Introduction to Nonlinear Control

Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett School of Engineering, Australian National University, Canberra, Australia

Part II:

Chapter 10: Sliding Mode Control 10.1 Finite-Time Stability 10.2 Basic Sliding Mode Control 10.3 A More General Setting 10.4 Estimating the Disturbance 10.5 Output Tracking

Sliding Mode Control

Nonlinear Systems - Fundamentals

Finite-Time Stability

Basic Sliding Mode Control

- Terminology
- Chattering & Chattering Avoidance

A More General Structure

Estimating the Disturbance

Output Tracking

Sliding Mode Control

We consider systems of the form

$$\begin{split} \dot{x} &= f(x, u, \delta(t, x)) \\ y &= h(x) \end{split}$$

with

- state $x \in \mathbb{R}^n$
- $\bullet \ \text{ input } u \in \mathbb{R}^m$
- output $y \in \mathbb{R}$
- potentially time and state dependent unknown disturbance $\delta: \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}^n$
- We will be interested in
 - stabilizing the origin
 - output tracking

despite the presence of the disturbance.

~ First we have to discuss *finite-time stability*.

Section 1

Finite-Time Stability

Finite-Time Stability

Consider $(f : \mathbb{R}^n \to \mathbb{R}^n)$

 $\dot{x} = f(x), \qquad x(0) = x_0 \in \mathbb{R}^n$

We assume f(0) = 0, and thus $x^e = 0$ is an equilibrium.

Definition (Finite-time stability)

The origin is said to be finite-time stable if there exist an open neighborhood $\mathcal{D} \subset \mathbb{R}^n$ of the origin and a function $T: \mathcal{D} \setminus \{0\} \to (0, \infty)$, called the settling-time function, such that the following statements hold:

• (Stability) For every $\varepsilon > 0$ there exists a $\delta > 0$ such that, for every $x(0) = x_0 \in \mathcal{B}_{\delta} \cap \mathcal{D} \setminus \{0\}, x(t) \in \mathcal{B}_{\varepsilon}$ for all $t \in [0, T(x_0))$.

• (Finite-time convergence) For every $x(0) = x_0 \in \mathcal{D} \setminus \{0\}, x(\cdot)$ is defined on $[0, T(x_0)), x(t) \in \mathcal{D} \setminus \{0\}$ for all $t \in [0, T(x_0))$, and $x(t) \to 0$ for $t \to T(x_0)$.

The origin is said to be a globally finite-time stable if it is finite-time stable with $\mathcal{D} = \mathbb{R}^n$.

Finite-Time Stability

Consider $(f : \mathbb{R}^n \to \mathbb{R}^n)$

 $\dot{x} = f(x), \qquad x(0) = x_0 \in \mathbb{R}^n$

We assume f(0) = 0, and thus $x^e = 0$ is an equilibrium.

Definition (Finite-time stability)

The origin is said to be finite-time stable if there exist an open neighborhood $\mathcal{D} \subset \mathbb{R}^n$ of the origin and a function $T: \mathcal{D} \setminus \{0\} \to (0, \infty)$, called the settling-time function, such that the following statements hold:

• (Stability) For every $\varepsilon > 0$ there exists a $\delta > 0$ such that, for every $x(0) = x_0 \in \mathcal{B}_{\delta} \cap \mathcal{D} \setminus \{0\}, x(t) \in \mathcal{B}_{\varepsilon}$ for all $t \in [0, T(x_0))$.

• (Finite-time convergence) For every $x(0) = x_0 \in \mathcal{D} \setminus \{0\}, x(\cdot)$ is defined on $[0, T(x_0)), x(t) \in \mathcal{D} \setminus \{0\}$ for all $t \in [0, T(x_0))$, and $x(t) \to 0$ for $t \to T(x_0)$.

The origin is said to be a globally finite-time stable if it is finite-time stable with $\mathcal{D} = \mathbb{R}^n$.

Example

Consider

$$\dot{x} = f(x) = -\sqrt[3]{x^2},$$
 (with $f(0) = 0$)

Note that

- f is not Lipschitz at the origin
- $\bullet \,$ uniqueness of solutions can only be guaranteed if $x(t) \neq 0$

We can verify that

$$x(t) = -\frac{1}{27}(t - 3\operatorname{sign}(x(0))\sqrt[3]{|x(0)|})^3$$

is a solution for all $x \in \mathbb{R}$. However, for x(0) > 0

$$x(t) = \begin{cases} -\frac{1}{27}(t-3\sqrt[3]{|x(0)|})^3 & \text{if } t \le 3\sqrt[3]{|x(0)|} \\ 0 & \text{if } t \ge 3\sqrt[3]{|x(0)|} \end{cases}$$

is also a solution.

Finite-Time Stability (2)

Example

Consider

$$\dot{x} = f(x) = -\sqrt[3]{x^2}$$
, (with $f(0) = 0$)

Note that

- f is not Lipschitz at the origin
- $\bullet \,$ uniqueness of solutions can only be guaranteed if x(t)=0

We can verify that

$$x(t) = -\frac{1}{27}(t - 3\operatorname{sign}(x(0))\sqrt[3]{|x(0)|})^3$$

is a solution for all $x \in \mathbb{R}$. However, for x(0) > 0

$$x(t) = \begin{cases} -\frac{1}{27}(t - 3\sqrt[3]{|x(0)|})^3 & \text{if } t \le 3\sqrt[3]{|x(0)|} \\ 0 & \text{if } t \ge 3\sqrt[3]{|x(0)|} \end{cases}$$

is also a solution.

Finite-Time Stability (3)

Example

Consider

$$\dot{x} = f(x) = -\operatorname{sign}(x)\sqrt[3]{x^2}.$$

We can verify

$$x(t) = \begin{cases} -\frac{1}{27} \operatorname{sign}(x(0))(t - 3\sqrt[3]{|x(0)|})^3 & \text{ if } t \le 3\sqrt[3]{|x(0)|} \\ 0 & \text{ if } t \ge 3\sqrt[3]{|x(0)|} \end{cases}$$

 \rightsquigarrow The ODE admits unique solutions Once the equilibrium is reached, the inequalities

$$-\operatorname{sign}(x)\sqrt[3]{x^2} < 0 \text{ for all } x > 0, \quad \text{and} \\ -\operatorname{sign}(x)\sqrt[3]{x^2} > 0 \text{ for all } x < 0$$

ensure that the origin is attractive. It follows from the explicit solution that

• The origin is finite-time stable

• Settling time
$$T(x) = 3\sqrt[3]{|x|}$$

Finite-Time Stability (4)

Theorem (Lyapunov fcn for finite-time stability)

Consider $\dot{x} = f(x)$ with f(0) = 0. Assume there exist a continuous function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$, which is continuously differentiable on $\mathbb{R}^n \setminus \{0\}$, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and a constant $\kappa > 0$ such that

$$\begin{split} &\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|),\\ &\dot{V}(x) = \langle \nabla V(x), f(x) \rangle \leq -\kappa \sqrt{V(x)} \qquad \forall x \neq 0. \end{split}$$

Then the origin is globally finite-time stable. Moreover, the settling-time $T(x) : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is upper bounded by

 $T(x) \le \frac{2}{\kappa} \sqrt{\alpha_2(|x|)}.$

Finite-Time Stability (4)

Theorem (Lyapunov fcn for finite-time stability)

Consider $\dot{x} = f(x)$ with f(0) = 0. Assume there exist a continuous function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$, which is continuously differentiable on $\mathbb{R}^n \setminus \{0\}$, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and a constant $\kappa > 0$ such that

$$\alpha_1(|x|) \le V(x) \le \alpha_2(|x|),$$

$$\dot{V}(x) = \langle \nabla V(x), f(x) \rangle \le -\kappa \sqrt{V(x)} \qquad \forall x \ne 0.$$

Then the origin is globally finite-time stable. Moreover, the settling-time $T(x) : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is upper bounded by

 $T(x) \le \frac{2}{\kappa} \sqrt{\alpha_2(|x|)}.$

Proof.

