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Sliding Mode Control

We consider systems of the form

ẋ = f(x, u, δ(t, x))

y = h(x)

with
state x ∈ Rn

input u ∈ Rm

output y ∈ R
potentially time and state dependent unknown
disturbance δ : R≥0 × Rn → Rn

We will be interested in
stabilizing the origin

output tracking
despite the presence of the disturbance.

⇝ First we have to discuss finite-time stability.
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Section 1

Finite-Time Stability
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Finite-Time Stability

Consider (f : Rn → Rn)

ẋ = f(x), x(0) = x0 ∈ Rn

We assume f(0) = 0, and thus xe = 0 is an equilibrium.

Definition (Finite-time stability)

The origin is said to be finite-time stable if there exist an
open neighborhood D ⊂ Rn of the origin and a function
T : D\{0} → (0,∞), called the settling-time function, such
that the following statements hold:

(Stability) For every ε > 0 there exists a δ > 0 such
that, for every x(0) = x0 ∈ Bδ ∩ D\{0}, x(t) ∈ Bε for
all t ∈ [0, T (x0)).

(Finite-time convergence) For every
x(0) = x0 ∈ D\{0}, x(·) is defined on [0, T (x0)),
x(t) ∈ D\{0} for all t ∈ [0, T (x0)), and x(t) → 0 for
t→ T (x0).

The origin is said to be a globally finite-time stable if it is
finite-time stable with D = Rn.

Example

Consider

ẋ = f(x) = − 3
√
x2, (with f(0) = 0)

Note that
f is not Lipschitz at the origin

uniqueness of solutions can only be guaranteed if
x(t) ̸= 0

We can verify that

x(t) = − 1
27

(t− 3 sign(x(0)) 3
√

|x(0)|)3

is a solution for all x ∈ R.
However, for x(0) > 0

x(t) =

{
− 1

27
(t− 3 3

√
|x(0)|)3 if t ≤ 3 3

√
|x(0)|

0 if t ≥ 3 3
√

|x(0)|

is also a solution.
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Finite-Time Stability (2)
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Finite-Time Stability (3)

Example

Consider

ẋ = f(x) = − sign(x)
3
√
x2.

We can verify

x(t) =

{
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27
sign(x(0))(t− 3 3

√
|x(0)|)3 if t ≤ 3 3

√
|x(0)|

0 if t ≥ 3 3
√

|x(0)|

⇝ The ODE admits unique solutions
Once the equilibrium is reached, the inequalities

− sign(x)
3
√
x2 < 0 for all x > 0, and

− sign(x)
3
√
x2 > 0 for all x < 0

ensure that the origin is attractive.
It follows from the explicit solution that

The origin is finite-time stable

Settling time T (x) = 3 3
√

|x|
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Finite-Time Stability (4)

Theorem (Lyapunov fcn for finite-time stability)

Consider ẋ = f(x) with f(0) = 0. Assume there exist a
continuous function V : Rn → R≥0, which is continuously
differentiable on Rn\{0}, α1, α2 ∈ K∞ and a constant
κ > 0 such that

α1(|x|) ≤ V (x) ≤ α2(|x|),

V̇ (x) = ⟨∇V (x), f(x)⟩ ≤ −κ
√
V (x) ∀x ̸= 0.

Then the origin is globally finite-time stable.
Moreover, the settling-time T (x) : Rn → R≥0 is upper
bounded by

T (x) ≤ 2
κ

√
α2(|x|).

For quadratic Lyapunov functions: (a1, a2 > 0)

a1|x|2 ≤ V (x) ≤ a2|x|2

|x(t)| ≤ 1√
a1

(√
a2|x(0)| − κt

2

)
T (|x|) ≤ |x|

2
√
a2

κ

Proof.
Comparison principle:∫ t

0

dV (x(t))√
V (x(t))

≤ −
∫ t

0
κ dt

leads to √
V (x(t)) ≤

√
V (x(0))−

κt

2
.

