bounded but not necessarily continuous

Goal: Exponential stability of the xz-subsystem

@ l.e., we want z to behave as © = —z (for all bounded

disturbances)
@ The desired behavior implies z +x =0
@ Thus
22 +z4+2=0
Approach: Define a new state

oc=z%+z42 and V(U):%a’
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Basic Sliding Mode Control

As an example, consider:
& =23+ z,
Z=u+0d(t x,z).
@ Unknown disturbance § : R>¢ x R? — R
@ Assumption: there exists Ls € R~ such that
|6(t7 z, Z)‘ < L6 (t,(E,Z’) GRZO XR2
@ Thus, ¢ is bounded but not necessarily continuous

Goal: Exponential stability of the xz-subsystem

@ l.e., we want z to behave as © = —z (for all bounded
disturbances)

@ The desired behavior implies z +x =0
@ Thus

3 +z+x=0
Approach: Define a new state
oc=z+z4+2 and V(o) = %0'2

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

Then
V(o) =06 =0 (32%% + 2 + &)
=0 (33:5 +322z+u+d(t,x,2) + 22 +z).
To cancel the known terms define
u=v—3z" 322z —2% -2
sothat V(o) =0 (v+8(t,x,2)) (with new input v)
Selecting v = —p sign(o), p > 0, provides the estimate
V(o) = o (—p sign(o) + 6(t, z, 2)) = —p|o| + od(t, z, z)
< —plo| + Lslo| = —(p — Ls)|o|.
Finally, with p = L5 + % Kk > 0, we have
. K|o

V(o) < 5= —ay/V (o) ~ finite-time stab. of o =0
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Basic Sliding Mode Control

As an example, consider:
& =23+ z,
Z=u+0d(t x,z).
@ Unknown disturbance § : R>¢ x R? — R
@ Assumption: there exists Ls € R~ such that
|6(t7 z, Z)‘ < L6 (t,(E,Z’) GRZO XR2
@ Thus, ¢ is bounded but not necessarily continuous

Goal: Exponential stability of the xz-subsystem

@ l.e., we want z to behave as © = —z (for all bounded
disturbances)

@ The desired behavior implies z +x =0
@ Thus

3 +z+x=0
Approach: Define a new state
oc=z+z4+2 and V(o) = %0'2
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Then
V(o) =06 =0 (32%% + 2 + &)
=0 (33:5 +322z+u+d(t,x,2) + 22 +z).
To cancel the known terms define
u=v—3z" 322z —2% -2
sothat V(o) =0 (v+8(t,x,2)) (with new input v)
Selecting v = —p sign(o), p > 0, provides the estimate
V(o) = o (—p sign(o) + 6(t, z, 2)) = —p|o| + od(t, z, z)
< —plo| + Lslo| = —(p — Ls)|o|.
Finally, with p = L5 + % Kk > 0, we have

V(o) < —% = —an/V (o) ~ finite-time stab. of o = 0

Note that the control
u=— (L,g + %) sign (x3+z+:c) —32° 3222 —23 -2
is independent of the term 6(¢, , z).
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Basic Sliding Mode Control (2)

Consider:

:c3—|—z,
Z=u+46(tz,z).

IS
Il

Control law:

U= — (L(; + %) sign (m3+z+x) —32°—322z—a%—2

Parameter selection for the simulations:
@ Lsy=1landk =2
@ 0(t,z, z) = sin(t) (top)
@ 0(t,x, z) = sign(cos(2t) sin(2t)) (bottom)
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Basic Sliding Mode Control (2)

Consider:

x3+z,
Z=u+46(tz,z).

IS
Il

Control law:

u=— (L5 + %) sign (:r3+z+x) —32°—322z—a%—2
Parameter selection for the simulations:
@ Lsy=landk =2
@ 0(t,z, z) = sin(t) (top)
@ 0(t,x, z) = sign(cos(2t) sin(2t)) (bottom)
We observe that
@ o converges to zero in finite-time

@ Afterwards (z, z) asymptotically approach the origin

@ Since the ordinary differential equation is solved
numerically, o is not exactly zero!
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Basic Sliding Mode Control (2)

