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Optimal Control – Continuous Time Setting

We consider continuous time system

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn (1)

By assumption
f : Rn × Rm → Rn locally Lipschitz continuous

Set of inputs and set of solutions:

U = {u(·) : R≥0 → Rm| u(·) measurable}
X = {x(·) : R≥0 → Rn| x(·) is absolutely continuous}

We say that
(x(·), u(·)) ∈ X × U is a solution pair if it satisfies (1)
for almost all t ∈ R≥0.

Note that:
The condition for almost all t ∈ R≥0 allows a larger
class of solutions x(·).
It is sufficient if x(·) is continuously differentiable for
almost all t ≥ 0.

u(·) can be piecewise continuous, for example.

If the initial condition is important (or not clear from
context), we use x(·;x0) ∈ X and u(·;x0) ∈ U

For (x(·), u(·)) ∈ X × U we define
Cost functional (or performance criterion)
J : Rn × U → R ∪ {±∞} as

J(x0, u(·)) =
∫ ∞

0
ℓ(x(τ), u(τ))dτ.

Running cost: ℓ : Rn × Rm → R
(Optimal) Value function: V : Rn → R≥0,

V (x0) = min
u(·)∈U

J(x0, u(·))

(We assume that the minimum exists!)

Sometimes, we use the notation

V (x0) = min
u(·)∈U

J(x0, u(·))

subject to (1).

Note that: x0, and u(·) are sufficient to describe x(·)
Optimization in terms of u(·):

u⋆(·) = arg min
u(·)∈U

J(x0, u(·)).
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ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn (1)

By assumption
f : Rn × Rm → Rn locally Lipschitz continuous

Set of inputs and set of solutions:

U = {u(·) : R≥0 → Rm| u(·) measurable}
X = {x(·) : R≥0 → Rn| x(·) is absolutely continuous}

We say that
(x(·), u(·)) ∈ X × U is a solution pair if it satisfies (1)
for almost all t ∈ R≥0.

Note that:
The condition for almost all t ∈ R≥0 allows a larger
class of solutions x(·).
It is sufficient if x(·) is continuously differentiable for
almost all t ≥ 0.

u(·) can be piecewise continuous, for example.

If the initial condition is important (or not clear from
context), we use x(·;x0) ∈ X and u(·;x0) ∈ U

For (x(·), u(·)) ∈ X × U we define
Cost functional (or performance criterion)
J : Rn × U → R ∪ {±∞} as

J(x0, u(·)) =
∫ ∞

0
ℓ(x(τ), u(τ))dτ.

Running cost: ℓ : Rn × Rm → R
(Optimal) Value function: V : Rn → R≥0,

V (x0) = min
u(·)∈U

J(x0, u(·))

(We assume that the minimum exists!)

Sometimes, we use the notation

V (x0) = min
u(·)∈U

J(x0, u(·))

subject to (1).

Note that: x0, and u(·) are sufficient to describe x(·)
Optimization in terms of u(·):

u⋆(·) = arg min
u(·)∈U

J(x0, u(·)).

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 12: Optimal Control 4 / 27



Optimal Control – Continuous Time Setting

We consider continuous time system
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Optimal Control – Continuous Time Setting (2)

Keep in mind:

V (x0) = min
u(·)∈U

J(x0, u(·))

subject to (1)
u⋆(·) = arg min

u(·)∈U
J(x0, u(·)).

We hope to find a feedback law: (µ : Rn → Rm)

µ(x⋆(t)) = u⋆(t) ∀ t ∈ R≥0.

Here
(x⋆(·), u⋆(·)) ∈ X × U is an optimal solution pair

x⋆(·) uniquely defined through u⋆(·) and x⋆(0) = x0

Definition (Feedback invariant)

Consider ẋ(t) = f(x(t), u(t)). H : X × U → R is called
feedback invariant with respect to X × U if for all solution
pairs (x1(·), u1(·)), (x2(·), u2(·)) ∈ X × U with
x1(0) = x2(0) the equality

H(x1(·), u1(·)) = H(x2(·), u2(·)) holds.

Thus, note that:
The value of a feedback invariant H(x(·), u(·))
depends only on x0 (and is independent of u(·))

Let H(x(·), u(·)) be a feedback invariant. If there
exists Λ : Rn × Rm → R such that

J(x0, u(·)) = H(x(·), u(·)) +
∫ ∞

0
Λ(x(τ), u(τ))dτ

where minu∈Rm Λ(x, u) = 0, ∀ x ∈ Rn

then

µ(x(t)) = arg min
u∈Rm

Λ(x(t), u).

