Introduction to Nonlinear Control

Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett School of Engineering, Australian National University, Canberra, Australia

Part II:

Chapter 10: Sliding Mode Control 10.1 Finite-Time Stability 10.2 Basic Sliding Mode Control 10.3 A More General Setting 10.4 Estimating the Disturbance 10.5 Output Tracking

Sliding Mode Control

Nonlinear Systems - Fundamentals

[Finite-Time Stability](#page-4-0)

² [Basic Sliding Mode Control](#page-13-0)

- **•** [Terminology](#page-23-0)
- [Chattering & Chattering Avoidance](#page-26-0)

³ [A More General Structure](#page-31-0)

[Estimating the Disturbance](#page-40-0)

⁵ [Output Tracking](#page-48-0)

We consider systems of the form

$$
\begin{aligned} \dot{x} &= f(x, u, \delta(t, x)) \\ y &= h(x) \end{aligned}
$$

with

- state $x \in \mathbb{R}^n$
- input $u \in \mathbb{R}^m$
- \bullet output $y \in \mathbb{R}$
- **•** potentially time and state dependent unknown disturbance δ : $\mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}^n$
- We will be interested in
	- \bullet stabilizing the origin
	- output tracking

despite the presence of the disturbance.

⇝ First we have to discuss *finite-time stability*.

Section 1

[Finite-Time Stability](#page-4-0)

Finite-Time Stability

Consider $(f : \mathbb{R}^n \to \mathbb{R}^n)$

 $\dot{x} = f(x), \quad x(0) = x_0 \in \mathbb{R}^n$

We assume $f(0) = 0$, and thus $x^e = 0$ is an equilibrium.

Definition (Finite-time stability)

The origin is said to be finite-time stable if there exist an open neighborhood $\mathcal{D} \subset \mathbb{R}^n$ of the origin and a function $T: \mathcal{D}\backslash\{0\} \to (0,\infty)$, called the settling-time function, such that the following statements hold:

• (Stability) For every $\varepsilon > 0$ there exists a $\delta > 0$ such that, for every $x(0) = x_0 \in \mathcal{B}_\delta \cap \mathcal{D}\backslash\{0\}, x(t) \in \mathcal{B}_\varepsilon$ for all $t \in [0, T(x_0))$.

(Finite-time convergence) For every $x(0) = x_0 \in \mathcal{D}\backslash\{0\}, x(\cdot)$ is defined on $[0, T(x_0))$, $x(t) \in \mathcal{D}\backslash\{0\}$ for all $t \in [0, T(x_0))$, and $x(t) \to 0$ for $t \to T(x_0)$.

The origin is said to be a globally finite-time stable if it is finite-time stable with $\mathcal{D} = \mathbb{R}^n$.

Finite-Time Stability

Consider $(f : \mathbb{R}^n \to \mathbb{R}^n)$

 $\dot{x} = f(x), \quad x(0) = x_0 \in \mathbb{R}^n$

We assume $f(0) = 0$, and thus $x^e = 0$ is an equilibrium.

Definition (Finite-time stability)

The origin is said to be finite-time stable if there exist an open neighborhood $\mathcal{D} \subset \mathbb{R}^n$ of the origin and a function $T : \mathcal{D}\backslash\{0\} \to (0,\infty)$, called the settling-time function, such that the following statements hold:

• (Stability) For every $\varepsilon > 0$ there exists a $\delta > 0$ such that, for every $x(0) = x_0 \in \mathcal{B}_\delta \cap \mathcal{D}\backslash\{0\}, x(t) \in \mathcal{B}_\varepsilon$ for all $t \in [0, T(x_0))$.

(Finite-time convergence) For every $x(0) = x_0 \in \mathcal{D}\backslash\{0\}, x(\cdot)$ is defined on $[0, T(x_0))$, $x(t) \in \mathcal{D}\backslash\{0\}$ for all $t \in [0, T(x_0))$, and $x(t) \to 0$ for $t \to T(x_0)$.

The origin is said to be a globally finite-time stable if it is finite-time stable with $\mathcal{D} = \mathbb{R}^n$.

Example

Consider

$$
\dot{x} = f(x) = -\sqrt[3]{x^2}
$$
, (with $f(0) = 0$)

Note that

- \bullet f is not Lipschitz at the origin
- uniqueness of solutions can only be guaranteed if $x(t) \neq 0$

We can verify that

$$
x(t) = -\frac{1}{27}(t - 3\,\text{sign}(x(0))\sqrt[3]{|x(0)|})^3
$$

is a solution for all $x \in \mathbb{R}$. However, for $x(0) > 0$

$$
x(t) = \begin{cases} -\frac{1}{27}(t - 3\sqrt[3]{|x(0)|})^3 & \text{if } t \le 3\sqrt[3]{|x(0)|} \\ 0 & \text{if } t \ge 3\sqrt[3]{|x(0)|} \end{cases}
$$

is also a solution.

Finite-Time Stability (2)

Example

Consider

$$
\dot{x} = f(x) = -\sqrt[3]{x^2}
$$
, (with $f(0) = 0$)

Note that

- \bullet f is not Lipschitz at the origin
- uniqueness of solutions can only be guaranteed if $x(t) = 0$

We can verify that

$$
x(t) = -\frac{1}{27}(t - 3\,\text{sign}(x(0))\sqrt[3]{|x(0)|})^3
$$

is a solution for all $x \in \mathbb{R}$. However, for $x(0) > 0$

$$
x(t) = \begin{cases} -\frac{1}{27}(t - 3\sqrt[3]{|x(0)|})^3 & \text{if } t \le 3\sqrt[3]{|x(0)|} \\ 0 & \text{if } t \ge 3\sqrt[3]{|x(0)|} \end{cases}
$$

is also a solution.

Finite-Time Stability (3)

Example

Consider

$$
\dot{x} = f(x) = -\operatorname{sign}(x)\sqrt[3]{x^2}.
$$

We can verify

$$
x(t) = \begin{cases} -\frac{1}{27} \operatorname{sign}(x(0)) (t - 3\sqrt[3]{|x(0)|})^3 & \text{if } t \leq 3\sqrt[3]{|x(0)|} \\ 0 & \text{if } t \geq 3\sqrt[3]{|x(0)|} \end{cases}
$$

 \rightsquigarrow The ODE admits unique solutions Once the equilibrium is reached, the inequalities

$$
-\operatorname{sign}(x)\sqrt[3]{x^2} < 0 \text{ for all } x > 0, \text{ and}
$$
\n
$$
-\operatorname{sign}(x)\sqrt[3]{x^2} > 0 \text{ for all } x < 0
$$

ensure that the origin is attractive. It follows from the explicit solution that

• The origin is finite-time stable

• Setting time
$$
T(x) = 3\sqrt[3]{|x|}
$$

Finite-Time Stability (4)

Theorem (Lyapunov fcn for finite-time stability)

Consider $\dot{x} = f(x)$ *with* $f(0) = 0$ *. Assume there exist a continuous function* $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ *, which is continuously differentiable on* $\mathbb{R}^n \setminus \{0\}$, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ *and a constant* $\kappa > 0$ *such that*

$$
\alpha_1(|x|) \le V(x) \le \alpha_2(|x|),
$$

$$
\dot{V}(x) = \langle \nabla V(x), f(x) \rangle \le -\kappa \sqrt{V(x)} \qquad \forall x \neq 0.
$$

Then the origin is globally finite-time stable. Moreover, the settling-time $T(x): \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ *is upper bounded by*

 $T(x) \leq \frac{2}{\kappa} \sqrt{\alpha_2(|x|)}$.