Using the lower and upper bound

|x(t)| ≤ α−1
1

((√
α2(|x(0)|)−

κt

2

)2
)

⇝ Finite-time convergence
Moreover, √

α2(|x(0)|)−
κt

2
= 0,

implies |x(T )| ≤ 0 for all T ≥ 2
κ

√
α2(|x(0)|)
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Finite-Time Stability (5)

Example
Consider again

ẋ = f(x) = − sign(x)
3
√
x2

Candidate Lyapunov function (continuously differentiable for all x ̸= 0)

V (x) =
3
√
x2

Define α1, α2 ∈ K∞,

α1(s) = α2(s) =
3
√
x2

Then, for all x ̸= 0, it holds that

V̇ (x) = ⟨∇V (x),− sign(x)
3
√
x2⟩ = 2

3
sign(x)|x|−

1
3 (− sign(x)|x|

2
3 )

= − 2
3
|x|

1
3 = − 2

3

√
V (x)

⇝ V is a Lyapunov function & the origin is finite-time stable
Bound on the settling time

T (x) ≤ 2
κ

√
α2(|x|) =

2
2
3

√
|x|

2
3 = 3 3

√
|x|
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Section 2

Basic Sliding Mode Control
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Basic Sliding Mode Control

As an example, consider:

ẋ = x3 + z,

ż = u+ δ(t, x, z).

Unknown disturbance δ : R≥0 × R2 → R
Assumption: there exists Lδ ∈ R>0 such that

|δ(t, x, z)| ≤ Lδ (t, x, z) ∈ R≥0 × R2

Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the x-subsystem
I.e., we want x to behave as ẋ = −x (for all bounded
disturbances)

The desired behavior implies ẋ+ x = 0

Thus

x3 + z + x = 0

Approach: Define a new state

σ
.
= x3 + z + x and V (σ) = 1

2
σ2

Then

V̇ (σ) = σσ̇ = σ
(
3x2ẋ+ ż + ẋ

)
= σ

(
3x5 + 3x2z + u+ δ(t, x, z) + x3 + z

)
.

To cancel the known terms define

u = v − 3x5 − 3x2z − x3 − z

so that V̇ (σ) = σ (v + δ(t, x, z)) (with new input v)

Selecting v = −ρ sign(σ), ρ > 0, provides the estimate

V̇ (σ) = σ (−ρ sign(σ) + δ(t, x, z)) = −ρ|σ|+ σδ(t, x, z)

≤ −ρ|σ|+ Lδ|σ| = −(ρ− Lδ)|σ|.

Finally, with ρ = Lδ +
κ√
2

, κ > 0, we have

V̇ (σ) ≤ −
κ|σ|
√
2

= −α
√
V (σ)⇝ finite-time stab. of σ = 0

Note that the control

u = −
(
Lδ +

κ√
2

)
sign

(
x3+z+x

)
−3x5−3x2z−x3−z

is independent of the term δ(t, x, z).
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Basic Sliding Mode Control (2)

Consider:

ẋ = x3 + z,

ż = u+ δ(t, x, z).

Control law:

u = −
(
Lδ +

κ√
2

)
sign

(
x3+z+x

)
−3x5−3x2z−x3−z

Parameter selection for the simulations:
Lδ = 1 and κ = 2

δ(t, x, z) = sin(t) (top)

δ(t, x, z) = sign(cos(2t) sin(2t)) (bottom)

We observe that
σ converges to zero in finite-time

Afterwards (x, z) asymptotically approach the origin

Since the ordinary differential equation is solved
numerically, σ is not exactly zero!

Convergence structure:
⇝ Similar to backstepping/forwarding
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ẋ = x3 + z,

ż = u+ δ(t, x, z).

Control law:

u = −
(
Lδ +

κ√
2

)
sign

(
x3+z+x

)
−3x5−3x2z−x3−z

Parameter selection for the simulations:
Lδ = 1 and κ = 2

δ(t, x, z) = sin(t) (top)

δ(t, x, z) = sign(cos(2t) sin(2t)) (bottom)
We observe that

σ converges to zero in finite-time

Afterwards (x, z) asymptotically approach the origin

Since the ordinary differential equation is solved
numerically, σ is not exactly zero!

Convergence structure:
⇝ Similar to backstepping/forwarding
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Terminology

Sliding variable: σ

Sliding surface

{(x, z) ∈ R2 : σ(x, z) = 0, (x, z) ∈ R2},

⇝ The sliding variable, and thus implicitly the sliding
surface, is defined such that the origin of the
x-subsystem is exponentially stable if σ(t) = 0,
t ∈ R≥0, is satisfied.