5
Consider:
&=+ 2,
Z=u+46(tz,z).
Control law: v
u=— (L(s + %) sign (:rB-I—z-I-x) —3z°—32%z—2%—2 \\\\\
Parameter selection for the simulations:
@ Ls=1landk =2 N 1 0 1 )
@ 0(t,z, z) = sin(t) (top) 075 d
® §(t,x,z) = sign(cos(2t) sin(2t)) (bottom) L |77 7=0
We observe that 071 —(0.20)
@ o converges to zero in finite-time 0.65 - A
@ Afterwards (z, z) asymptotically approach the origin A
@ Since the ordinary differential equation is solved o Ty
numerically, o is not exactly zero! 055 M\w\
Convergence structure:
~ Similar to backstepping/forwarding 03 s 05 045

xT
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Terminology

@ Sliding variable: o
@ Sliding surface
{(z,2) €eR? : o(z,2) = 0, (x,2) € R?},

~» The sliding variable, and thus implicitly the sliding
surface, is defined such that the origin of the
z-subsystem is exponentially stable if o(¢) = 0,
t € Rxo, is satisfied.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 10: Sliding Mode Control 13/25



Terminology

@ Sliding variable: o

@ Sliding surface
{(z,2) €eR? : o(z,2) = 0, (x,2) € R?},

~» The sliding variable, and thus implicitly the sliding
surface, is defined such that the origin of the
z-subsystem is exponentially stable if o(¢) = 0,
t € Rxo, is satisfied.

@ We have defined o based on the condition © = —z. 0
We could have also used & = —2z or & = —a3 p

(asymptotic stability), for example. 4 — 5
—aft
@ The control law u is derived such that states converge 2 / 72&
to the sliding surface in finite-time. Oy e ol
20
0 1 2 3 4 5
10
ol
-10
0
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Terminology

@ Sliding variable: o

@ Sliding surface
{(z,2) €eR? : o(z,2) = 0, (x,2) € R?},

~» The sliding variable, and thus implicitly the sliding
surface, is defined such that the origin of the
z-subsystem is exponentially stable if o(¢) = 0,
t € Rxo, is satisfied.

@ We have defined o based on the condition © = —z.
We could have also used & = —2z or & = —x? '
(asymptotic stability), for example.

4
@ The control law u is derived such that states converge 2 (
to the sliding surface in finite-time. L e olt
2

~» Convergence of o(t) — 0 is called the reaching
phase.

@ On the sliding surface the selection of u ensures that 10
the dynamics behave like & = —z.

~» This is called sliding phase and guarantees
asymptotic stability of the origin for the overall 10

closed-loop system. 0
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Chattering & Chattering Avoidance

Note that:
@ The control law w is discontinuous due to v = psign (o)

@ v switches between p and —p depending on the sign of
the sliding variable o

~ Chattering (because o is always slightly off)
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Chattering & Chattering Avoidance

2 2
Note that: . ‘ ) B
@ The control law w is discontinuous due to v = psign (o) O [ < //
. . . To / el s“
@ v switches between p and —p depending on the sign of i | == * / -
the sliding variable o - e DTN T — ol
~~ Chattering (because o is always slightly off) o : :2 = L = = e |

Approximation of the sign-function:
@ (Continuous) saturation: (sate : R — [—1,1])

Ia

1, 2>1
sate(0) = sat(%) = Z, -1<2<1
-1, £<-

—0

@ (Smooth) Sigmoid function: (sig, : R — [—1, 1])
1—e°¢

1+4e-o/¢

sig.(0) =
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Chattering & Chattering Avoidance

Note that:
@ The control law w is discontinuous due to v = psign (o)

@ v switches between p and —p depending on the sign of
the sliding variable o

~+ Chattering (because o is always slightly off)
Approximation of the sign-function:
@ (Continuous) saturation: (sats : R — [—1,1])

1, £>1
sate (o) = sat(Z) = 7, —1<2<1
-1, Z<-1

@ (Smooth) Sigmoid function: (sig, : R — [—1,1])
1 — e—O’E

sig. (o) = Ppp——e

Back to the example: (e = 0.5)
ue = —(Ls + %) sate (23 + 2 + ) =325 —32% 2 —a3 2

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control

Ch. 10: Sliding Mode Control

i 7 —
[ = [
f S0 =
“ i /
I} w /|
J‘ —e=1 4 J —e=1
=01 =01
e=0.01 £=0.01
-2
3 -2 1 0 1 2 3 -3 -2 -1 0 1 2 3
o o

14/25



Chattering & Chattering Avoidance

Note that:
@ The control law w is discontinuous due to v = psign (o)

@ v switches between p and —p depending on the sign of
the sliding variable o

~+ Chattering (because o is always slightly off)
Approximation of the sign-function:
@ (Continuous) saturation: (sats : R — [—1,1])