Finite-Time Stability (4)

Theorem (Lyapunov fcn for finite-time stability)

Consider $\dot{x} = f(x)$ *with* $f(0) = 0$ *. Assume there exist a continuous function* $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$, which is continuously *differentiable on* $\mathbb{R}^n \setminus \{0\}$, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ *and a constant* $\kappa > 0$ *such that*

$$
\alpha_1(|x|) \le V(x) \le \alpha_2(|x|),
$$

$$
\dot{V}(x) = \langle \nabla V(x), f(x) \rangle \le -\kappa \sqrt{V(x)} \qquad \forall x \neq 0.
$$

Then the origin is globally finite-time stable. Moreover, the settling-time $T(x): \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ *is upper bounded by*

 $T(x) \leq \frac{2}{\kappa} \sqrt{\alpha_2(|x|)}$.

Proof

Comparison principle:

$$
\int_0^t \frac{dV(x(t))}{\sqrt{V(x(t))}} \le -\int_0^t \kappa dt
$$

leads to

$$
\sqrt{V(x(t))} \le \sqrt{V(x(0))} - \frac{\kappa t}{2}.
$$

Using the lower and upper bound

$$
|x(t)|\leq \alpha_1^{-1}\left(\left(\sqrt{\alpha_2(|x(0)|)}-\frac{\kappa t}{2}\right)^2\right)
$$

 \rightsquigarrow Finite-time convergence Moreover,

$$
\sqrt{\alpha_2(|x(0)|)}-\frac{\kappa t}{2}=0,
$$
 implies $|x(T)|\leq 0$ for all
 $T\geq \frac{2}{\kappa}\sqrt{\alpha_2(|x(0)|)}$

 \Box

Finite-Time Stability (4)

Theorem (Lyapunov fcn for finite-time stability)

Consider $\dot{x} = f(x)$ *with* $f(0) = 0$ *. Assume there exist a continuous function* $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$, which is continuously *differentiable on* $\mathbb{R}^n \setminus \{0\}$, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ *and a constant* $\kappa > 0$ such that

$$
\alpha_1(|x|) \le V(x) \le \alpha_2(|x|),
$$

$$
\dot{V}(x) = \langle \nabla V(x), f(x) \rangle \le -\kappa \sqrt{V(x)} \qquad \forall x \neq 0.
$$

Then the origin is globally finite-time stable. Moreover, the settling-time $T(x): \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ *is upper bounded by*

 $T(x) \leq \frac{2}{\kappa} \sqrt{\alpha_2(|x|)}$.

For quadratic Lyapunov functions: $(a_1, a_2 > 0)$

$$
a_1|x|^2 \le V(x) \le a_2|x|^2
$$

\n
$$
|x(t)| \le \frac{1}{\sqrt{a_1}} \left(\sqrt{a_2}|x(0)| - \frac{\kappa t}{2}\right)
$$

\n
$$
T(|x|) \le |x|\frac{2\sqrt{a_2}}{\kappa}
$$

 \mathcal{E}

Proof

Comparison principle:

$$
\int_0^t \frac{dV(x(t))}{\sqrt{V(x(t))}} \le -\int_0^t \kappa \, dt
$$

leads to

$$
\sqrt{V(x(t))} \le \sqrt{V(x(0))} - \frac{\kappa t}{2}.
$$

Using the lower and upper bound

$$
|x(t)| \leq \alpha_1^{-1} \left(\left(\sqrt{\alpha_2(|x(0)|)} - \frac{\kappa t}{2} \right)^2 \right)
$$

 \rightsquigarrow Finite-time convergence Moreover,

$$
\sqrt{\alpha_2(|x(0)|)}-\frac{\kappa t}{2}=0,
$$
 implies $|x(T)|\leq 0$ for all
 $T\geq \frac{2}{\kappa}\sqrt{\alpha_2(|x(0)|)}$

Г

Example

Consider again

$$
\dot{x} = f(x) = -\operatorname{sign}(x)\sqrt[3]{x^2}
$$

Candidate Lyapunov function (continuously differentiable for all $x \neq 0$)

$$
V(x) = \sqrt[3]{x^2}
$$

Define $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$,

$$
\alpha_1(s) = \alpha_2(s) = \sqrt[3]{x^2}
$$

Then, for all $x \neq 0$, it holds that

$$
\dot{V}(x) = \langle \nabla V(x), -\text{sign}(x) \sqrt[3]{x^2} \rangle = \frac{2}{3} \text{sign}(x) |x|^{-\frac{1}{3}} (-\text{sign}(x) |x|^{\frac{2}{3}})
$$

= $-\frac{2}{3} |x|^{\frac{1}{3}} = -\frac{2}{3} \sqrt{V(x)}$

 \rightsquigarrow *V* is a Lyapunov function & the origin is finite-time stable Bound on the settling time

$$
T(x) \le \frac{2}{\kappa} \sqrt{\alpha_2(|x|)} = \frac{2}{\frac{2}{3}} \sqrt{|x|^{\frac{2}{3}}} = 3\sqrt[3]{|x|}
$$

Section 2

[Basic Sliding Mode Control](#page-13-0)

As an example, consider:

$$
\dot{x} = x^3 + z,
$$

$$
\dot{z} = u + \delta(t, x, z).
$$

- **O** Unknown disturbance $\delta : \mathbb{R}_{\geq 0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that $|\delta(t, x, z)| \leq L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^2$
- \bullet Thus, δ is bounded but not necessarily continuous

As an example, consider:

$$
\dot{x} = x^3 + z,
$$

$$
\dot{z} = u + \delta(t, x, z).
$$

- **O** Unknown disturbance δ : $\mathbb{R}_{>0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that $|\delta(t, x, z)| \leq L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^2$
- \bullet Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the x -subsystem

- \bullet I.e., we want x to behave as $\dot{x} = -x$ (for all bounded disturbances)
- The desired behavior implies $\dot{x} + x = 0$
- **o** Thus

$$
x^3 + z + x = 0
$$

As an example, consider:

$$
\dot{x} = x^3 + z,
$$

$$
\dot{z} = u + \delta(t, x, z).
$$

- **O** Unknown disturbance δ : $\mathbb{R}_{>0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that $|\delta(t, x, z)| \leq L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^2$
- \bullet Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the x -subsystem

- \bullet I.e., we want x to behave as $\dot{x} = -x$ (for all bounded disturbances)
- The desired behavior implies $\dot{x} + x = 0$
- **o** Thus

$$
x^3 + z + x = 0
$$

Approach: Define a new state

$$
\sigma \doteq x^3 + z + x \quad \text{and} \quad V(\sigma) = \frac{1}{2}\sigma^2
$$

a Then

$$
\dot{V}(\sigma) = \sigma \dot{\sigma} = \sigma (3x^2 \dot{x} + \dot{z} + \dot{x})
$$

= $\sigma (3x^5 + 3x^2 z + u + \delta(t, x, z) + x^3 + z).$

As an example, consider:

$$
\dot{x} = x^3 + z,
$$

$$
\dot{z} = u + \delta(t, x, z).
$$

- **O** Unknown disturbance δ : $\mathbb{R}_{>0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that $|\delta(t, x, z)| \leq L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^2$
- \bullet Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the x -subsystem