We have defined σ based on the condition ẋ = −x.
We could have also used ẋ = −2x or ẋ = −x3
(asymptotic stability), for example.

The control law u is derived such that states converge
to the sliding surface in finite-time.

⇝ Convergence of σ(t) → 0 is called the reaching
phase.

On the sliding surface the selection of u ensures that
the dynamics behave like ẋ = −x.

⇝ This is called sliding phase and guarantees
asymptotic stability of the origin for the overall
closed-loop system.
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Chattering & Chattering Avoidance

Note that:
The control law u is discontinuous due to v = ρ sign (σ)

v switches between ρ and −ρ depending on the sign of
the sliding variable σ

⇝ Chattering (because σ is always slightly off)

Approximation of the sign-function:
(Continuous) saturation: (satε : R → [−1, 1])

satε(σ) = sat(x
ε
) =


1, σ

ε
≥ 1

σ
ε
, −1 ≤ σ

ε
≤ 1

−1, σ
ε
≤ −1

(Smooth) Sigmoid function: (sigε : R → [−1, 1])

sigε(σ) =
1− e−σε

1 + e−σ/ε
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Back to the example:

(ε = 0.5) (ε = 0.1)

uε = −(Lδ +
κ√
2
) satε(x

3 + z + x)−3x5−3x2z−x3−z
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Section 3

A More General Structure
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A More General Structure

Consider:

ẋ = f1(x, z)

ż = f2(x, z) + g(x, z)(u+ δ(t, x, z))

where
f1 : Rn × R → Rn, f1(0, 0) = 0

f2 : Rn × R → R, g : Rn × R → R
δ : Rn × R× R≥0 → R.

Assumptions:
|δ(t, x, z)| ≤ Lδ for all (t, x, z) ∈ R≥0 × Rn+1

g(x, z) ̸= 0 and |g(x, z)| ≤ Lg for all (x, z) ∈ Rn+1

Terminology:
Matched disturbance: The disturbance only appears
in the z-dynamics together with the input u

Sliding mode controller design:
Design virtual control law z = k(x) such that x = 0 for
ẋ = f1(x, k(x)) is asymptotically stable

Since z is not an input (see backstepping) we need to
consider the error variables: σ = z − k(x)

Derivative of the error dynamics:

σ̇ = ż − dk
dt

(x)

= f2(x, z) + g(x, z)(u+ δ(t, x, z))− ∂k
∂x

(x)f1(x, z)

Consider candidate Lyapunov function: V (σ) = 1
2
σ2:

V̇ (σ) = σ
(
f2(x, z) + g(x, z)(u+ δ(t, x, z))− ∂k

∂x
f1(x, z)

)
Cancel known terms and introduce new input v:

u = 1
g(x,z)

(
−f2(x, z) + ∂k

∂x
(x)f1(x, z) + v

)
i.e., V̇ (σ) = σ(v + g(x, z)δ(t, x, z))

Select the new input:

v = −
(
κ√
2
+ LgLδ

)
sign(σ)

Thus, with the bounds it holds that:

V̇ (σ) ≤ σv + |σ|LgLδ = − κ√
2
|σ| = −κ

√
V (σ)

⇝ σ(t) = 0 in finite time.
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ẋ = f1(x, k(x)) is asymptotically stable

Since z is not an input (see backstepping) we need to
consider the error variables: σ = z − k(x)

Derivative of the error dynamics:

σ̇ = ż − dk
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ẋ = f1(x, z)
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∂x

(x)f1(x, z)

Consider candidate Lyapunov function: V (σ) = 1
2
σ2:

V̇ (σ) = σ
(
f2(x, z) + g(x, z)(u+ δ(t, x, z))− ∂k

∂x
f1(x, z)

)
Cancel known terms and introduce new input v:

u = 1
g(x,z)

(
−f2(x, z) + ∂k

∂x
(x)f1(x, z) + v

)
i.e., V̇ (σ) = σ(v + g(x, z)δ(t, x, z))

Select the new input:

v = −
(
κ√
2
+ LgLδ

)
sign(σ)

Thus, with the bounds it holds that:

V̇ (σ) ≤ σv + |σ|LgLδ = − κ√
2
|σ| = −κ

√
V (σ)

⇝ σ(t) = 0 in finite time.
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A More General Structure (2)

Theorem

Consider the dynamics

ẋ = f1(x, z)