Moreover, it holds that

V (x0) = min
u(·)∈U

J(x0, u(·))

= min
u(·)∈U

(
H(x(·), u(·)) +

∫∞
0 Λ(x(τ), u(τ)) dτ

)
= H(x(·), u(·)) +

∫∞
0 minu(·)∈U (Λ(x(τ), u(τ))) dτ

= H(x(·), u(·))
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Linear Quadratic Regulator

Consider (A ∈ Rn×n, B ∈ Rn×m)

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ Rn

To ensure that H(x(·), u(·)) < ∞ we define

Xs =
{
x(·) ∈ X : lim

t→∞
x(t) = 0

}

Theorem (Feedback invariant)

Consider the linear system with solution pairs
(x(·), u(·)) ∈ Xs × U . Then, for any P ∈ Sn, the functional
H : Xs × U defined as

H(x(·), u(·)) = −
∫ ∞

0
(Ax(τ) +Bu(τ))T Px(τ)

+ xT (τ)P (Ax(τ) +Bu(τ)) dτ

is a feedback invariant.

Proof.
Consider (x(·), u(·)) ∈ Xs × U . Then

−
∫ ∞

0

d
dτ

(
xT (τ)Px(τ)

)
dτ = −xT (τ)Px(τ)

∣∣∣∞
0

= xT (0)Px(0)− lim
t→∞

xT (t)Px(t) = xT (0)Px(0).

Since x(·) ∈ Xs by assumption, xT (t)Px(t)
t→∞→ 0

vanishes and the term depends only on x(0).

We continue with the cost functional: (Q ∈ Sn
≥0, R ∈ Sm

>0)

J(x0, u(·)) =
∫ ∞

0

(
xT (τ)Qx(τ) + uT (τ)Ru(τ)

)
dτ

(⇝ Linear quadratic regulator (LQR))
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−
∫ ∞

0

d
dτ

(
xT (τ)Px(τ)

)
dτ = −xT (τ)Px(τ)

∣∣∣∞
0
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Linear Quadratic Regulator (2)

We add and subtract the feedback invariant:

J(x0,u(·)) = H(x(·), u(·)) +
∫ ∞

0
xTQx+ uTRu+(Ax+Bu)T Px+ xTP (Ax+Bu) dτ.

Rearranging terms, completing the squares and note that R−1 is well defined (since R > 0):∫ ∞

0
xTQx+ uTRu+ (Ax+Bu)T Px+ xTP (Ax+Bu) dτ =

∫ ∞

0
xT (Q+ATP + PA)x+ uTRu+ 2uTBTPx dτ

=

∫ ∞

0

(
xT (Q+ATP + PA)x+ uTRu+ 2uTBTPx+xTPBTR−1BPx− xTPBTR−1BPx

)
dτ

=

∫ ∞

0

(
xT (Q+ATP + PA− PBR−1BTP )x+ (u+R−1BTPx)TR(u+R−1BTPx)

)
dτ.

If P can be chosen so that ATP + PA+Q− PBR−1BTP = 0 cost function reduces to

J(x0, u(·)) = H(x(·), u(·)) +
∫ ∞

0
(u+R−1BTPx)TR(u+R−1BTPx)dτ.

Since R > 0,

Λ(x, u)
.
= (u+R−1BTPx)TR(u+R−1BTPx)

has a minimum at zero given by µ(x(t)) = u(t) = −R−1BTPx(t).

For H(x(·), u(·)) = −
∫∞
0 (Ax+Bu)T Px+ xTP (Ax+Bu) dτ to be a feedback invariant limt→∞ x(t) = 0 needs

to be satisfied (i.e., (x(·), u(·)) ∈ Xs × U ) thus A−BR−1BTP needs to be Hurwitz.
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Linear Quadratic Regulator (3)

Linear system:

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ Rn

Quadratic cost function:

J(x0, u(·)) =
∫ ∞

0

(
xT (τ)Qx(τ) + uT (τ)Ru(τ)

)
dτ

Theorem

Consider the linear system and the quadratic cost function
defined through Q ∈ Sn

≥0, R ∈ Sm
>0. If there exists P ∈ Sn

satisfying the continuous time algebraic Riccati equation

ATP + PA+Q− PBR−1BTP = 0

and if A−BR−1BTP is Hurwitz, then
µ(x) = −R−1BTPx minimizes the quadratic cost function
and the optimal value function is given by

V (x0) = xT
0 Px0.
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Linear Quadratic Regulator (4)

Theorem (Linear quadratic regulator)

Consider the linear system with output y(t) = Cx(t), y ∈ Rp, and assume that (A,B) is
stabilizable and (A,C) is detectable. Let Q ∈ Sp, R ∈ Sm and S ∈ Rp×m be such that[

Q S
ST R

]
> 0

and consider the quadratic cost function

J(x0, u(·)) =
∫ ∞

0

[
x(τ)TCT u(τ)T

] [ Q S
ST R

] [
Cx(τ)
u(τ)

]
dτ.