- \bullet I.e., we want x to behave as $\dot{x} = -x$ (for all bounded disturbances)
- The desired behavior implies $\dot{x} + x = 0$
- **o** Thus

$$
x^3 + z + x = 0
$$

Approach: Define a new state

$$
\sigma \doteq x^3 + z + x \quad \text{and} \quad V(\sigma) = \frac{1}{2}\sigma^2
$$

a Then

$$
\dot{V}(\sigma) = \sigma \dot{\sigma} = \sigma (3x^2 \dot{x} + \dot{z} + \dot{x})
$$

= $\sigma (3x^5 + 3x^2 z + u + \delta(t, x, z) + x^3 + z).$

O To cancel the known terms define

$$
u = v - 3x^5 - 3x^2z - x^3 - z
$$

so that $\dot{V}(\sigma) = \sigma(v + \delta(t, x, z))$ (with new input v)

As an example, consider:

$$
\dot{x} = x^3 + z,
$$

$$
\dot{z} = u + \delta(t, x, z).
$$

- **O** Unknown disturbance δ : $\mathbb{R}_{>0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that $|\delta(t, x, z)| \leq L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^2$
- \bullet Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the x -subsystem

- \bullet I.e., we want x to behave as $\dot{x} = -x$ (for all bounded disturbances)
- The desired behavior implies $\dot{x} + x = 0$
- **o** Thus

$$
x^3 + z + x = 0
$$

Approach: Define a new state

 $\sigma \doteq x^3 + z + x$ and $V(\sigma) = \frac{1}{2}\sigma^2$

a Then

$$
\dot{V}(\sigma) = \sigma \dot{\sigma} = \sigma \left(3x^2 \dot{x} + \dot{z} + \dot{x}\right)
$$

= $\sigma \left(3x^5 + 3x^2 z + u + \delta(t, x, z) + x^3 + z\right).$

O To cancel the known terms define

$$
u = v - 3x^5 - 3x^2z - x^3 - z
$$

so that $\dot{V}(\sigma) = \sigma(v + \delta(t, x, z))$ (with new input v)

• Selecting $v = -\rho \operatorname{sign}(\sigma)$, $\rho > 0$, provides the estimate

$$
\dot{V}(\sigma) = \sigma(-\rho \operatorname{sign}(\sigma) + \delta(t, x, z)) = -\rho|\sigma| + \sigma\delta(t, x, z)
$$

$$
\leq -\rho|\sigma| + L_{\delta}|\sigma| = -(\rho - L_{\delta})|\sigma|.
$$

• Finally, with
$$
\rho = L_{\delta} + \frac{\kappa}{\sqrt{2}}, \kappa > 0
$$
, we have

$$
\dot{V}(\sigma) \le -\frac{\kappa |\sigma|}{\sqrt{2}} = -\alpha \sqrt{V(\sigma)} \rightsquigarrow \text{finite-time stab. of } \sigma = 0
$$

As an example, consider:

$$
\dot{x} = x^3 + z,
$$

$$
\dot{z} = u + \delta(t, x, z).
$$

- **O** Unknown disturbance δ : $\mathbb{R}_{>0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that $|\delta(t, x, z)| \leq L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^2$
- \bullet Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the x -subsystem

- \bullet I.e., we want x to behave as $\dot{x} = -x$ (for all bounded disturbances)
- The desired behavior implies $\dot{x} + x = 0$
- **o** Thus

$$
x^3 + z + x = 0
$$

Approach: Define a new state

$$
\sigma \doteq x^3 + z + x \quad \text{and} \quad V(\sigma) = \frac{1}{2}\sigma^2
$$

a Then

$$
\dot{V}(\sigma) = \sigma \dot{\sigma} = \sigma \left(3x^2 \dot{x} + \dot{z} + \dot{x}\right)
$$

= $\sigma \left(3x^5 + 3x^2 z + u + \delta(t, x, z) + x^3 + z\right).$

O To cancel the known terms define

$$
u = v - 3x^5 - 3x^2z - x^3 - z
$$

so that $\dot{V}(\sigma) = \sigma(v + \delta(t, x, z))$ (with new input v)

• Selecting $v = -\rho \operatorname{sign}(\sigma)$, $\rho > 0$, provides the estimate

$$
\dot{V}(\sigma) = \sigma(-\rho \operatorname{sign}(\sigma) + \delta(t, x, z)) = -\rho|\sigma| + \sigma\delta(t, x, z)
$$

$$
\leq -\rho|\sigma| + L_{\delta}|\sigma| = -(\rho - L_{\delta})|\sigma|.
$$

• Finally, with
$$
\rho = L_{\delta} + \frac{\kappa}{\sqrt{2}}, \kappa > 0
$$
, we have

$$
\dot{V}(\sigma) \le -\frac{\kappa |\sigma|}{\sqrt{2}} = -\alpha \sqrt{V(\sigma)} \rightsquigarrow \text{finite-time stab. of } \sigma = 0
$$

• Note that the control

$$
u = -\left(L_{\delta} + \frac{\kappa}{\sqrt{2}}\right) \text{sign}\left(x^{3} + z + x\right) - 3x^{5} - 3x^{2}z - x^{3} - z
$$

is independent of the term $\delta(t, x, z)$.

Consider:

$$
\dot{x} = x^3 + z,
$$

$$
\dot{z} = u + \delta(t, x, z).
$$

Control law:

$$
u = -\left(L_{\delta} + \frac{\kappa}{\sqrt{2}}\right) \text{sign}\left(x^{3} + z + x\right) - 3x^{5} - 3x^{2}z - x^{3} - z
$$

Parameter selection for the simulations:

- $L_{\delta} = 1$ and $\kappa = 2$
- $\delta(t, x, z) = \sin(t)$ (top)
- $\delta(t, x, z) = \text{sign}(\cos(2t)\sin(2t))$ (bottom)

Consider:

$$
\dot{x} = x^3 + z,
$$

$$
\dot{z} = u + \delta(t, x, z).
$$

Control law:

$$
u = -\left(L_{\delta} + \frac{\kappa}{\sqrt{2}}\right) \text{sign}\left(x^{3} + z + x\right) - 3x^{5} - 3x^{2}z - x^{3} - z
$$

Parameter selection for the simulations:

- $L_{\delta} = 1$ and $\kappa = 2$
- $\delta(t, x, z) = \sin(t)$ (top)
- $\delta(t, x, z) = \text{sign}(\cos(2t)\sin(2t))$ (bottom)

We observe that

- \bullet σ converges to zero in finite-time
- \bullet Afterwards (x, z) asymptotically approach the origin
- Since the ordinary differential equation is solved numerically, σ is not exactly zero!

Consider:

$$
\dot{x} = x^3 + z,
$$

$$
\dot{z} = u + \delta(t, x, z).
$$

Control law:

$$
u=-\left(L_{\delta}+\tfrac{\kappa}{\sqrt{2}}\right)\text{sign}\left(x^{3}+z+x\right)-3x^{5}-3x^{2}z-x^{3}-z
$$

Parameter selection for the simulations:

- $L_{\delta} = 1$ and $\kappa = 2$
- $\delta(t, x, z) = \sin(t)$ (top)
- $\delta(t, x, z) = \text{sign}(\cos(2t)\sin(2t))$ (bottom)

We observe that

- \bullet σ converges to zero in finite-time
- \bullet Afterwards (x, z) asymptotically approach the origin
- Since the ordinary differential equation is solved numerically, σ is not exactly zero!

Convergence structure:

Terminology

- **·** Sliding variable: $σ$
- **o** Sliding surface

 $\{(x, z) \in \mathbb{R}^2 : \sigma(x, z) = 0, (x, z) \in \mathbb{R}^2\},\$

 \rightarrow The sliding variable, and thus implicitly the sliding surface, is defined such that the origin of the x-subsystem is exponentially stable if $\sigma(t) = 0$, $t \in \mathbb{R}_{\geq 0}$, is satisfied.