ż = f2(x, z) + g(x, z)(u+ δ(t, x, z))

with f1(0, 0) = 0. Assume that g(x, z) ̸= 0 and there exists a constant Lg > 0
such that |g(x, z)| ≤ Lg for all (x, z) ∈ Rn+1. Additionally assume that k(x) is
defined such that the origin of ẋ = f(x, k(x)) is asymptotically stable with
k(0) = 0.
Then for all disturbances δ satisfying the condition

|δ(t, x, z)| ≤ Lδ ∀ (t, x, z) ∈ Rn+1 × R≥0

for some Lδ > 0, the feedback law

u =
1

g(x, z)

(
−f2(x, z) +

∂k

∂x
(x)f1(x, z)

)
−
(
κ
√
2
+ LgLδ

)
sign(z − k(x))

g(x, z)

asymptotically stabilizes the origin of the system for all κ > 0.
Additionally, the sliding surface σ = z − k(x) = 0 is reached no later than

T (σ(0)) = T (z(0)− k(x(0))) = 1√
2κ

|z(0)− k(x(0))|.
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Section 4

Estimating the Disturbance
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Estimating the Disturbance
So far:

We have introduced the sliding variable σ

Through Lyapunov arguments we ensure that (in theory) σ(t) = 0 in
finite time

In numerical simulations (or in practice) σ will not be exactly zero.

To dominate the disturbance, we defined the control law

u =

(
−f2(x, z) + ∂k

∂x
(x)f1(x, z)

)
−
(
κ√
2
+ LgLδ

)
sign(z − k(x))

g(x, z)

Now:
Consider the unimplementable control

ueq =
1

g(x, z)

(
−f2(x, z) +

∂k

∂x
(x)f1(x, z)

)
− δ(t, x, z)

(which is called the equivalent control)

Note that: (Assuming that δ is sufficiently smooth,) on the sliding
surface where σ̇ = 0, it follows that ueq guarantees σ(t) = 0 for all
t ≥ T if σ(T ) = 0 without the chattering effects

Moreover, if δ is a smooth function, ueq is a smooth average of the
chattering control u

Estimation of δ through a low-pass filter:
Idea: Apply low-pass filter to the
chattering input

v = −
(
κ
√
2
+ LgLδ

)
sign(σ).

In particular, consider augmented
dynamics (τ > 0 small)

ẋ = f1(x, z)

ż = f2(x, z) + g(x, z)(ûeq + δ(t, x, z))

ξ̇ = − 1
τ
ξ + 1

τ
sign(z − k(x))

Approximated equivalent control:

ûeq =

(
−f2(x,z)+

∂k
∂x

(x)f1(x,z)
)

g(x,z)

−
(
κ√
2
+ LgLδ

)
ξ

g(x,z)
.

(where we have replaced sign(σ) by ξ)

⇝ The approximated equivalent control is
an alternative to u
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Estimating the Disturbance (Detour: Low-pass filter)

Remark (Low-pass filter)

The dynamics ξ̇ = − 1
τ
ξ + 1

τ
sign(z − k(x)) represent a

low-pass filter. To see this, consider the one-dimensional
system

ẋ = − 1
τ
x+ 1

τ
u

y = x

and its representation in the frequency domain

ŷ(s) = (s+ 1
τ
)−1 1

τ
û(s) =

1
τ

s+ 1
τ

û(s).

For τ > 0 small we observe from the transfer function

G(s) =
1
τ

s+ 1
τ

that for low frequencies the system approximately satisfies
ŷ(s) ≈ û(s) and for high frequencies it holds that ŷ(s) ≈ 0.
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Estimating the Disturbance (Example)

Example
Original example with augmented state: (τ > 0, small)

ẋ = x3 + z,

ż = u+ δ(t, x, z)

ξ̇ = − 1
τ
ξ + 1

τ
sign(z − k(x))

We follow the steps so far, define z = k(x) = −x3 − x, i.e.,
ẋ = x3 − x3 − x = −x (i.e. x = 0 is exponentially stable).