1, £>1
sate (o) = sat(Z) = 7, —1<2<1
-1, Z<-1

@ (Smooth) Sigmoid function: (sig, : R — [—1,1])
1 — e—O’E

sig. (o) = Ppp——e

2
1 e p—

| /

| s [ —

“ # /

I} @ /

| —e=1 / =1

A 4 _J €
=01 =01
e=0.01 £=0.01
2
3 2 1 0 1 2 3 3 =2 0 1 2 3

Back to the example:

(e =0.1)

ue = —(Ls + %)satg(nc3 +2z42)—32° 3222 —23 -2

4 N ( )

[\ —ux(t
2 ()
N 7 R a(®)]]
-2 i i

0 5 10 15 20
10

\ —u(t)
0 ‘\ﬁ—vwﬂ‘
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Chattering & Chattering Avoidance

Note that:
@ The control law w is discontinuous due to v = psign (o)

@ v switches between p and —p depending on the sign of
the sliding variable o

~+ Chattering (because o is always slightly off)
Approximation of the sign-function:
@ (Continuous) saturation: (sats : R — [—1,1])

1, £>1
sate(0) = sat(Z) = 7, —1<2<1
-1, Z<-1

@ (Smooth) Sigmoid function: (sig, : R — [—1,1])
1 — e—O’E

sig. (o) = Ppp——e

Back to the example: (e = 0.5) (¢ = 0.1)

2
[ ! / —
“ s [ —
/ Zo [
| & /
@ /
—e=1 4 i —e=1
=01 =01
£=0.01 £=0.01
-2
-1 0 1 2 -3 -2 1 0 1 2 3

ue = —(Ls + %)satg(:wc3 +z42)—32° 3222 —23 -2

5

=0 =0
——SI1. mode| TSI mode|
=05 01 =05
e=01 | \ =01
\ wooop |
N X
= = 0.1 k =
Ey -
- 02 s
15 - 05 0 02 0.1 0 0.1 02
T
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Section 3

A More General Structure
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A More General Structure

Consider:
z = fi(z,2)
2= fa(z,2) + g(z,2)(u+ (¢, z, 2))
where
@ f1:R*" xR —R", f1(0,0) =0
@ fo :R"XR—->R,g:R*"xR—>R
@ §:R" xRxRyo —R.
Assumptions:
@ |6(t, @, 2)| < Lg forall (t,z,2) € Rxg x RPH1
@ g(z,2) #0and |g(z,2)| < L forall (z,z) € RrH+1
Terminology:

@ Matched disturbance: The disturbance only appears
in the z-dynamics together with the input «
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A More General Structure

Consider:
z = fi(z,2)
2= fa(z,2) + g(z,2)(u+ (¢, z, 2))
where
@ f1:R" xR —R™, £1(0,0) =0
@ fo :R"XR—->R,g:R*"xR—>R
@ §:R" xRxRyo —R.
Assumptions:
@ |6(t, @, 2)| < Lg forall (t,z,2) € Rxg x RPH1
@ g(z,2) #0and |g(z,2)| < L forall (z,z) € RrH+1
Terminology:

@ Matched disturbance: The disturbance only appears
in the z-dynamics together with the input «

Sliding mode controller design:

@ Design virtual control law z = k(z) such that z = 0 for
= = fi1(z, k(x)) is asymptotically stable

@ Since z is not an input (see backstepping) we need to
consider the error variables: o = z — k(x)
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@ Derivative of the error dynamics:
6=2— %)
= fQ(xv Z) + g(:v, Z)(u + 5(t7 T, Z)) - %((L‘)fl(im Z)
@ Consider candidate Lyapunov function: V(o) = %02:

V(U) = U(fQ(I7 Z) +g(x’ Z)(u + 6(t,r,z)) - %fl(mvz))
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Consider:

T = fl(x, z)
2= fa(z,2) + g(z,2)(u+ (¢, z, 2))
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Sliding mode controller design:

@ Design virtual control law z = k(z) such that z = 0 for
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A More General Structure

Consider: @ Derivative of the error dynamics:

&= fl(waz) - : dk (:L‘)
2= fa(z,2) + g(z,2)(u+ (¢, z, 2))

where
@ f1:R*" xR —R", f1(0,0) =0 @ Consider candidate Lyapunov function: V(o) = %02:
@ fo:R"XR—-R,g:R" xR—=R V(O’) _ cr(fg(ac,z) +g(w,z)(u+6(t,m,z)) _ %fl(%z))
@ 0:R*" xR xRs9—R. ) )
A Lo - @ Cancel known terms and introduce new input v:
ssumptions:
® |5(t,z,2)| < Ls forall (t,z, 2) € Ryq x R u= s (7f2(x, 2)+ 2 (@) f1(x, 2) + v)
n+1 .
- o g(alt,z) # 0and |g(z, 2z)| < Ly forall (z,z) € R ie. V(o) = o(v+ g(z, 2)5(t, , 2))
erminology: ) ) @ Select the new input:
@ Matched disturbance: The disturbance only appears
in the z-dynamics together with the input « v=— (% + L9L5> sign(o)
Sliding mode controller design: . .
@ Design virtual control law z = k(z) such thatz = 0 for @ Thus, with the bounds it holds that:
= = fi1(z, k(x)) is asymptotically stable V(o) < ov+lo|LgLs = —%'o’l = —r+/V(0)
@ Since z is not an input (see backstepping) we need to o
consider the error variables: o = z — k(z) ~ o(t) = 0infinite time.
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A More General Structure (2)

Theorem

Consider the dynamics
z = fi(z, 2)
z= fQ(mr Z) + g(:r, Z)(u + 6(t,m,z))

with f1(0,0) = 0. Assume that g(x, z) # 0 and there exists a constant L, > 0
such that |g(z, z)| < Lg for all (z, z) € R"*+1. Additionally assume that k(z) is
defined such that the origin of & = f(x, k(x)) is asymptotically stable with
k(0) = 0.
Then for all disturbances § satisfying the condition

|6(t,2,2)| < Ls ¥ (t,z,2) € R" x R

for some Lgs > 0, the feedback law

. g(% (_ falw,2) + %(ac)fl(w,z)) - (%

asymptotically stabilizes the origin of the system for all k > 0.
Additionally, the sliding surface o = z — k(x) = 0 is reached no later than

T((0)) = T(2(0) — k(x(0))) = —=12(0) — k(z(0))|-

Lyl
+iuke) S

sign(z — k(z))
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Section 4

Estimating the Disturbance
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Estimating the Disturbance

So far:
@ We have introduced the sliding variable o

@ Through Lyapunov arguments we ensure that (in theory) o(¢) = 0 in
finite time

@ In numerical simulations (or in practice) o will not be exactly zero.
@ To dominate the disturbance, we defined the control law
(~f2(@,2) + Q£ @) f1(w,2)) = (L5 + LaLs) sign(z — k()

u =

9(@, 2)

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 10: Sliding Mode Control 19/25



Estimating the Disturbance

So far:
@ We have introduced the sliding variable o
@ Through Lyapunov arguments we ensure that (in theory) o(t) = 0in
finite time
@ In numerical simulations (or in practice) o will not be exactly zero.
@ To dominate the disturbance, we defined the control law
(~f2(@,2) + Q£ @) f1(w,2)) = (L5 + LaLs) sign(z — k()

u =

9(z, z)
Now:
@ Consider the unimplementable control

1 ok
9(z,2) <—f2(x, z) + %(az)ﬁ(x,z)) — (¢, 2)

(which is called the equivalent control)

Ueq =

@ Note that: (Assuming that ¢ is sufficiently smooth,) on the sliding
surface where ¢ = 0, it follows that u., guarantees o (t) = 0 for all
t > T if o(T") = 0 without the chattering effects

@ Moreover, if § is a smooth function, u.q is a smooth average of the
chattering control «

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control

Ch. 10: Sliding Mode Control

19/25



Estimating the Disturbance

So far:
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@ Through Lyapunov arguments we ensure that (in theory) o(t) = 0in
finite time

@ In numerical simulations (or in practice) o will not be exactly zero.
@ To dominate the disturbance, we defined the control law

(~f2(@,2) + Q£ @) f1(w,2)) = (L5 + LaLs) sign(z — k()

u =

g(z, z)
Now:
@ Consider the unimplementable control

1 ok
9(z,2) (—fz(x, z) + %(Jﬁ)ﬁ(x,z)) — (¢, 2)

(which is called the equivalent control)

Ueq =

@ Note that: (Assuming that ¢ is sufficiently smooth,) on the sliding
surface where ¢ = 0, it follows that u., guarantees o (t) = 0 for all
t > T if o(T") = 0 without the chattering effects

@ Moreover, if § is a smooth function, u.q is a smooth average of the
chattering control «
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Estimation of § through a low-pass filter:

@ |dea: Apply low-pass filter to the
chattering input

v=— (% + LgLé) sign(o).