Terminology

- **•** Sliding variable: $σ$
- **Sliding surface**

 $\{(x, z) \in \mathbb{R}^2 : \sigma(x, z) = 0, (x, z) \in \mathbb{R}^2\},\$

- \rightarrow The sliding variable, and thus implicitly the sliding surface, is defined such that the origin of the x-subsystem is exponentially stable if $\sigma(t) = 0$, $t \in \mathbb{R}_{\geq 0}$, is satisfied.
- We have defined σ based on the condition $\dot{x} = -x$. We could have also used $\dot{x} = -2x$ or $\dot{x} = -x^3$ (asymptotic stability), for example.
- \bullet The control law u is derived such that states converge to the sliding surface in finite-time.

Terminology

- **•** Sliding variable: $σ$
- **Sliding surface**

 $\{(x, z) \in \mathbb{R}^2 : \sigma(x, z) = 0, (x, z) \in \mathbb{R}^2\},\$

- The sliding variable, and thus implicitly the sliding surface, is defined such that the origin of the x-subsystem is exponentially stable if $\sigma(t) = 0$, $t \in \mathbb{R}_{\geq 0}$, is satisfied.
- We have defined σ based on the condition $\dot{x} = -x$. We could have also used $\dot{x} = -2x$ or $\dot{x} = -x^3$ (asymptotic stability), for example.
- \bullet The control law u is derived such that states converge to the sliding surface in finite-time.
- \rightsquigarrow Convergence of $\sigma(t) \rightarrow 0$ is called the *reaching phase*.
- \bullet On the sliding surface the selection of u ensures that the dynamics behave like $\dot{x} = -x$.
- ⇝ This is called *sliding phase* and guarantees asymptotic stability of the origin for the overall closed-loop system.

Note that:

- The control law u is discontinuous due to $v = \rho \text{sign}(\sigma)$
- v switches between ρ and $-\rho$ depending on the sign of the sliding variable σ
- \rightarrow Chattering (because σ is always slightly off)

Note that:

- The control law u is discontinuous due to $v = \rho \text{sign}(\sigma)$
- v switches between ρ and $-\rho$ depending on the sign of the sliding variable σ
- \rightarrow Chattering (because σ is always slightly off)

Approximation of the sign-function:

 \bullet (Continuous) saturation: (sat_{ε} : ℝ → [-1, 1])

$$
\mathrm{sat}_\varepsilon(\sigma)=\mathrm{sat}(\tfrac{x}{\varepsilon})=\left\{\begin{array}{cc}1,&\tfrac{\sigma}{\varepsilon}\geq1\\\tfrac{\sigma}{\varepsilon},&-1\leq\frac{\sigma}{\varepsilon}\leq1\\-1,&\tfrac{\sigma}{\varepsilon}\leq-1\end{array}\right.
$$

(Smooth) *Sigmoid function*: $(\text{sig}_{\varepsilon} : \mathbb{R} \to [-1, 1])$

$$
\mathrm{sig}_\varepsilon(\sigma)=\frac{1-e^{-\sigma\varepsilon}}{1+e^{-\sigma/\varepsilon}}
$$

Note that:

- The control law u is discontinuous due to $v = \rho \operatorname{sign}(\sigma)$
- v switches between ρ and $-\rho$ depending on the sign of the sliding variable σ
- \rightarrow Chattering (because σ is always slightly off)

Approximation of the sign-function:

 \bullet (Continuous) saturation: (sat_{ε} : ℝ → [-1, 1])

$$
\mathrm{sat}_\varepsilon(\sigma)=\mathrm{sat}(\tfrac{x}{\varepsilon})=\left\{\begin{array}{cc}1,&\tfrac{\sigma}{\varepsilon}\geq1\\\tfrac{\sigma}{\varepsilon},&-1\leq\frac{\sigma}{\varepsilon}\leq1\\-1,&\tfrac{\sigma}{\varepsilon}\leq-1\end{array}\right.
$$

(Smooth) *Sigmoid function*: $(\text{sig}_{\varepsilon} : \mathbb{R} \to [-1, 1])$

$$
\mathrm{sig}_\varepsilon(\sigma)=\frac{1-e^{-\sigma\varepsilon}}{1+e^{-\sigma/\varepsilon}}
$$

Back to the example: $(\varepsilon = 0.5)$

$$
u_\varepsilon = -(L_\delta + \frac{\kappa}{\sqrt{2}})\operatorname{sat}_\varepsilon (x^3+z+x) - 3x^5 - 3x^2z - x^3 - z
$$

Note that:

- The control law u is discontinuous due to $v = \rho \text{sign}(\sigma)$
- v switches between ρ and $-\rho$ depending on the sign of the sliding variable σ
- \rightarrow Chattering (because σ is always slightly off)

Approximation of the sign-function:

 \bullet (Continuous) saturation: (sat_{$ε$}: $\mathbb{R} \rightarrow [-1, 1]$)

$$
\mathrm{sat}_\varepsilon(\sigma)=\mathrm{sat}(\tfrac{x}{\varepsilon})=\left\{\begin{array}{cc}1,&\tfrac{\sigma}{\varepsilon}\geq1\\\tfrac{\sigma}{\varepsilon},&-1\leq\frac{\sigma}{\varepsilon}\leq1\\-1,&\tfrac{\sigma}{\varepsilon}\leq-1\end{array}\right.
$$

(Smooth) *Sigmoid function*: $(\text{sig}_{\varepsilon} : \mathbb{R} \to [-1, 1])$

$$
\mathrm{sig}_\varepsilon(\sigma)=\frac{1-e^{-\sigma\varepsilon}}{1+e^{-\sigma/\varepsilon}}
$$

Note that:

- The control law u is discontinuous due to $v = \rho \operatorname{sign}(\sigma)$
- v switches between ρ and $-\rho$ depending on the sign of the sliding variable σ
- \rightarrow Chattering (because σ is always slightly off)

Approximation of the sign-function:

 \bullet (Continuous) saturation: (sat_{ε} : ℝ → [-1, 1])

$$
\mathrm{sat}_\varepsilon(\sigma)=\mathrm{sat}(\tfrac{x}{\varepsilon})=\left\{\begin{array}{cc}1,&\tfrac{\sigma}{\varepsilon}\geq1\\\tfrac{\sigma}{\varepsilon},&-1\leq\frac{\sigma}{\varepsilon}\leq1\\-1,&\tfrac{\sigma}{\varepsilon}\leq-1\end{array}\right.
$$

(Smooth) *Sigmoid function*: $(\text{sig}_{\varepsilon} : \mathbb{R} \to [-1, 1])$

$$
\mathrm{sig}_\varepsilon(\sigma)=\frac{1-e^{-\sigma\varepsilon}}{1+e^{-\sigma/\varepsilon}}
$$

Back to the example: $(\varepsilon = 0.5)$ $(\varepsilon = 0.1)$

$$
u_\varepsilon = -(L_\delta + \tfrac{\kappa}{\sqrt{2}})\operatorname{sat}_\varepsilon (x^3+z+x) - 3x^5 - 3x^2z - x^3 - z
$$

Section 3

[A More General Structure](#page-31-0)

Consider:

$$
\dot{x} = f_1(x, z) \n\dot{z} = f_2(x, z) + g(x, z)(u + \delta(t, x, z))
$$

where

- \bullet $f_1 : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$, $f_1(0, 0) = 0$
- \bullet $f_2 : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, a : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$
- \bullet $\delta : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}_{\geq 0} \to \mathbb{R}$.