Comparison principle:

$$\int_0^t \frac{dV(x(t))}{\sqrt{V(x(t))}} \le -\int_0^t \kappa \, dt$$

leads to

$$\sqrt{V(x(t))} \le \sqrt{V(x(0))} - \frac{\kappa t}{2}$$

Using the lower and upper bound

$$|x(t)| \le \alpha_1^{-1} \left(\left(\sqrt{\alpha_2(|x(0)|)} - \frac{\kappa t}{2} \right)^2 \right)$$

 \rightsquigarrow Finite-time convergence Moreover,

$$\sqrt{\alpha_2(|x(0)|)}-\frac{\kappa t}{2}=0,$$
 implies $|x(T)|\leq 0$ for all $T\geq \frac{2}{\kappa}\sqrt{\alpha_2(|x(0)|)}$

Finite-Time Stability (4)

Theorem (Lyapunov fcn for finite-time stability)

Consider $\dot{x} = f(x)$ with f(0) = 0. Assume there exist a continuous function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$, which is continuously differentiable on $\mathbb{R}^n \setminus \{0\}$, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and a constant $\kappa > 0$ such that

$$\alpha_1(|x|) \le V(x) \le \alpha_2(|x|),$$

$$\dot{V}(x) = \langle \nabla V(x), f(x) \rangle \le -\kappa \sqrt{V(x)} \qquad \forall x \ne 0.$$

Then the origin is globally finite-time stable. Moreover, the settling-time $T(x) : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is upper bounded by

 $T(x) \le \frac{2}{\kappa} \sqrt{\alpha_2(|x|)}.$

For quadratic Lyapunov functions: $(a_1, a_2 > 0)$

$$\begin{aligned} a_1 |x|^2 &\le V(x) \le a_2 |x|^2 \\ |x(t)| &\le \frac{1}{\sqrt{a_1}} \left(\sqrt{a_2} |x(0)| - \frac{\kappa t}{2} \right) \\ T(|x|) &\le |x| \frac{2\sqrt{a_2}}{\kappa} \end{aligned}$$

Proof.

Comparison principle:

$$\int_0^t \frac{dV(x(t))}{\sqrt{V(x(t))}} \le -\int_0^t \kappa \, dt$$

leads to

$$\sqrt{V(x(t))} \le \sqrt{V(x(0))} - \frac{\kappa t}{2}.$$

Using the lower and upper bound

$$|x(t)| \le \alpha_1^{-1} \left(\left(\sqrt{\alpha_2(|x(0)|)} - \frac{\kappa t}{2} \right)^2 \right)$$

 \rightsquigarrow Finite-time convergence Moreover,

$$\sqrt{\alpha_2(|x(0)|)} - \frac{\kappa t}{2} = 0,$$

implies
$$|x(T)| \leq 0$$
 for all $T \geq \frac{2}{\kappa} \sqrt{\alpha_2(|x(0)|)}$

Example

Consider again

$$\dot{x} = f(x) = -\operatorname{sign}(x)\sqrt[3]{x^2}$$

Candidate Lyapunov function (continuously differentiable for all $x \neq 0$)

$$V(x) = \sqrt[3]{x^2}$$

Define $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$,

$$\alpha_1(s) = \alpha_2(s) = \sqrt[3]{x^2}$$

Then, for all $x \neq 0$, it holds that

$$\begin{split} \dot{V}(x) &= \langle \nabla V(x), -\operatorname{sign}(x) \sqrt[3]{x^2} \rangle = \frac{2}{3} \operatorname{sign}(x) |x|^{-\frac{1}{3}} (-\operatorname{sign}(x)|x|^{\frac{2}{3}}) \\ &= -\frac{2}{3} |x|^{\frac{1}{3}} = -\frac{2}{3} \sqrt{V(x)} \end{split}$$

 $\leadsto V$ is a Lyapunov function & the origin is finite-time stable Bound on the settling time

$$T(x) \le \frac{2}{\kappa} \sqrt{\alpha_2(|x|)} = \frac{2}{\frac{2}{3}} \sqrt{|x|^{\frac{2}{3}}} = 3\sqrt[3]{|x|}$$

Section 2

Basic Sliding Mode Control

As an example, consider:

$$\dot{x} = x^3 + z,$$

$$\dot{z} = u + \delta(t, x, z).$$

- Unknown disturbance $\delta: \mathbb{R}_{\geq 0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that $|\delta(t, x, z)| \leq L_{\delta}$ $(t, x, z) \in \mathbb{R}_{>0} \times \mathbb{R}^{2}$

• Thus, δ is bounded but not necessarily continuous

As an example, consider:

$$\begin{split} \dot{x} &= x^3 + z, \\ \dot{z} &= u + \delta(t, x, z). \end{split}$$

- Unknown disturbance $\delta: \mathbb{R}_{\geq 0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that

 $|\delta(t, x, z)| \le L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\ge 0} \times \mathbb{R}^{2}$

• Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the *x*-subsystem

- I.e., we want x to behave as $\dot{x} = -x$ (for all bounded disturbances)
- The desired behavior implies $\dot{x} + x = 0$
- Thus

$$x^3 + z + x = 0$$

As an example, consider:

$$\dot{x} = x^3 + z,$$

$$\dot{z} = u + \delta(t, x, z).$$

- Unknown disturbance $\delta: \mathbb{R}_{\geq 0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that

 $|\delta(t, x, z)| \le L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\ge 0} \times \mathbb{R}^{2}$

• Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the *x*-subsystem

- I.e., we want x to behave as $\dot{x} = -x$ (for all bounded disturbances)
- The desired behavior implies $\dot{x} + x = 0$
- Thus

$$x^3 + z + x = 0$$

Approach: Define a new state

$$\sigma \doteq x^3 + z + x$$
 and $V(\sigma) = \frac{1}{2}\sigma^2$

Then

$$\begin{split} \dot{V}(\sigma) &= \sigma \dot{\sigma} = \sigma \left(3x^2 \dot{x} + \dot{z} + \dot{x} \right) \\ &= \sigma \left(3x^5 + 3x^2 z + u + \delta(t, x, z) + x^3 + z \right). \end{split}$$

As an example, consider:

$$\dot{x} = x^3 + z,$$

$$\dot{z} = u + \delta(t, x, z).$$

- Unknown disturbance $\delta : \mathbb{R}_{\geq 0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that

 $|\delta(t, x, z)| \le L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\ge 0} \times \mathbb{R}^{2}$

• Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the *x*-subsystem

- I.e., we want x to behave as $\dot{x} = -x$ (for all bounded disturbances)
- The desired behavior implies $\dot{x} + x = 0$
- Thus

$$x^3 + z + x = 0$$

Approach: Define a new state

$$\sigma \doteq x^3 + z + x$$
 and $V(\sigma) = \frac{1}{2}\sigma^2$

Then

$$\begin{split} \dot{V}(\sigma) &= \sigma \dot{\sigma} = \sigma \left(3x^2 \dot{x} + \dot{z} + \dot{x} \right) \\ &= \sigma \left(3x^5 + 3x^2 z + u + \delta(t, x, z) + x^3 + z \right). \end{split}$$

To cancel the known terms define

$$u = v - 3x^5 - 3x^2z - x^3 - z$$

so that $\dot{V}(\sigma) = \sigma \left(v + \delta(t, x, z) \right)$ (with new input v)

As an example, consider:

$$\begin{split} \dot{x} &= x^3 + z, \\ \dot{z} &= u + \delta(t, x, z). \end{split}$$

- Unknown disturbance $\delta: \mathbb{R}_{\geq 0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that

 $|\delta(t, x, z)| \le L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\ge 0} \times \mathbb{R}^{2}$

 $\bullet~$ Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the *x*-subsystem

- I.e., we want x to behave as $\dot{x} = -x$ (for all bounded disturbances)
- The desired behavior implies $\dot{x} + x = 0$
- Thus

$$x^3 + z + x = 0$$

Approach: Define a new state

 $\sigma\doteq x^3+z+x \quad \text{and} \quad V(\sigma)=\tfrac{1}{2}\sigma^2$

Then

$$\begin{split} \dot{V}(\sigma) &= \sigma \dot{\sigma} = \sigma \left(3x^2 \dot{x} + \dot{z} + \dot{x} \right) \\ &= \sigma \left(3x^5 + 3x^2 z + u + \delta(t, x, z) + x^3 + z \right). \end{split}$$

• To cancel the known terms define

$$u = v - 3x^5 - 3x^2z - x^3 - z$$

so that $\dot{V}(\sigma) = \sigma \left(v + \delta(t,x,z) \right)$ (with new input v)

• Selecting $v = -\rho \operatorname{sign}(\sigma), \rho > 0$, provides the estimate

$$\begin{split} \dot{V}(\sigma) &= \sigma \left(-\rho \, \operatorname{sign}(\sigma) + \delta(t, x, z) \right) = -\rho |\sigma| + \sigma \delta(t, x, z) \\ &\leq -\rho |\sigma| + L_{\delta} |\sigma| = -(\rho - L_{\delta}) |\sigma|. \end{split}$$

• Finally, with
$$ho = L_{\delta} + rac{\kappa}{\sqrt{2}}$$
, $\kappa > 0$, we have

$$\dot{V}(\sigma) \leq -rac{\kappa |\sigma|}{\sqrt{2}} = - \alpha \sqrt{V(\sigma)} \rightsquigarrow$$
 finite-time stab. of $\sigma = 0$

As an example, consider:

$$\begin{split} \dot{x} &= x^3 + z, \\ \dot{z} &= u + \delta(t, x, z) \end{split}$$

- Unknown disturbance $\delta: \mathbb{R}_{\geq 0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that

 $|\delta(t, x, z)| \le L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\ge 0} \times \mathbb{R}^{2}$

• Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the *x*-subsystem

- I.e., we want x to behave as $\dot{x} = -x$ (for all bounded disturbances)
- The desired behavior implies $\dot{x} + x = 0$
- Thus

$$x^3 + z + x = 0$$

Approach: Define a new state

$$\sigma \doteq x^3 + z + x$$
 and $V(\sigma) = \frac{1}{2}\sigma^2$

Then

$$\begin{split} \dot{V}(\sigma) &= \sigma \dot{\sigma} = \sigma \left(3x^2 \dot{x} + \dot{z} + \dot{x} \right) \\ &= \sigma \left(3x^5 + 3x^2 z + u + \delta(t, x, z) + x^3 + z \right). \end{split}$$

• To cancel the known terms define

$$u = v - 3x^5 - 3x^2z - x^3 - z$$

so that $\dot{V}(\sigma) = \sigma \left(v + \delta(t,x,z) \right)$ (with new input v)

• Selecting $v = -\rho \operatorname{sign}(\sigma), \rho > 0$, provides the estimate

$$\begin{split} \dot{V}(\sigma) &= \sigma \left(-\rho \, \operatorname{sign}(\sigma) + \delta(t, x, z) \right) = -\rho |\sigma| + \sigma \delta(t, x, z) \\ &\leq -\rho |\sigma| + L_{\delta} |\sigma| = -(\rho - L_{\delta}) |\sigma|. \end{split}$$

• Finally, with
$$ho = L_{\delta} + rac{\kappa}{\sqrt{2}}$$
, $\kappa > 0$, we have

$$\dot{V}(\sigma) \leq -\frac{\kappa |\sigma|}{\sqrt{2}} = -\alpha \sqrt{V(\sigma)} \rightsquigarrow$$
 finite-time stab. of $\sigma = 0$

Note that the control

$$u = -\left(L_{\delta} + \frac{\kappa}{\sqrt{2}}\right) \operatorname{sign}(x^{3} + z + x) - 3x^{5} - 3x^{2}z - x^{3} - z$$

is independent of the term $\delta(t,x,z).$

Consider:

$$\dot{x} = x^3 + z, \dot{z} = u + \delta(t, x, z)$$

Control law:

$$u = -\left(L_{\delta} + \frac{\kappa}{\sqrt{2}}\right)\operatorname{sign}\left(x^{3} + z + x\right) - 3x^{5} - 3x^{2}z - x^{3} - z$$

Parameter selection for the simulations:

- $L_{\delta} = 1$ and $\kappa = 2$
- $\delta(t, x, z) = \sin(t)$ (top)
- $\delta(t, x, z) = \operatorname{sign}(\cos(2t)\sin(2t))$ (bottom)

Consider:

$$\dot{x} = x^3 + z, \dot{z} = u + \delta(t, x, z)$$

Control law:

$$u=-\left(L_{\delta}+\frac{\kappa}{\sqrt{2}}\right)\mathrm{sign}\left(x^{3}\!+\!z\!+\!x\right)\!-\!3x^{5}\!-\!3x^{2}z\!-\!x^{3}\!-\!z$$

Parameter selection for the simulations:

- $L_{\delta} = 1$ and $\kappa = 2$
- $\delta(t, x, z) = \sin(t)$ (top)
- $\delta(t, x, z) = \operatorname{sign}(\cos(2t)\sin(2t))$ (bottom)

We observe that

- σ converges to zero in finite-time
- Afterwards (x, z) asymptotically approach the origin
- Since the ordinary differential equation is solved numerically, *σ* is not exactly zero!

Consider:

$$\dot{x} = x^3 + z, \dot{z} = u + \delta(t, x, z)$$

Control law:

$$u = -\left(L_{\delta} + \frac{\kappa}{\sqrt{2}}\right) \operatorname{sign}\left(x^3 + z + x\right) - 3x^5 - 3x^2z - x^3 - z$$

Parameter selection for the simulations:

- $L_{\delta} = 1$ and $\kappa = 2$
- $\delta(t, x, z) = \sin(t)$ (top)
- $\delta(t, x, z) = \operatorname{sign}(\cos(2t)\sin(2t))$ (bottom)

We observe that

- σ converges to zero in finite-time
- Afterwards (x, z) asymptotically approach the origin
- Since the ordinary differential equation is solved numerically, *σ* is not exactly zero!