@ In particular, consider augmented
dynamics (7 > 0 small)

&= fi (.72, Z)
z= f2(Z, Z) + g(z, Z)(ﬁeq + 6(t7 Z, Z))
§=—16+ Lsign(z — k(2))

@ Approximated equivalent control:

(= fa2(@,2)+ 8E (@) f1(2,2))
9(x,2)

~ (5 + Lols) gy

(where we have replaced sign(o) by &)

lleqg =

~ The approximated equivalent control is
an alternative to u
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Estimating the Disturbance (Detour: Low-pass filter)

Remark (Low-pass filter)

The dynamics § = — ¢ + L sign(z — k(x)) represent a
low-pass filter. To see this, consider the one-dimensional
system

b= —%ac + %u

y=z

and its representation in the frequency domain

1
g = Ly-1lh05) = —T _q(s).
9(s) = (s+ £)7 za(s) s (s)

1
p=

For 7 > 0 small we observe from the transfer function
1

G(s) = ——
0= 7T

that for low frequencies the system approximately satisfies
9(s) =~ u(s) and for high frequencies it holds that §(s) ~ 0.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 10: Sliding Mode Control 20/25



Estimating the Disturbance (Example)

47 p—

I —x(t)

Example s \‘ B
Original example with augmented state: (- > 0, small) 2l &)

[
ab:m3+z, |

Z=u+94(t x,z)

€= —1¢+ L sign(z — k(z)) /

@ We follow the steps so far, define z = k(z) = —23 — =, i.e, 25 5 10 15 20
=123 —23 — 2= —x (i.e. x = 0 is exponentially stable). ¢
10
@ The sliding mode control law (from the theorem) ‘

w= (=322 —1)(a3 +2) — (% 1 L5) sign(z + (2% + x)) \

= 3¢5 — 2% — 3222 — 2 — (%—FL(;) sign(z + @3 + z) ‘

@ The approximated equivalent control ’ “‘ /\/\/\
lleg = —32° — 2% — 322z — 2 — (%JrL(;)E 5 \J

0 5 10 15 20
Here: 6(t,z,2) =sin(t), Ly =1,k =2and 7 = 0.1.
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Estimating the Disturbance

Compare equivalent & approximated equivalent control:

1 ok
theq = (—fz(m,z) + —(x)fl(m,z)) 8ty %)
g(z, z) ox
ok
X (= f2(@.2)+ Go (@) f1(2,2)) . ¢
teq = 9(.2) - (ﬁ + LgLé) 9@7)
An estimation of the disturbance:
< K 13
St 2,2) = | —= + LyLs | ——
)= (5 + 1o 5) e
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Estimating the Disturbance

Compare equivalent & approximated equivalent control:

weo = = (<p@ D) + G@AED ) ~dn) 5
fieg = (*fz(IVZ);L(g*i()z)fl(Z,z)) _ (\F " LgL&) - 0.; O‘; ---0 = sin(t)sin(2t)
An estimation of the disturbance: 0: 70‘: /
a K
o(t,z,z) = (ﬁ + LgL(;) ﬁ _15;0 3
15
Example !
Consider (u sliding mode control law) 05
&=+ 2, 70:
Z=u+6(tx,z2) B

€= —5hE + 5 sign(z — k()
Estimated disturbance:

b(t,z,z) = (V2 +1)¢
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Section 5

Output Tracking
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Output Tracking

So far:

@ (Asymptotic) Stabilization of the origin
Now:

@ Tracking of a reference signal
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Output Tracking

So far:

@ (Asymptotic) Stabilization of the origin
Now:

@ Tracking of a reference signal
In particular, consider
@ y=u, =3+ 2, z=u+0(tx2)
@ reference signal - : R>o — R twice cont. diff.
Goal:

@ y(t) = yr(t) fort — oo
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Output Tracking

So far:

@ (Asymptotic) Stabilization of the origin
Now:

@ Tracking of a reference signal
In particular, consider

@ y=uzx, =3+ z, Z=u+06(t,x,z2)
@ reference signal - : R>o — R twice cont. diff.
Goal:

@ y(t) = yr(t) fort — oo
Controller design:
@ Define error dynamics

e(t) = yr(t) —y(t) anddemand e(t) =0

@ and the requirement that e(t) — 0 for t — oo.