Assumptions:

- \bullet $|\delta(t, x, z)| \leq L_{\delta}$ for all $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^{n+1}$
- \bullet $g(x, z) \neq 0$ and $|g(x, z)| \leq L_q$ for all $(x, z) \in \mathbb{R}^{n+1}$

Terminology:

• Matched disturbance: The disturbance only appears in the z-dynamics together with the input u

Consider:

$$
\dot{x} = f_1(x, z) \n\dot{z} = f_2(x, z) + g(x, z)(u + \delta(t, x, z))
$$

where

- \bullet $f_1 : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$, $f_1(0, 0) = 0$
- \bullet $f_2 : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, a : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$
- \bullet δ : $\mathbb{R}^n \times \mathbb{R} \times \mathbb{R}_{\geq 0} \to \mathbb{R}$.

Assumptions:

- \bullet $|\delta(t, x, z)| \leq L_{\delta}$ for all $(t, x, z) \in \mathbb{R}_{>0} \times \mathbb{R}^{n+1}$
- \bullet $q(x, z) \neq 0$ and $|q(x, z)| \leq L_q$ for all $(x, z) \in \mathbb{R}^{n+1}$

Terminology:

• Matched disturbance: The disturbance only appears in the z -dynamics together with the input u

Sliding mode controller design:

- \bullet Design virtual control law $z = k(x)$ such that $x = 0$ for $\dot{x} = f_1(x, k(x))$ is asymptotically stable
- \bullet Since z is not an input (see backstepping) we need to consider the error variables: $\sigma = z - k(x)$

Consider:

$$
\begin{aligned}\n\dot{x} &= f_1(x, z) \\
\dot{z} &= f_2(x, z) + g(x, z)(u + \delta(t, x, z))\n\end{aligned}
$$

where

- \bullet $f_1 : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$, $f_1(0, 0) = 0$
- \bullet $f_2 : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, a : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$
- \bullet δ : $\mathbb{R}^n \times \mathbb{R} \times \mathbb{R}_{\geq 0} \to \mathbb{R}$.

Assumptions:

- \bullet $|\delta(t, x, z)| \leq L_{\delta}$ for all $(t, x, z) \in \mathbb{R}_{>0} \times \mathbb{R}^{n+1}$
- \bullet $q(x, z) \neq 0$ and $|q(x, z)| \leq L_q$ for all $(x, z) \in \mathbb{R}^{n+1}$

Terminology:

• Matched disturbance: The disturbance only appears in the z -dynamics together with the input u

Sliding mode controller design:

- \bullet Design virtual control law $z = k(x)$ such that $x = 0$ for $\dot{x} = f_1(x, k(x))$ is asymptotically stable
- \bullet Since z is not an input (see backstepping) we need to consider the error variables: $\sigma = z - k(x)$

O Derivative of the error dynamics:

$$
\dot{\sigma} = \dot{z} - \frac{dk}{dt}(x)
$$

= $f_2(x, z) + g(x, z)(u + \delta(t, x, z)) - \frac{\partial k}{\partial x}(x)f_1(x, z)$

Consider:

$$
\dot{x} = f_1(x, z) \n\dot{z} = f_2(x, z) + g(x, z)(u + \delta(t, x, z))
$$

where

- \bullet $f_1 : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$, $f_1(0, 0) = 0$
- \bullet $f_2 : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, a : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$
- \bullet δ : $\mathbb{R}^n \times \mathbb{R} \times \mathbb{R}_{\geq 0} \to \mathbb{R}$.

Assumptions:

- \bullet $|\delta(t, x, z)| \leq L_{\delta}$ for all $(t, x, z) \in \mathbb{R}_{>0} \times \mathbb{R}^{n+1}$
- \bullet $q(x, z) \neq 0$ and $|q(x, z)| \leq L_q$ for all $(x, z) \in \mathbb{R}^{n+1}$

Terminology:

• Matched disturbance: The disturbance only appears in the z -dynamics together with the input u

Sliding mode controller design:

- **O** Design virtual control law $z = k(x)$ such that $x = 0$ for $\dot{x} = f_1(x, k(x))$ is asymptotically stable
- \bullet Since z is not an input (see backstepping) we need to consider the error variables: $\sigma = z - k(x)$

O Derivative of the error dynamics:

$$
\dot{\sigma} = \dot{z} - \frac{dk}{dt}(x)
$$

= $f_2(x, z) + g(x, z)(u + \delta(t, x, z)) - \frac{\partial k}{\partial x}(x)f_1(x, z)$

Consider candidate Lyapunov function: $V(\sigma) = \frac{1}{2}\sigma^2$:

$$
\dot{V}(\sigma)=\sigma\big(f_2(x,z)+g(x,z)(u+\delta(t,x,z))-\tfrac{\partial k}{\partial x}f_1(x,z)\big)
$$

Consider:

$$
\dot{x} = f_1(x, z) \n\dot{z} = f_2(x, z) + g(x, z)(u + \delta(t, x, z))
$$

where

- \bullet $f_1 : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$, $f_1(0, 0) = 0$
- \bullet $f_2 : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, a : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$
- \bullet δ : $\mathbb{R}^n \times \mathbb{R} \times \mathbb{R}_{\geq 0} \to \mathbb{R}$.

Assumptions:

- \bullet $|\delta(t, x, z)| \leq L_{\delta}$ for all $(t, x, z) \in \mathbb{R}_{>0} \times \mathbb{R}^{n+1}$
- \bullet $q(x, z) \neq 0$ and $|q(x, z)| \leq L_q$ for all $(x, z) \in \mathbb{R}^{n+1}$

Terminology:

• Matched disturbance: The disturbance only appears in the z -dynamics together with the input u

Sliding mode controller design:

- **O** Design virtual control law $z = k(x)$ such that $x = 0$ for $\dot{x} = f_1(x, k(x))$ is asymptotically stable
- \bullet Since z is not an input (see backstepping) we need to consider the error variables: $\sigma = z - k(x)$

O Derivative of the error dynamics:

$$
\dot{\sigma} = \dot{z} - \frac{dk}{dt}(x)
$$

= $f_2(x, z) + g(x, z)(u + \delta(t, x, z)) - \frac{\partial k}{\partial x}(x)f_1(x, z)$

Consider candidate Lyapunov function: $V(\sigma) = \frac{1}{2}\sigma^2$:

 $\dot{V}(\sigma) = \sigma(f_2(x, z) + g(x, z)(u + \delta(t, x, z)) - \frac{\partial k}{\partial x}f_1(x, z))$

 \bullet Cancel known terms and introduce new input v :

$$
u = \frac{1}{g(x,z)} \left(-f_2(x,z) + \frac{\partial k}{\partial x}(x) f_1(x,z) + v \right)
$$

i.e.,
$$
\dot{V}(\sigma) = \sigma(v + g(x,z)\delta(t,x,z))
$$

Consider:

$$
\begin{aligned} \dot{x} &= f_1(x, z) \\ \dot{z} &= f_2(x, z) + g(x, z)(u + \delta(t, x, z)) \end{aligned}
$$

where

- \bullet $f_1 : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$, $f_1(0, 0) = 0$
- \bullet $f_2 : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, a : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$
- \bullet δ : $\mathbb{R}^n \times \mathbb{R} \times \mathbb{R}_{\geq 0} \to \mathbb{R}$.