Convergence structure:

~> Similar to backstepping/forwarding

Terminology

- Sliding variable: σ
- Sliding surface

 $\{(x,z) \in \mathbb{R}^2 : \sigma(x,z) = 0, \ (x,z) \in \mathbb{R}^2\},\$

→ The sliding variable, and thus implicitly the sliding surface, is defined such that the origin of the *x*-subsystem is exponentially stable if $\sigma(t) = 0$, $t \in \mathbb{R}_{>0}$, is satisfied.

Terminology

- Sliding variable: σ
- Sliding surface

 $\{(x,z) \in \mathbb{R}^2 : \sigma(x,z) = 0, \ (x,z) \in \mathbb{R}^2\},\$

- The sliding variable, and thus implicitly the sliding surface, is defined such that the origin of the *x*-subsystem is exponentially stable if $\sigma(t) = 0$, $t \in \mathbb{R}_{>0}$, is satisfied.
- We have defined σ based on the condition $\dot{x} = -x$. We could have also used $\dot{x} = -2x$ or $\dot{x} = -x^3$ (asymptotic stability), for example.
- The control law *u* is derived such that states converge to the sliding surface in finite-time.

Terminology

- Sliding variable: σ
- Sliding surface

 $\{(x,z)\in \mathbb{R}^2: \sigma(x,z)=0, \ (x,z)\in \mathbb{R}^2\},$

- The sliding variable, and thus implicitly the sliding surface, is defined such that the origin of the *x*-subsystem is exponentially stable if $\sigma(t) = 0$, $t \in \mathbb{R}_{>0}$, is satisfied.
- We have defined σ based on the condition $\dot{x} = -x$. We could have also used $\dot{x} = -2x$ or $\dot{x} = -x^3$ (asymptotic stability), for example.
- The control law *u* is derived such that states converge to the sliding surface in finite-time.
- \rightsquigarrow Convergence of $\sigma(t) \rightarrow 0$ is called the *reaching phase*.
- On the sliding surface the selection of u ensures that the dynamics behave like $\dot{x} = -x$.
- This is called *sliding phase* and guarantees asymptotic stability of the origin for the overall closed-loop system.

Note that:

- The control law u is discontinuous due to $v = \rho \operatorname{sign}(\sigma)$
- v switches between ρ and $-\rho$ depending on the sign of the sliding variable σ
- \rightsquigarrow Chattering (because σ is always slightly off)

Note that:

- The control law u is discontinuous due to $v = \rho \operatorname{sign} (\sigma)$
- v switches between ρ and $-\rho$ depending on the sign of the sliding variable σ
- \rightsquigarrow Chattering (because σ is always slightly off)

Approximation of the sign-function:

• (Continuous) saturation: (sat $_{\varepsilon} : \mathbb{R} \to [-1, 1]$)

$$\operatorname{sat}_{\varepsilon}(\sigma) = \operatorname{sat}(\frac{x}{\varepsilon}) = \begin{cases} 1, & \frac{\sigma}{\varepsilon} \ge 1\\ \frac{\sigma}{\varepsilon}, & -1 \le \frac{\sigma}{\varepsilon} \le 1\\ -1, & \frac{\sigma}{\varepsilon} \le -1 \end{cases}$$

• (Smooth) Sigmoid function: (sig_{ε} : $\mathbb{R} \to [-1, 1]$)

$$\operatorname{sig}_\varepsilon(\sigma) = \frac{1-e^{-\sigma\varepsilon}}{1+e^{-\sigma/\varepsilon}}$$

Note that:

- The control law u is discontinuous due to $v = \rho \operatorname{sign}(\sigma)$
- v switches between ρ and $-\rho$ depending on the sign of the sliding variable σ
- \rightsquigarrow Chattering (because σ is always slightly off)

Approximation of the sign-function:

• (Continuous) saturation: (sat $_{\varepsilon} : \mathbb{R} \to [-1, 1]$)

$$\operatorname{sat}_{\varepsilon}(\sigma) = \operatorname{sat}(\frac{x}{\varepsilon}) = \begin{cases} 1, & \frac{\sigma}{\varepsilon} \ge 1\\ \frac{\sigma}{\varepsilon}, & -1 \le \frac{\sigma}{\varepsilon} \le 1\\ -1, & \frac{\sigma}{\varepsilon} \le -1 \end{cases}$$

• (Smooth) Sigmoid function: (sig $_{\varepsilon} : \mathbb{R} \to [-1, 1]$)

$$\operatorname{sig}_\varepsilon(\sigma) = \frac{1-e^{-\sigma\varepsilon}}{1+e^{-\sigma/\varepsilon}}$$

Back to the example: ($\varepsilon = 0.5$)

$$u_{\varepsilon} = -(L_{\delta} + \frac{\kappa}{\sqrt{2}})\operatorname{sat}_{\varepsilon}(x^3 + z + x) - 3x^5 - 3x^2z - x^3 - z$$

Note that:

- The control law u is discontinuous due to $v = \rho \operatorname{sign}(\sigma)$
- v switches between ρ and $-\rho$ depending on the sign of the sliding variable σ
- \rightsquigarrow Chattering (because σ is always slightly off)

Approximation of the sign-function:

• (Continuous) saturation: (sat $_{\varepsilon} : \mathbb{R} \to [-1, 1]$)

$$\operatorname{sat}_{\varepsilon}(\sigma) = \operatorname{sat}(\frac{x}{\varepsilon}) = \begin{cases} 1, & \frac{\sigma}{\varepsilon} \ge 1\\ \frac{\sigma}{\varepsilon}, & -1 \le \frac{\sigma}{\varepsilon} \le 1\\ -1, & \frac{\sigma}{\varepsilon} \le -1 \end{cases}$$

• (Smooth) Sigmoid function: (sig $_{\varepsilon} : \mathbb{R} \to [-1, 1]$)

$$\operatorname{sig}_\varepsilon(\sigma) = \frac{1-e^{-\sigma\varepsilon}}{1+e^{-\sigma/\varepsilon}}$$

Note that:

- The control law u is discontinuous due to $v = \rho \operatorname{sign}(\sigma)$
- v switches between ρ and $-\rho$ depending on the sign of the sliding variable σ
- \rightsquigarrow Chattering (because σ is always slightly off)

Approximation of the sign-function:

• (Continuous) saturation: (sat $_{\varepsilon} : \mathbb{R} \to [-1, 1]$)

$$\operatorname{sat}_{\varepsilon}(\sigma) = \operatorname{sat}(\frac{x}{\varepsilon}) = \begin{cases} 1, & \frac{\sigma}{\varepsilon} \ge 1\\ \frac{\sigma}{\varepsilon}, & -1 \le \frac{\sigma}{\varepsilon} \le 1\\ -1, & \frac{\sigma}{\varepsilon} \le -1 \end{cases}$$

• (Smooth) Sigmoid function: (sig_{ε} : $\mathbb{R} \to [-1, 1]$)

$$\operatorname{sig}_\varepsilon(\sigma) = \frac{1-e^{-\sigma\varepsilon}}{1+e^{-\sigma/\varepsilon}}$$