The sliding mode control law (from the theorem)

u = (−3x2 − 1)(x3 + z)−
(
κ√
2
+ Lδ

)
sign(z + (x3 + x))

= −3x5 − x3 − 3x2z − z −
(
κ√
2
+ Lδ

)
sign(z + x3 + x)

The approximated equivalent control

ûeq = −3x5 − x3 − 3x2z − z −
(
κ√
2
+ Lδ

)
ξ

Here: δ(t, x, z) = sin(t), Lδ = 1, κ = 2 and τ = 0.1.
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Estimating the Disturbance

Compare equivalent & approximated equivalent control:

ueq =
1

g(x, z)

(
−f2(x, z) +

∂k

∂x
(x)f1(x, z)

)
− δ(t, x, z)

ûeq =

(
−f2(x,z)+

∂k
∂x

(x)f1(x,z)
)

g(x,z)
−
(
κ√
2
+ LgLδ

)
ξ

g(x,z)

An estimation of the disturbance:

δ̂(t, x, z) =

(
κ
√
2
+ LgLδ

)
ξ

g(x, z)

Example
Consider (u sliding mode control law)

ẋ = x3 + z,

ż = u+ δ(t, x, z)

ξ̇ = − 1
0.05

ξ + 1
0.05

sign(z − k(x))

Estimated disturbance:

δ̂(t, x, z) = (
√
2 + 1)ξ
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Section 5

Output Tracking
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Output Tracking
So far:

(Asymptotic) Stabilization of the origin
Now:

Tracking of a reference signal

In particular, consider
y = x, ẋ = x3 + z, ż = u+ δ(t, x, z)

reference signal yr : R≥0 → R twice cont. diff.
Goal:

y(t) → yr(t) for t→ ∞
Controller design:

Define error dynamics

e(t) = yr(t)− y(t) and demand e(t)
t→∞→ 0

and the requirement that e(t) → 0 for t→ ∞.

Define the sliding variable (based on ė = −e)

σ = ė+ e = ẏr − ẏ + yr − y = ẏr + yr − x3 − z − x

Calculating the time derivative:

σ̇ = ÿr + ẏr − 3x2ẋ− ż − ẋ

= ÿr + ẏr − 3x5 − 3x2z − u− δ(t, x, z)− x3 − z

Candidate Lyapunov function V (σ) = 1
2
σ2:

V̇ (σ) = σ̇σ

= σ(ÿr+ẏr−3x5−3x2z−u− δ(t, x, z)− x3 − z)

Define the input (with new degree of freedom v):

u = −3x5 − 3x2z − x3 − z − v

Assume we do not know the reference yr(t) to be
tracked a priori, define the ‘new disturbance’

ψ(t, x, z) = ÿr + ẏr − δ(t, x, z)

Then, the candidate Lyapunov functions satisfies

V̇ (σ) = σ(ψ(t, x, z) + v)

Assume that |ψ(t, x, z)| ≤ Lψ , for Lψ > 0 & define

v = −(Lψ + κ√
2
) sign(σ), (κ > 0)

Then V̇ (σ) satisfies

V̇ (σ) = σ(ψ(t, x, z)− (Lψ + κ√
2
) sign(σ))

≤ |σ|Lψ − |σ|
(
Lψ + κ√

2

)
= −κ

√
V (x)
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reference signal yr : R≥0 → R twice cont. diff.
Goal:

y(t) → yr(t) for t→ ∞

Controller design:
Define error dynamics

e(t) = yr(t)− y(t) and demand e(t)
t→∞→ 0

and the requirement that e(t) → 0 for t→ ∞.

Define the sliding variable (based on ė = −e)
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= σ(ÿr+ẏr−3x5−3x2z−u− δ(t, x, z)− x3 − z)

Define the input (with new degree of freedom v):

u = −3x5 − 3x2z − x3 − z − v

Assume we do not know the reference yr(t) to be
tracked a priori, define the ‘new disturbance’
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2

)
= −κ

√
V (x)
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Output Tracking

Example
Consider the system

y = x, ẋ = x3 + z, ż = u+ δ(t, x, z)

with output together with the reference signal

yr(t) =

{
0.8 sin(2t) for t < 8,
1.2 sin(4t) for t ≥ 8.

yr is twice continuously differentiable for all t ̸= 8

For the simulation, the disturbance δ(t, x, z) = sin(t) is used

The new disturbance ψ = ÿr + ẏr − δ satisfies |ψ(t, x, z)| ≤ 25 for
all t ̸= 8.

Top figure: Lψ = 25

Bottom figure: Lψ = 1

Additionally: κ = 2
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