Assumptions:

- \bullet $|\delta(t, x, z)| \leq L_{\delta}$ for all $(t, x, z) \in \mathbb{R}_{>0} \times \mathbb{R}^{n+1}$
- \bullet $q(x, z) \neq 0$ and $|q(x, z)| \leq L_q$ for all $(x, z) \in \mathbb{R}^{n+1}$

Terminology:

• Matched disturbance: The disturbance only appears in the z -dynamics together with the input u

Sliding mode controller design:

- **O** Design virtual control law $z = k(x)$ such that $x = 0$ for $\dot{x} = f_1(x, k(x))$ is asymptotically stable
- \bullet Since z is not an input (see backstepping) we need to consider the error variables: $\sigma = z - k(x)$

O Derivative of the error dynamics:

$$
\dot{\sigma} = \dot{z} - \frac{dk}{dt}(x)
$$

= $f_2(x, z) + g(x, z)(u + \delta(t, x, z)) - \frac{\partial k}{\partial x}(x)f_1(x, z)$

Consider candidate Lyapunov function: $V(\sigma) = \frac{1}{2}\sigma^2$:

 $\dot{V}(\sigma) = \sigma(f_2(x, z) + g(x, z)(u + \delta(t, x, z)) - \frac{\partial k}{\partial x}f_1(x, z))$

 \bullet Cancel known terms and introduce new input v :

$$
u = \frac{1}{g(x,z)} \left(-f_2(x,z) + \frac{\partial k}{\partial x}(x) f_1(x,z) + v \right)
$$

i.e.,
$$
\dot{V}(\sigma) = \sigma(v + q(x,z)\delta(t,x,z))
$$

• Select the new input:

$$
v = -\left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta\right) \text{sign}(\sigma)
$$

Consider:

$$
\dot{x} = f_1(x, z) \n\dot{z} = f_2(x, z) + g(x, z)(u + \delta(t, x, z))
$$

where

- \bullet $f_1 : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$, $f_1(0, 0) = 0$
- \bullet $f_2 : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, a : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$
- \bullet δ : $\mathbb{R}^n \times \mathbb{R} \times \mathbb{R}_{\geq 0} \to \mathbb{R}$.

Assumptions:

- \bullet $|\delta(t, x, z)| \leq L_{\delta}$ for all $(t, x, z) \in \mathbb{R}_{>0} \times \mathbb{R}^{n+1}$
- \bullet $q(x, z) \neq 0$ and $|q(x, z)| \leq L_q$ for all $(x, z) \in \mathbb{R}^{n+1}$

Terminology:

• Matched disturbance: The disturbance only appears in the z -dynamics together with the input u

Sliding mode controller design:

- **O** Design virtual control law $z = k(x)$ such that $x = 0$ for $\dot{x} = f_1(x, k(x))$ is asymptotically stable
- \bullet Since z is not an input (see backstepping) we need to consider the error variables: $\sigma = z - k(x)$

O Derivative of the error dynamics:

$$
\dot{\sigma} = \dot{z} - \frac{dk}{dt}(x)
$$

= $f_2(x, z) + g(x, z)(u + \delta(t, x, z)) - \frac{\partial k}{\partial x}(x)f_1(x, z)$

Consider candidate Lyapunov function: $V(\sigma) = \frac{1}{2}\sigma^2$:

 $\dot{V}(\sigma) = \sigma(f_2(x, z) + g(x, z)(u + \delta(t, x, z)) - \frac{\partial k}{\partial x}f_1(x, z))$

 \bullet Cancel known terms and introduce new input v :

$$
u = \frac{1}{g(x,z)} \left(-f_2(x,z) + \frac{\partial k}{\partial x}(x) f_1(x,z) + v \right)
$$

i.e.,
$$
\dot{V}(\sigma) = \sigma(v + g(x, z)\delta(t, x, z))
$$

• Select the new input:

$$
v = -\left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta\right) \text{sign}(\sigma)
$$

• Thus, with the bounds it holds that:

$$
\dot{V}(\sigma) \leq \sigma v + |\sigma| L_g L_\delta = -\tfrac{\kappa}{\sqrt{2}} |\sigma| = -\kappa \sqrt{V(\sigma)}
$$

 $\rightarrow \sigma(t) = 0$ in finite time.

Theorem

Consider the dynamics

$$
\begin{aligned} \dot{x} &= f_1(x, z) \\ \dot{z} &= f_2(x, z) + g(x, z)(u + \delta(t, x, z)) \end{aligned}
$$

with $f_1(0,0) = 0$. Assume that $g(x, z) \neq 0$ and there exists a constant $L_g > 0$ such that $|g(x, z)| \leq L_g$ for all $(x, z) \in \mathbb{R}^{n+1}$. Additionally assume that $k(x)$ is *defined such that the origin of* $\dot{x} = f(x, k(x))$ *is asymptotically stable with* $k(0) = 0.$

Then for all disturbances δ *satisfying the condition*

$$
|\delta(t, x, z)| \le L_{\delta} \qquad \forall (t, x, z) \in \mathbb{R}^{n+1} \times \mathbb{R}_{\ge 0}
$$

for some $L_{\delta} > 0$, *the feedback law*

$$
u = \frac{1}{g(x, z)} \left(-f_2(x, z) + \frac{\partial k}{\partial x}(x) f_1(x, z) \right) - \left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta \right) \frac{\text{sign}(z - k(x))}{g(x, z)}
$$

asymptotically stabilizes the origin of the system for all $\kappa > 0$. *Additionally, the sliding surface* $\sigma = z - k(x) = 0$ *is reached no later than*

$$
T(\sigma(0)) = T(z(0) - k(x(0))) = \frac{1}{\sqrt{2\kappa}} |z(0) - k(x(0))|.
$$

Section 4

[Estimating the Disturbance](#page-40-0)

So far:

- We have introduced the sliding variable σ
- **•** Through Lyapunov arguments we ensure that (in theory) $\sigma(t) = 0$ in finite time
- **In numerical simulations (or in practice)** σ will not be exactly zero.
- \bullet To dominate the disturbance, we defined the control law

$$
u = \frac{\left(-f_2(x,z) + \frac{\partial k}{\partial x}(x)f_1(x,z)\right) - \left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta\right) \text{sign}(z - k(x))}{g(x,z)}
$$

So far:

- We have introduced the sliding variable σ
- **•** Through Lyapunov arguments we ensure that (in theory) $\sigma(t) = 0$ in finite time
- **In numerical simulations (or in practice)** σ will not be exactly zero.
- To dominate the disturbance, we defined the control law

$$
u = \frac{\left(-f_2(x,z) + \frac{\partial k}{\partial x}(x)f_1(x,z)\right) - \left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta\right) \text{sign}(z - k(x))}{g(x,z)}
$$

Now:

Consider the **unimplementable control**

$$
u_{eq} = \frac{1}{g(x,z)} \left(-f_2(x,z) + \frac{\partial k}{\partial x}(x) f_1(x,z) \right) - \delta(t,x,z)
$$

(which is called the *equivalent control*)

- Note that: (Assuming that δ is sufficiently smooth,) on the sliding surface where $\dot{\sigma} = 0$, it follows that u_{eq} guarantees $\sigma(t) = 0$ for all $t > T$ if $\sigma(T) = 0$ without the chattering effects
- **•** Moreover, if δ is a smooth function, u_{eq} is a smooth average of the chattering control u

So far:

- We have introduced the sliding variable σ
- **•** Through Lyapunov arguments we ensure that (in theory) $\sigma(t) = 0$ in finite time
- **In numerical simulations (or in practice)** σ will not be exactly zero.
- To dominate the disturbance, we defined the control law

$$
u = \frac{\left(-f_2(x,z)+\frac{\partial k}{\partial x}(x)f_1(x,z)\right)-\left(\frac{\kappa}{\sqrt{2}}+L_gL_{\delta}\right)\text{sign}(z-k(x))}{g(x,z)}
$$

Now:

Consider the **unimplementable control**

$$
u_{eq} = \frac{1}{g(x,z)} \left(-f_2(x,z) + \frac{\partial k}{\partial x}(x) f_1(x,z) \right) - \delta(t,x,z)
$$

(which is called the *equivalent control*)

- Note that: (Assuming that δ is sufficiently smooth,) on the sliding surface where $\dot{\sigma} = 0$, it follows that u_{eq} guarantees $\sigma(t) = 0$ for all $t > T$ if $\sigma(T) = 0$ without the chattering effects
- **•** Moreover, if δ is a smooth function, u_{eq} is a smooth average of the chattering control u

P. Braun & C.M. Kellett (ANU) **[Introduction to Nonlinear Control](#page-0-0)** Control Ch. 10: Sliding Mode Control 19/25

Estimation of δ through a low-pass filter:

Idea: Apply low-pass filter to the chattering input

$$
v = -\left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta\right) \text{sign}(\sigma).
$$

• In particular, consider augmented dynamics ($\tau > 0$ small)

$$
\begin{aligned} \dot{x} &= f_1(x, z) \\ \dot{z} &= f_2(x, z) + g(x, z)(\hat{u}_{eq} + \delta(t, x, z)) \\ \dot{\xi} &= -\frac{1}{\tau}\xi + \frac{1}{\tau}\operatorname{sign}(z - k(x)) \end{aligned}
$$

Approximated equivalent control:

$$
\begin{aligned} \hat{u}_{eq} = \frac{\left(-f_2(x,z) + \frac{\partial k}{\partial x}(x)f_1(x,z)\right)}{g(x,z)} \\ -\left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta\right)\frac{\xi}{g(x,z)}. \end{aligned}
$$

(where we have replaced $sign(\sigma)$ by ξ)

 \rightarrow The approximated equivalent control is an alternative to u

Remark (Low-pass filter)

The dynamics $\xi = -\frac{1}{\tau}\xi + \frac{1}{\tau}\operatorname{sign}(z - k(x))$ represent a *low-pass filter*. To see this, consider the one-dimensional system

$$
\dot{x} = -\frac{1}{\tau}x + \frac{1}{\tau}u
$$

$$
y = x
$$

and its representation in the frequency domain

$$
\hat{y}(s) = (s + \frac{1}{\tau})^{-1} \frac{1}{\tau} \hat{u}(s) = \frac{\frac{1}{\tau}}{s + \frac{1}{\tau}} \hat{u}(s).
$$

For $\tau > 0$ small we observe from the transfer function

$$
G(s) = \frac{\frac{1}{\tau}}{s + \frac{1}{\tau}}
$$

that for low frequencies the system approximately satisfies $\hat{y}(s) \approx \hat{u}(s)$ and for high frequencies it holds that $\hat{y}(s) \approx 0$.

Estimating the Disturbance (Example)

Example

Original example with augmented state: $(\tau > 0$, small)

$$
\begin{aligned} \dot{x} &= x^3 + z, \\ \dot{z} &= u + \delta(t, x, z) \\ \dot{\xi} &= -\frac{1}{\tau}\xi + \frac{1}{\tau}\operatorname{sign}(z - k(x)) \end{aligned}
$$

- We follow the steps so far, define $z = k(x) = -x^3 x$, i.e., $\dot{x} = x^3 - x^3 - x = -x$ (i.e. $x = 0$ is exponentially stable).
- The sliding mode control law (from the theorem) \bullet

$$
u = (-3x^2 - 1)(x^3 + z) - \left(\frac{\kappa}{\sqrt{2}} + L_\delta\right) \operatorname{sign}(z + (x^3 + x))
$$

= -3x⁵ - x³ - 3x²z - z - $\left(\frac{\kappa}{\sqrt{2}} + L_\delta\right) \operatorname{sign}(z + x^3 + x)$

The approximated equivalent control \bullet

$$
\hat{u}_{eq} = -3x^5 - x^3 - 3x^2z - z - \left(\frac{\kappa}{\sqrt{2}} + L_{\delta}\right)\xi
$$

Here: $\delta(t, x, z) = \sin(t)$, $L_{\delta} = 1$, $\kappa = 2$ and $\tau = 0.1$.

Compare equivalent & approximated equivalent control:

$$
u_{eq} = \frac{1}{g(x,z)} \left(-f_2(x,z) + \frac{\partial k}{\partial x}(x) f_1(x,z) \right) - \delta(t,x,z)
$$

$$
\hat{u}_{eq} = \frac{\left(-f_2(x,z) + \frac{\partial k}{\partial x}(x) f_1(x,z) \right)}{g(x,z)} - \left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta \right) \frac{\xi}{g(x,z)}
$$

An estimation of the disturbance:

$$
\hat{\delta}(t, x, z) = \left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta\right) \frac{\xi}{g(x, z)}
$$

Compare equivalent & approximated equivalent control:

$$
u_{eq} = \frac{1}{g(x,z)} \left(-f_2(x,z) + \frac{\partial k}{\partial x}(x) f_1(x,z) \right) - \delta(t, x, z)
$$

$$
\hat{u}_{eq} = \frac{\left(-f_2(x,z) + \frac{\partial k}{\partial x}(x) f_1(x,z) \right)}{g(x,z)} - \left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta \right) \frac{\xi}{g(x,z)}
$$

An estimation of the disturbance:

$$
\hat{\delta}(t, x, z) = \left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta\right) \frac{\xi}{g(x, z)}
$$

Example

Consider (u sliding mode control law)

$$
\begin{aligned}\n\dot{x} &= x^3 + z, \\
\dot{z} &= u + \delta(t, x, z) \\
\dot{\xi} &= -\frac{1}{0.05}\xi + \frac{1}{0.05}\,\text{sign}(z - k(x))\n\end{aligned}
$$

Estimated disturbance:

$$
\hat{\delta}(t, x, z) = (\sqrt{2} + 1)\xi
$$

Section 5

[Output Tracking](#page-48-0)

So far:

(Asymptotic) Stabilization of the origin

Now:

• Tracking of a reference signal

So far:

(Asymptotic) Stabilization of the origin Now:

• Tracking of a reference signal

In particular, consider

 $y = x,$ $\dot{x} = x^3 + z,$ $\dot{z} = u + \delta(t, x, z)$

• reference signal $y_r : \mathbb{R}_{\geq 0} \to \mathbb{R}$ twice cont. diff. Goal:

 \bullet y(t) \rightarrow y_r(t) for $t \rightarrow \infty$

So far:

(Asymptotic) Stabilization of the origin Now:

• Tracking of a reference signal

In particular, consider

 $y = x,$ $\dot{x} = x^3 + z,$ $\dot{z} = u + \delta(t, x, z)$

- reference signal $y_r : \mathbb{R}_{\geq 0} \to \mathbb{R}$ twice cont. diff. Goal:
	- \bullet y(t) \rightarrow y_r(t) for $t \rightarrow \infty$

Controller design:

• Define error dynamics

 $e(t) = y_r(t) - y(t)$ and demand $e(t) \stackrel{t \to \infty}{\to} 0$

- and the requirement that $e(t) \to 0$ for $t \to \infty$.
- Define the sliding variable (based on $\dot{e} = -e$)