Back to the example: ($\varepsilon = 0.5$) ($\varepsilon = 0.1$)

$$u_{\varepsilon} = -(L_{\delta} + \frac{\kappa}{\sqrt{2}})\operatorname{sat}_{\varepsilon}(x^3 + z + x) - 3x^5 - 3x^2z - x^3 - z$$

Section 3

A More General Structure

Consider:

$$\begin{aligned} \dot{x} &= f_1(x,z) \\ \dot{z} &= f_2(x,z) + g(x,z)(u+\delta(t,x,z)) \end{aligned}$$

where

- $f_1: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n, f_1(0,0) = 0$
- $f_2: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$
- $\delta : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}_{>0} \to \mathbb{R}.$

Assumptions:

- $|\delta(t, x, z)| \leq L_{\delta}$ for all $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^{n+1}$
- $g(x,z) \neq 0$ and $|g(x,z)| \leq L_g$ for all $(x,z) \in \mathbb{R}^{n+1}$

Terminology:

 $\bullet\,$ Matched disturbance: The disturbance only appears in the z-dynamics together with the input u

Consider:

$$\begin{aligned} \dot{x} &= f_1(x,z) \\ \dot{z} &= f_2(x,z) + g(x,z)(u+\delta(t,x,z)) \end{aligned}$$

where

- $f_1: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n, f_1(0,0) = 0$
- $f_2: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$
- $\delta : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}_{\geq 0} \to \mathbb{R}.$

Assumptions:

- $|\delta(t, x, z)| \leq L_{\delta}$ for all $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^{n+1}$
- $g(x,z) \neq 0$ and $|g(x,z)| \leq L_g$ for all $(x,z) \in \mathbb{R}^{n+1}$

Terminology:

• Matched disturbance: The disturbance only appears in the *z*-dynamics together with the input *u*

Sliding mode controller design:

- Design virtual control law z = k(x) such that x = 0 for $\dot{x} = f_1(x, k(x))$ is asymptotically stable
- Since z is not an input (see backstepping) we need to consider the error variables: $\sigma=z-k(x)$

Consider:

$$\begin{aligned} \dot{x} &= f_1(x,z) \\ \dot{z} &= f_2(x,z) + g(x,z)(u+\delta(t,x,z)) \end{aligned}$$

where

- $f_1: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n, f_1(0,0) = 0$
- $f_2: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$
- $\delta : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}_{\geq 0} \to \mathbb{R}.$

Assumptions:

- $|\delta(t, x, z)| \leq L_{\delta}$ for all $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^{n+1}$
- $g(x,z) \neq 0$ and $|g(x,z)| \leq L_g$ for all $(x,z) \in \mathbb{R}^{n+1}$

Terminology:

• Matched disturbance: The disturbance only appears in the *z*-dynamics together with the input *u*

Sliding mode controller design:

- Design virtual control law z = k(x) such that x = 0 for $\dot{x} = f_1(x, k(x))$ is asymptotically stable
- Since z is not an input (see backstepping) we need to consider the error variables: $\sigma = z k(x)$

• Derivative of the error dynamics:

$$\dot{\sigma} = \dot{z} - \frac{dk}{dt}(x)$$

= $f_2(x, z) + g(x, z)(u + \delta(t, x, z)) - \frac{\partial k}{\partial x}(x)f_1(x, z)$

Consider:

$$\begin{aligned} \dot{x} &= f_1(x,z) \\ \dot{z} &= f_2(x,z) + g(x,z)(u+\delta(t,x,z)) \end{aligned}$$

where

- $f_1: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n, f_1(0,0) = 0$
- $f_2: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$
- $\delta : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}_{>0} \to \mathbb{R}.$

Assumptions:

- $|\delta(t, x, z)| \leq L_{\delta}$ for all $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^{n+1}$
- $g(x,z) \neq 0$ and $|g(x,z)| \leq L_g$ for all $(x,z) \in \mathbb{R}^{n+1}$

Terminology:

• Matched disturbance: The disturbance only appears in the z-dynamics together with the input u

Sliding mode controller design:

- Design virtual control law z = k(x) such that x = 0 for $\dot{x} = f_1(x, k(x))$ is asymptotically stable
- Since z is not an input (see backstepping) we need to consider the error variables: $\sigma = z k(x)$

• Derivative of the error dynamics:

$$\dot{\sigma} = \dot{z} - \frac{dk}{dt}(x)$$

= $f_2(x, z) + g(x, z)(u + \delta(t, x, z)) - \frac{\partial k}{\partial x}(x)f_1(x, z)$

• Consider candidate Lyapunov function: $V(\sigma) = \frac{1}{2}\sigma^2$:

$$\dot{V}(\sigma) = \sigma \left(f_2(x,z) + g(x,z)(u + \delta(t,x,z)) - \frac{\partial k}{\partial x} f_1(x,z) \right)$$

Consider:

$$\begin{split} \dot{x} &= f_1(x,z) \\ \dot{z} &= f_2(x,z) + g(x,z)(u+\delta(t,x,z)) \end{split}$$

where

- $f_1: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n, f_1(0,0) = 0$
- $f_2: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$
- $\delta : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}_{>0} \to \mathbb{R}.$

Assumptions:

- $|\delta(t, x, z)| \leq L_{\delta}$ for all $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^{n+1}$
- $g(x,z) \neq 0$ and $|g(x,z)| \leq L_g$ for all $(x,z) \in \mathbb{R}^{n+1}$ Terminology:
 - Matched disturbance: The disturbance only appears in the z-dynamics together with the input u

Sliding mode controller design:

- Design virtual control law z = k(x) such that x = 0 for $\dot{x} = f_1(x, k(x))$ is asymptotically stable
- Since z is not an input (see backstepping) we need to consider the error variables: $\sigma=z-k(x)$

• Derivative of the error dynamics:

$$\dot{\sigma} = \dot{z} - \frac{dk}{dt}(x)$$

= $f_2(x, z) + g(x, z)(u + \delta(t, x, z)) - \frac{\partial k}{\partial x}(x)f_1(x, z)$

• Consider candidate Lyapunov function: $V(\sigma) = \frac{1}{2}\sigma^2$:

 $\dot{V}(\sigma) = \sigma \left(f_2(x, z) + g(x, z)(u + \delta(t, x, z)) - \frac{\partial k}{\partial x} f_1(x, z) \right)$

• Cancel known terms and introduce new input v:

$$\begin{split} u &= \frac{1}{g(x,z)} \left(-f_2(x,z) + \frac{\partial k}{\partial x}(x) f_1(x,z) + v \right) \\ \mathbf{e}_{,,} & \dot{V}(\sigma) = \sigma(v + g(x,z)\delta(t,x,z)) \end{split}$$

Consider:

$$\begin{split} \dot{x} &= f_1(x,z) \\ \dot{z} &= f_2(x,z) + g(x,z)(u+\delta(t,x,z)) \end{split}$$

where

- $f_1: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n, f_1(0,0) = 0$
- $f_2: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$
- $\delta : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}_{\geq 0} \to \mathbb{R}.$

Assumptions:

- $|\delta(t, x, z)| \leq L_{\delta}$ for all $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^{n+1}$
- $g(x, z) \neq 0$ and $|g(x, z)| \leq L_g$ for all $(x, z) \in \mathbb{R}^{n+1}$ Terminology:
 - Matched disturbance: The disturbance only appears in the *z*-dynamics together with the input *u*

Sliding mode controller design:

- Design virtual control law z = k(x) such that x = 0 for $\dot{x} = f_1(x, k(x))$ is asymptotically stable
- Since z is not an input (see backstepping) we need to consider the error variables: $\sigma=z-k(x)$

• Derivative of the error dynamics:

$$\dot{\sigma} = \dot{z} - \frac{dk}{dt}(x)$$

= $f_2(x, z) + g(x, z)(u + \delta(t, x, z)) - \frac{\partial k}{\partial x}(x)f_1(x, z)$

• Consider candidate Lyapunov function: $V(\sigma) = \frac{1}{2}\sigma^2$:

 $\dot{V}(\sigma) = \sigma \left(f_2(x, z) + g(x, z)(u + \delta(t, x, z)) - \frac{\partial k}{\partial x} f_1(x, z) \right)$

• Cancel known terms and introduce new input v:

$$u = \frac{1}{g(x,z)} \left(-f_2(x,z) + \frac{\partial k}{\partial x}(x)f_1(x,z) + v \right)$$

i.e., $\dot{V}(\sigma) = \sigma(v + q(x,z)\delta(t,x,z))$

• Select the new input:

$$v = -\left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta\right) \operatorname{sign}(\sigma)$$

Consider:

$$\begin{split} \dot{x} &= f_1(x,z) \\ \dot{z} &= f_2(x,z) + g(x,z)(u+\delta(t,x,z)) \end{split}$$

where

- $f_1: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n, f_1(0,0) = 0$
- $f_2: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$
- $\delta : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}_{\geq 0} \to \mathbb{R}.$

Assumptions:

- $|\delta(t, x, z)| \leq L_{\delta}$ for all $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^{n+1}$
- $g(x,z) \neq 0$ and $|g(x,z)| \leq L_g$ for all $(x,z) \in \mathbb{R}^{n+1}$ Terminology:
 - Matched disturbance: The disturbance only appears in the z-dynamics together with the input u

Sliding mode controller design:

- Design virtual control law z = k(x) such that x = 0 for $\dot{x} = f_1(x, k(x))$ is asymptotically stable
- Since z is not an input (see backstepping) we need to consider the error variables: $\sigma=z-k(x)$

• Derivative of the error dynamics:

$$\dot{\sigma} = \dot{z} - \frac{dk}{dt}(x)$$

= $f_2(x, z) + g(x, z)(u + \delta(t, x, z)) - \frac{\partial k}{\partial x}(x)f_1(x, z)$

• Consider candidate Lyapunov function: $V(\sigma) = \frac{1}{2}\sigma^2$:

 $\dot{V}(\sigma) = \sigma \left(f_2(x, z) + g(x, z)(u + \delta(t, x, z)) - \frac{\partial k}{\partial x} f_1(x, z) \right)$

• Cancel known terms and introduce new input v:

$$u = \frac{1}{g(x,z)} \left(-f_2(x,z) + \frac{\partial k}{\partial x}(x) f_1(x,z) + v \right)$$

i.e.,
$$\dot{V}(\sigma) = \sigma(v + g(x, z)\delta(t, x, z))$$

• Select the new input:

$$v = -\left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta\right) \operatorname{sign}(\sigma)$$

• Thus, with the bounds it holds that:

$$\dot{V}(\sigma) \leq \sigma v + |\sigma| L_g L_{\delta} = -\frac{\kappa}{\sqrt{2}} |\sigma| = -\kappa \sqrt{V(\sigma)}$$

 $\rightsquigarrow \sigma(t) = 0$ in finite time.

Theorem

Consider the dynamics

$$\begin{aligned} \dot{x} &= f_1(x,z) \\ \dot{z} &= f_2(x,z) + g(x,z)(u+\delta(t,x,z)) \end{aligned}$$

with $f_1(0,0) = 0$. Assume that $g(x,z) \neq 0$ and there exists a constant $L_g > 0$ such that $|g(x,z)| \leq L_g$ for all $(x,z) \in \mathbb{R}^{n+1}$. Additionally assume that k(x) is defined such that the origin of $\dot{x} = f(x, k(x))$ is asymptotically stable with k(0) = 0.

Then for all disturbances δ satisfying the condition

$$|\delta(t, x, z)| \le L_{\delta} \qquad \forall (t, x, z) \in \mathbb{R}^{n+1} \times \mathbb{R}_{\ge 0}$$

for some $L_{\delta} > 0$, the feedback law

$$u = \frac{1}{g(x,z)} \left(-f_2(x,z) + \frac{\partial k}{\partial x}(x) f_1(x,z) \right) - \left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta \right) \frac{\operatorname{sign}(z-k(x))}{g(x,z)}$$

asymptotically stabilizes the origin of the system for all $\kappa > 0$. Additionally, the sliding surface $\sigma = z - k(x) = 0$ is reached no later than

$$T(\sigma(0)) = T(z(0) - k(x(0))) = \frac{1}{\sqrt{2\kappa}} |z(0) - k(x(0))|.$$

Section 4

Estimating the Disturbance

So far:

- We have introduced the sliding variable σ
- Through Lyapunov arguments we ensure that (in theory) $\sigma(t)=0$ in finite time
- In numerical simulations (or in practice) σ will not be exactly zero.
- To dominate the disturbance, we defined the control law

$$u = \frac{\left(-f_2(x,z) + \frac{\partial k}{\partial x}(x)f_1(x,z)\right) - \left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta\right)\operatorname{sign}(z-k(x))}{g(x,z)}$$

So far:

- We have introduced the sliding variable σ
- Through Lyapunov arguments we ensure that (in theory) $\sigma(t)=0$ in finite time
- In numerical simulations (or in practice) σ will not be exactly zero.
- To dominate the disturbance, we defined the control law

$$u = \frac{\left(-f_2(x,z) + \frac{\partial k}{\partial x}(x)f_1(x,z)\right) - \left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta\right)\operatorname{sign}(z-k(x))}{g(x,z)}$$

Now:

• Consider the unimplementable control

$$u_{eq} = \frac{1}{g(x,z)} \left(-f_2(x,z) + \frac{\partial k}{\partial x}(x)f_1(x,z) \right) - \delta(t,x,z)$$

(which is called the *equivalent control*)

- Note that: (Assuming that δ is sufficiently smooth,) on the sliding surface where $\dot{\sigma} = 0$, it follows that u_{eq} guarantees $\sigma(t) = 0$ for all $t \ge T$ if $\sigma(T) = 0$ without the chattering effects
- $\bullet\,$ Moreover, if δ is a smooth function, u_{eq} is a smooth average of the chattering control u

P. Braun & C.M. Kellett (ANU)

So far:

- We have introduced the sliding variable σ
- $\bullet~$ Through Lyapunov arguments we ensure that (in theory) $\sigma(t)=0$ in finite time
- In numerical simulations (or in practice) σ will not be exactly zero.
- To dominate the disturbance, we defined the control law

$$u = \frac{\left(-f_2(x,z) + \frac{\partial k}{\partial x}(x)f_1(x,z)\right) - \left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta\right)\operatorname{sign}(z-k(x))}{g(x,z)}$$