@ Define the sliding variable (based on é = —¢)
c=¢te=Gr Yty —y=9r tyr —2° —z—=x
@ Calculating the time derivative:
G=ir+ur—32%c—2—=
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Output Tracking

@ Candidate Lyapunov function V(o) = 102
So far: V(o) =60
@ (Asymptotic) Stabilization of the origin
\ (Asymptotic) ilizati igi — (i +ir— 32— 3222 —u— 8(t, 3, 2)— 2° — 2)
ow:
@ Tracking of a reference signal @ Define the input (with new degree of freedom v):
In particular, consider w=—3z"—3z2z -2 —z—w
Q@ y=ux, =3+ z, Z=u+06(t,x,z2)
@ reference signal - : R>o — R twice cont. diff.
Goal:

@ y(t) = yr(t) fort — oo
Controller design:
@ Define error dynamics

e(t) = yr(t) —y(t) anddemand e(t) =0

@ and the requirement that e(t) — 0 for t — oo.

@ Define the sliding variable (based on é = —¢)
c=¢te=Gr Yty —y=9r tyr —2° —z—=x
@ Calculating the time derivative:
G=ir+ur—32%c—2—=
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Output Tracking

@ Candidate Lyapunov function V(o) = 102

So far: V(o) = 60
@ (Asymptotic) Stabilization of the origin
N (Asymptotic) fizatt 9! = o (jr+9r—32° =322z —u—§(t,x, 2) — a3 — 2)
ow:
@ Tracking of a reference signal @ Define the input (with new degree of freedom v):
In particular, consider u=-3z">—32z—2%—z2—v
Q@ y=ux, =3+ z, Z=u+06(t,x,z2)

@ Assume we do not know the reference y,.(¢) to be
@ reference signal - : R>o — R twice cont. diff. tracked a priori, define the ‘new disturbance’

Goal: Y(t,z,2) = Gr + Yr — 6(t, x, 2)
@ y(t) = yr(t) fort — oo
Controller design:
@ Define error dynamics
e(t) = yr(t) —y(t) anddemand e(t) =0
@ and the requirement that e(t) — 0 for t — oo.
@ Define the sliding variable (based on é = —¢)
c=é¢te=gr—Ytyr—y=Grtyr—2° —z—x
@ Calculating the time derivative:
G =4r+Yr — 322G — 2 — &
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2.

Output Tracking

@ Candidate Lyapunov function V(o) = 102

So far: V(o) =60

@ (Asymptotic) Stabilization of the origin
N (Asymptotic) fizat 9! = o (jr+9r—32° =322z —u—§(t,x, 2) — a3 — 2)

ow:

@ Tracking of a reference signal @ Define the input (with new degree of freedom v):
In particular, consider u=-3z">—32z—2%—z2—v

_ L _ .3 s

®y=z F=2"+z i=utitz,2) @ Assume we do not know the reference y,.(t) to be

@ reference signal - : R>o — R twice cont. diff. tracked a priori, define the ‘new disturbance’
Goal: Y(t,z,2) = Gr + Yr — 6(t, x, 2)

@ y(t) = yr(t) fort — oo

! @ Then, the candidate Lyapunov functions satisfies
Controller design:

@ Define error dynamics V(o) = o(4(t,z,2) +v)
e(t) = yr(t) — y(t) and demand e(r) t200 @ Assume that |¢(t, z, z)| < Ly, for Ly, > 0 & define
@ and the requirement that e(t) — 0 for ¢ — oo. v=—(Ly+ J5)sign(e),  (x>0)
@ Define the sliding variable (based on ¢ = —e) @ Then V(a) satisfies
o=éte=ir gty —y=grty o’ -z V(o) = o(¥(t, 2, 2) = (Ly + Z5) sign(o))

@ Calculating the time derivative:
g <lolLy —lo| (Ly + 25) = —xV/V(@)
G=ir+ur—32%c—2—=
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Output Tracking

Example

Consider the system
y =z, =z + 2, Z=u+6(tx,z)
with output together with the reference signal

(t) = 0.8sin(2t) fort <8,
Yri) =1 1.2sin(4t) fort > 8.

yr is twice continuously differentiable for all ¢ # 8

For the simulation, the disturbance (¢, z, z) = sin(t) is used

The new disturbance ¢ = - + y — § satisfies |¢(¢t, z, z)| < 25 for
all ¢ # 8.

Top figure: L, = 25

Bottom figure: L, =1
Additionally: k = 2
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