 $\sigma = \dot e + e = \dot y_r - \dot y + y_r - y = \dot y_r + y_r - x^3 - z - x$

• Calculating the time derivative:

 $\dot{\sigma} = \ddot{y}_r + \dot{y}_r - 3x^2 \dot{x} - \dot{z} - \dot{x}$

P. Braun & C.M. Kellett (ANU)

So far:

(Asymptotic) Stabilization of the origin Now:

• Tracking of a reference signal

In particular, consider

 $y = x,$ $\dot{x} = x^3 + z,$ $\dot{z} = u + \delta(t, x, z)$

- reference signal $y_r : \mathbb{R}_{\geq 0} \to \mathbb{R}$ twice cont. diff. Goal:
	- \bullet y(t) \rightarrow y_r(t) for $t \rightarrow \infty$

Controller design:

• Define error dynamics

 $e(t) = y_r(t) - y(t)$ and demand $e(t) \stackrel{t \to \infty}{\to} 0$

- and the requirement that $e(t) \to 0$ for $t \to \infty$.
- Define the sliding variable (based on $\dot{e} = -e$)

 $\sigma = \dot e + e = \dot y_r - \dot y + y_r - y = \dot y_r + y_r - x^3 - z - x$

• Calculating the time derivative:

 $\dot{\sigma} = \ddot{y}_r + \dot{y}_r - 3x^2 \dot{x} - \dot{z} - \dot{x}$

P. Braun & C.M. Kellett (ANU)

Candidate Lyapunov function $V(\sigma) = \frac{1}{2}\sigma^2$:

$$
\dot{V}(\sigma) = \dot{\sigma}\sigma
$$

= $\sigma(\ddot{y}_r + \dot{y}_r - 3x^5 - 3x^2z - u - \delta(t, x, z) - x^3 - z)$

 \bullet Define the input (with new degree of freedom v):

$$
u = -3x^5 - 3x^2z - x^3 - z - v
$$

So far:

(Asymptotic) Stabilization of the origin Now:

• Tracking of a reference signal

In particular, consider

 $y = x,$ $\dot{x} = x^3 + z,$ $\dot{z} = u + \delta(t, x, z)$

- reference signal $y_r : \mathbb{R}_{\geq 0} \to \mathbb{R}$ twice cont. diff. Goal:
	- \bullet y(t) \rightarrow y_r(t) for $t \rightarrow \infty$

Controller design:

• Define error dynamics

 $e(t) = y_r(t) - y(t)$ and demand $e(t) \stackrel{t \to \infty}{\to} 0$

- and the requirement that $e(t) \to 0$ for $t \to \infty$.
- Define the sliding variable (based on $\dot{e} = -e$)

 $\sigma = \dot e + e = \dot y_r - \dot y + y_r - y = \dot y_r + y_r - x^3 - z - x$

• Calculating the time derivative:

 $\dot{\sigma} = \ddot{y}_r + \dot{y}_r - 3x^2 \dot{x} - \dot{z} - \dot{x}$

P. Braun & C.M. Kellett (ANU)

$$
\dot{V}(\sigma) = \dot{\sigma}\sigma
$$

= $\sigma(\ddot{y}_r + \dot{y}_r - 3x^5 - 3x^2z - u - \delta(t, x, z) - x^3 - z)$

- \bullet Define the input (with new degree of freedom v): $u = -3x^5 - 3x^2z - x^3 - z - v$
- Assume we do not know the reference $y_r(t)$ to be tracked *a priori*, define the 'new disturbance'

$$
\psi(t, x, z) = \ddot{y}_r + \dot{y}_r - \delta(t, x, z)
$$

So far:

(Asymptotic) Stabilization of the origin Now:

• Tracking of a reference signal

In particular, consider

 $y = x,$ $\dot{x} = x^3 + z,$ $\dot{z} = u + \delta(t, x, z)$

- reference signal $y_r : \mathbb{R}_{\geq 0} \to \mathbb{R}$ twice cont. diff. Goal:
	- \bullet y(t) \rightarrow y_r(t) for $t \rightarrow \infty$

Controller design:

• Define error dynamics

 $e(t) = y_r(t) - y(t)$ and demand $e(t) \stackrel{t \to \infty}{\to} 0$

- and the requirement that $e(t) \to 0$ for $t \to \infty$.
- Define the sliding variable (based on $\dot{e} = -e$)

 $\sigma = \dot e + e = \dot y_r - \dot y + y_r - y = \dot y_r + y_r - x^3 - z - x$

• Calculating the time derivative:

 $\dot{\sigma} = \ddot{y}_r + \dot{y}_r - 3x^2 \dot{x} - \dot{z} - \dot{x}$

P. Braun & C.M. Kellett (ANU) P. Braun & C.M. Kellett (ANU) **introduction to Nonlinear Control** Ch. 10: Sliding Mode Control 24/25

$$
\dot{V}(\sigma) = \dot{\sigma}\sigma
$$

= $\sigma(\ddot{y}_r + \dot{y}_r - 3x^5 - 3x^2z - u - \delta(t, x, z) - x^3 - z)$

- \bullet Define the input (with new degree of freedom v): $u = -3x^5 - 3x^2z - x^3 - z - v$
- Assume we do not know the reference $y_r(t)$ to be tracked *a priori*, define the 'new disturbance'

 $\psi(t, x, z) = \ddot{y}_r + \dot{y}_r - \delta(t, x, z)$

• Then, the candidate Lyapunov functions satisfies

 $\dot{V}(\sigma) = \sigma(\psi(t, x, z) + v)$

- Assume that $|\psi(t, x, z)| \leq L_{\psi}$, for $L_{\psi} > 0$ & define $v = -(L_{\psi} + \frac{\kappa}{\sqrt{2}})\operatorname{sign}(\sigma), \qquad (\kappa > 0)$
- Then $V(\sigma)$ satisfies

$$
\dot{V}(\sigma) = \sigma(\psi(t, x, z) - (L_{\psi} + \frac{\kappa}{\sqrt{2}}) \operatorname{sign}(\sigma))
$$

\$\leq |\sigma|L_{\psi} - |\sigma| (L_{\psi} + \frac{\kappa}{\sqrt{2}}) = -\kappa \sqrt{V(x)}

Example

Consider the system

$$
y = x, \qquad \dot{x} = x^3 + z, \qquad \dot{z} = u + \delta(t, x, z)
$$

with output together with the reference signal

 $y_r(t) = \begin{cases} 0.8 \sin(2t) & \text{for } t < 8, \\ 1.2 \sin(4t) & \text{for } t > 8. \end{cases}$ $1.2\sin(4t)$ for $t \geq 8$.

 \bullet y_r is twice continuously differentiable for all $t \neq 8$

• For the simulation, the disturbance $\delta(t, x, z) = \sin(t)$ is used

- **•** The new disturbance $\psi = \ddot{y}_r + \dot{y}_r \delta$ satisfies $|\psi(t, x, z)| \leq 25$ for all $t \neq 8$.
- Top figure: $L_{\psi} = 25$
- Bottom figure: $L_{\psi} = 1$
-

Introduction to Nonlinear Control

Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett School of Engineering, Australian National University, Canberra, Australia

Part III:

Chapter 10: Sliding Mode Control 10.1 Finite-Time Stability 10.2 Basic Sliding Mode Control 10.3 A More General Setting 10.4 Estimating the Disturbance 10.5 Output Tracking