Now:

• Consider the unimplementable control

$$u_{eq} = \frac{1}{g(x,z)} \left(-f_2(x,z) + \frac{\partial k}{\partial x}(x)f_1(x,z) \right) - \delta(t,x,z)$$

(which is called the *equivalent control*)

- Note that: (Assuming that δ is sufficiently smooth,) on the sliding surface where $\dot{\sigma} = 0$, it follows that u_{eq} guarantees $\sigma(t) = 0$ for all $t \ge T$ if $\sigma(T) = 0$ without the chattering effects
- $\bullet\,$ Moreover, if δ is a smooth function, u_{eq} is a smooth average of the chattering control u

P. Braun & C.M. Kellett (ANU)

Introduction to Nonlinear Control

Estimation of δ through a low-pass filter:

 Idea: Apply low-pass filter to the chattering input

$$v = -\left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta\right) \operatorname{sign}(\sigma).$$

• In particular, consider augmented dynamics ($\tau > 0$ small)

$$\begin{split} \dot{x} &= f_1(x, z) \\ \dot{z} &= f_2(x, z) + g(x, z) (\hat{u}_{eq} + \delta(t, x, z)) \\ \dot{\xi} &= -\frac{1}{\tau} \xi + \frac{1}{\tau} \operatorname{sign}(z - k(x)) \end{split}$$

• Approximated equivalent control:

$$\begin{split} \hat{u}_{eq} &= \frac{\left(-f_2(x,z) + \frac{\partial k}{\partial x}(x)f_1(x,z)\right)}{g(x,z)} \\ &- \left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta\right) \frac{\xi}{g(x,z)}. \end{split}$$

(where we have replaced $sign(\sigma)$ by ξ)

 \rightsquigarrow The approximated equivalent control is an alternative to u

Remark (Low-pass filter)

The dynamics $\dot{\xi} = -\frac{1}{\tau}\xi + \frac{1}{\tau} \operatorname{sign}(z-k(x))$ represent a *low-pass filter*. To see this, consider the one-dimensional system

$$\dot{x} = -\frac{1}{\tau}x + \frac{1}{\tau}u$$
$$y = x$$

and its representation in the frequency domain

$$\hat{y}(s) = (s + \frac{1}{\tau})^{-1} \frac{1}{\tau} \hat{u}(s) = \frac{\frac{1}{\tau}}{s + \frac{1}{\tau}} \hat{u}(s).$$

For $\tau > 0$ small we observe from the transfer function

$$G(s) = \frac{\frac{1}{\tau}}{s + \frac{1}{\tau}}$$

that for low frequencies the system approximately satisfies $\hat{y}(s) \approx \hat{u}(s)$ and for high frequencies it holds that $\hat{y}(s) \approx 0$.

Estimating the Disturbance (Example)

Example

Original example with augmented state: ($\tau > 0$, small)

$$\begin{split} \dot{x} &= x^3 + z, \\ \dot{z} &= u + \delta(t, x, z) \\ \dot{\xi} &= -\frac{1}{\tau} \xi + \frac{1}{\tau} \operatorname{sign}(z - k(x)) \end{split}$$

- We follow the steps so far, define $z = k(x) = -x^3 x$, i.e., $\dot{x} = x^3 x^3 x = -x$ (i.e. x = 0 is exponentially stable).
- The sliding mode control law (from the theorem)

$$u = (-3x^2 - 1)(x^3 + z) - \left(\frac{\kappa}{\sqrt{2}} + L_{\delta}\right)\operatorname{sign}(z + (x^3 + x))$$
$$= -3x^5 - x^3 - 3x^2z - z - \left(\frac{\kappa}{\sqrt{2}} + L_{\delta}\right)\operatorname{sign}(z + x^3 + x)$$

• The approximated equivalent control

$$\hat{u}_{eq} = -3x^5 - x^3 - 3x^2z - z - \left(\frac{\kappa}{\sqrt{2}} + L_{\delta}\right)\xi$$

Here: $\delta(t, x, z) = \sin(t)$, $L_{\delta} = 1$, $\kappa = 2$ and $\tau = 0.1$.

Compare equivalent & approximated equivalent control:

$$u_{eq} = \frac{1}{g(x,z)} \left(-f_2(x,z) + \frac{\partial k}{\partial x}(x) f_1(x,z) \right) - \delta(t,x,z)$$
$$\hat{u}_{eq} = \frac{\left(-f_2(x,z) + \frac{\partial k}{\partial x}(x) f_1(x,z) \right)}{g(x,z)} - \left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta \right) \frac{\xi}{g(x,z)}$$

An estimation of the disturbance:

$$\hat{\delta}(t,x,z) = \left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta\right) \frac{\xi}{g(x,z)}$$

Compare equivalent & approximated equivalent control:

$$u_{eq} = \frac{1}{g(x,z)} \left(-f_2(x,z) + \frac{\partial k}{\partial x}(x)f_1(x,z) \right) - \delta(t,x,z)$$
$$\hat{u}_{eq} = \frac{\left(-f_2(x,z) + \frac{\partial k}{\partial x}(x)f_1(x,z) \right)}{g(x,z)} - \left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta \right) \frac{\xi}{g(x,z)}$$

An estimation of the disturbance:

$$\hat{\delta}(t, x, z) = \left(\frac{\kappa}{\sqrt{2}} + L_g L_\delta\right) \frac{\xi}{g(x, z)}$$

Example

Consider (*u* sliding mode control law)

$$\begin{split} \dot{x} &= x^3 + z, \\ \dot{z} &= u + \delta(t, x, z) \\ \dot{\xi} &= -\frac{1}{0.05} \xi + \frac{1}{0.05} \operatorname{sign}(z - k(x - z)) \end{split}$$

Estimated disturbance:

$$\hat{\delta}(t, x, z) = (\sqrt{2} + 1)\xi$$

P. Braun & C.M. Kellett (ANU)

Section 5

Output Tracking

So far:

• (Asymptotic) Stabilization of the origin

Now:

• Tracking of a reference signal

So far:

• (Asymptotic) Stabilization of the origin Now:

Tracking of a reference signal

In particular, consider

• y = x, $\dot{x} = x^3 + z$, $\dot{z} = u + \delta(t, x, z)$

• reference signal $y_r : \mathbb{R}_{\geq 0} \to \mathbb{R}$ twice cont. diff. Goal:

• $y(t) \to y_r(t)$ for $t \to \infty$

So far:

• (Asymptotic) Stabilization of the origin Now:

Tracking of a reference signal

In particular, consider

• y = x, $\dot{x} = x^3 + z$, $\dot{z} = u + \delta(t, x, z)$

• reference signal $y_r: \mathbb{R}_{\geq 0} \to \mathbb{R}$ twice cont. diff. Goal:

•
$$y(t) \to y_r(t)$$
 for $t \to \infty$

Controller design:

Define error dynamics

 $e(t) = y_r(t) - y(t)$ and demand $e(t) \stackrel{t \to \infty}{\to} 0$

- and the requirement that $e(t) \to 0$ for $t \to \infty$.
- Define the sliding variable (based on $\dot{e} = -e$)

$$\sigma = \dot{e} + e = \dot{y}_r - \dot{y} + y_r - y = \dot{y}_r + y_r - x^3 - z - x$$

• Calculating the time derivative:

$$\dot{\sigma} = \ddot{y}_r + \dot{y}_r - 3x^2\dot{x} - \dot{z} - \dot{x}$$

P. Braun & C.M. Kellett (ANU)

So far:

• (Asymptotic) Stabilization of the origin Now:

• Tracking of a reference signal

In particular, consider

• y = x, $\dot{x} = x^3 + z$, $\dot{z} = u + \delta(t, x, z)$

- reference signal $y_r: \mathbb{R}_{\geq 0} \to \mathbb{R}$ twice cont. diff. Goal:
 - $y(t) \to y_r(t)$ for $t \to \infty$

Controller design:

Define error dynamics

 $e(t) = y_r(t) - y(t)$ and demand $e(t) \stackrel{t \to \infty}{\to} 0$

- and the requirement that $e(t) \to 0$ for $t \to \infty$.
- Define the sliding variable (based on $\dot{e} = -e$)

 $\sigma = \dot{e} + e = \dot{y}_r - \dot{y} + y_r - y = \dot{y}_r + y_r - x^3 - z - x$

• Calculating the time derivative:

 $\dot{\sigma} = \ddot{y}_r + \dot{y}_r - 3x^2\dot{x} - \dot{z} - \dot{x}$

P. Braun & C.M. Kellett (ANU)

• Candidate Lyapunov function $V(\sigma) = \frac{1}{2}\sigma^2$:

$$\begin{split} \dot{V}(\sigma) &= \dot{\sigma}\sigma \\ &= \sigma(\ddot{y}_r + \dot{y}_r - 3x^5 - 3x^2z - u - \delta(t, x, z) - x^3 - z) \end{split}$$

• Define the input (with new degree of freedom v):

$$u = -3x^5 - 3x^2z - x^3 - z - v$$

So far:

• (Asymptotic) Stabilization of the origin Now:

Tracking of a reference signal

In particular, consider

- y = x, $\dot{x} = x^3 + z$, $\dot{z} = u + \delta(t, x, z)$
- reference signal $y_r: \mathbb{R}_{\geq 0} \to \mathbb{R}$ twice cont. diff. Goal:
 - $y(t) \to y_r(t)$ for $t \to \infty$

Controller design:

Define error dynamics

 $e(t) = y_r(t) - y(t)$ and demand $e(t) \stackrel{t \to \infty}{\to} 0$

- and the requirement that $e(t) \to 0$ for $t \to \infty$.
- Define the sliding variable (based on $\dot{e} = -e$)

 $\sigma = \dot{e} + e = \dot{y}_r - \dot{y} + y_r - y = \dot{y}_r + y_r - x^3 - z - x$

• Calculating the time derivative:

 $\dot{\sigma} = \ddot{y}_r + \dot{y}_r - 3x^2\dot{x} - \dot{z} - \dot{x}$

P. Braun & C.M. Kellett (ANU)

• Candidate Lyapunov function $V(\sigma) = \frac{1}{2}\sigma^2$:

$$\begin{split} \dot{V}(\sigma) &= \dot{\sigma}\sigma \\ &= \sigma(\ddot{y}_r + \dot{y}_r - 3x^5 - 3x^2z - u - \delta(t, x, z) - x^3 - z) \end{split}$$

- Define the input (with new degree of freedom v): $u=-3x^5-3x^2z-x^3-z-v \label{eq:u}$
- Assume we do not know the reference $y_r(t)$ to be tracked *a priori*, define the 'new disturbance'

$$\psi(t, x, z) = \ddot{y}_r + \dot{y}_r - \delta(t, x, z)$$

So far:

• (Asymptotic) Stabilization of the origin Now:

Tracking of a reference signal

In particular, consider

- y = x, $\dot{x} = x^3 + z$, $\dot{z} = u + \delta(t, x, z)$
- reference signal $y_r: \mathbb{R}_{\geq 0} \to \mathbb{R}$ twice cont. diff. Goal:
 - $y(t) \to y_r(t)$ for $t \to \infty$

Controller design:

Define error dynamics

 $e(t) = y_r(t) - y(t)$ and demand $e(t) \stackrel{t \to \infty}{\to} 0$

- and the requirement that $e(t) \to 0$ for $t \to \infty$.
- Define the sliding variable (based on $\dot{e} = -e$)

 $\sigma = \dot{e} + e = \dot{y}_r - \dot{y} + y_r - y = \dot{y}_r + y_r - x^3 - z - x$

• Calculating the time derivative:

 $\dot{\sigma} = \ddot{y}_r + \dot{y}_r - 3x^2\dot{x} - \dot{z} - \dot{x}$

P. Braun & C.M. Kellett (ANU)

$$\begin{split} \dot{V}(\sigma) &= \dot{\sigma}\sigma \\ &= \sigma(\ddot{y}_r + \dot{y}_r - 3x^5 - 3x^2z - u - \delta(t, x, z) - x^3 - z) \end{split}$$

- Define the input (with new degree of freedom v): $u=-3x^5-3x^2z-x^3-z-v \label{eq:u}$
- Assume we do not know the reference $y_r(t)$ to be tracked *a priori*, define the 'new disturbance'

 $\psi(t, x, z) = \ddot{y}_r + \dot{y}_r - \delta(t, x, z)$

• Then, the candidate Lyapunov functions satisfies

 $\dot{V}(\sigma) = \sigma(\psi(t, x, z) + v)$

- Assume that $|\psi(t,x,z)| \leq L_{\psi}$, for $L_{\psi} > 0$ & define $v = -(L_{\psi} + \frac{\kappa}{\sqrt{2}}) \operatorname{sign}(\sigma), \quad (\kappa > 0)$
- Then $\dot{V}(\sigma)$ satisfies

$$\dot{V}(\sigma) = \sigma(\psi(t, x, z) - (L_{\psi} + \frac{\kappa}{\sqrt{2}})\operatorname{sign}(\sigma))$$
$$\leq |\sigma|L_{\psi} - |\sigma|\left(L_{\psi} + \frac{\kappa}{\sqrt{2}}\right) = -\kappa\sqrt{V(x)}$$

Example

Consider the system

$$y = x,$$
 $\dot{x} = x^3 + z,$ $\dot{z} = u + \delta(t, x, z)$

with output together with the reference signal

 $y_r(t) = \begin{cases} 0.8 \sin(2t) & \text{for } t < 8, \\ 1.2 \sin(4t) & \text{for } t \ge 8. \end{cases}$

• y_r is twice continuously differentiable for all $t \neq 8$

• For the simulation, the disturbance $\delta(t,x,z)=\sin(t)$ is used

- The new disturbance $\psi = \ddot{y}_r + \dot{y}_r \delta$ satisfies $|\psi(t, x, z)| \le 25$ for all $t \ne 8$.
- Top figure: $L_{\psi} = 25$
- Bottom figure: $L_{\psi} = 1$
- Additionally: $\kappa = 2$

Introduction to Nonlinear Control

Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett School of Engineering, Australian National University, Canberra, Australia

Part III:

Chapter 10: Sliding Mode Control 10.1 Finite-Time Stability 10.2 Basic Sliding Mode Control 10.3 A More General Setting 10.4 Estimating the Disturbance 10.5 Output Tracking