Then the following properties are satisfied.
1 The Riccati equation

ATP + PA+ CTQC − (PB + CTS)R−1(BTP + STC) = 0

has a unique positive definite solution P ∈ Sn
>0.

2 The state feedback µ(x) = −R−1(BTP + STC)x ensures that the closed loop matrix
A−BR−1(BTP + STC) is Hurwitz.

3 The optimal value function minimizing the cost function is given by V (x0) = xT
0 Px0 and V is

a Lyapunov function of the closed loop system.

Note that the Schur complement (Lemma ??) implies that the matrix R in (??) is positive definite
and thus R−1 is well defined.
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Control-Affine Nonlinear Systems
Control-affine nonlinear systems (with equilibrium x = 0):

ẋ(t) = f(x(t)) + g(x(t))u(t), x(0) = x0 ∈ Rn,

Theorem

Consider the control affine nonlinear system with solution
pairs (x(·), u(·)) ∈ Xs × U . Then for a continuously
differentiable function V : Rn → R,

H(x(·), u(·)) = −
∫ ∞

0

(
LfV (x(τ)) + LgV (x(τ))u(τ)

)
dτ

is a feedback invariant.

Consider
R : Rn → Rm×m, R(x) positive definite and
bounded away from zero for all x ∈ Rn, i.e., there
exists a c > 0 such that R(x)− cI > 0 for all x ∈ Rn.

Q : Rn → R≥0 positive definite

cost function

J(x0, u(·)) =
∫ ∞

0

(
Q(x(τ)) + uT (τ)R(x(τ))u(τ)

)
dτ

As before we can write

J(x(·), u(·)) = H(x(·), u(·))

+

∫ ∞

0
Q(x) + LfV (x)− 1

4
LgV (x)(R(x))−1LgV (x)T

+
(
u+ 1

2
(R(x))−1LgV (x)

)T
R(x)(u+ 1

2
(R(x))−1LgV (x))dτ

Theorem
Consider the control-affine system and the cost function. If
there exists a continuously differentiable function
V : Rn → R such that for all x ∈ Rn

Q(x) + LfV (x)− 1
4
LgV (x)(R(x))−1LgV (x)T = 0,

and if the feedback

µ(x) = − 1
2
(R(x))−1LgV (x)

asymptotically stabilizes the origin, then this feedback
minimizes J(x(·), u(·)).

⇝ Checking asymptotic stability is not straightforward.
⇝ If V is a CLF, then asymptotic stability follows.
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Inverse Optimality

So far, we followed the standard approach of optimal control,
i.e.,

the designer specifies a cost function to be minimized

⇝ the minimum defines an optimal feedback stabilizer

Now, consider the reverse process, i.e.,
suppose we have a CLF V and can write the stabilizing
control in the form

µ(x) = − 1
2
(R(x))−1LgV (x)

where R(x)− cI > 0 for all x ∈ Rn and c > 0

⇝ Compute

Q(x) = −LfV (x) + 1
4
LgV (x)(R(x))−1LgV (x)T

(Since V is a CLF, Q is positive definite.

⇝ The control law µ(x) minimizes

J(x0, u(·)) =
∫ ∞

0

(
Q(x(τ)) + uT (τ)R(x(τ))u(τ)

)
dτ

with the computed functions Q and R.

⇝ µ(x) is referred to as inverse optimal

In particular, not the cost function is specified by
the designer, but rather the stabilizing feedback
which defined the cost function

Recall the ISS redesign & Sontag’s formula:
The concept of inverse optimality allows an
analysis of the control laws obtained through the
ISS redesign and Sontag’s universal formula by
calculating the performance criterion for which the
controllers are optimal.)
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Section 2

Optimal Control – Discrete Time Setting
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Optimal Control – Discrete Time Setting

Consider

x(k + 1) = f(x(k), u(k)), x(0) = x0 (2)

Set of inputs and set of solutions:

U = {u(·) : N0 → Rm}, X = {x(·) : N0 → Rn}.

Xs =
{
x(·) ∈ X : lim

k→∞
x(k) = 0

}
.

Cost functional

J(x0, u(·)) =
∞∑

k=0

ℓ(x(k), u(k)).

(with running costs ℓ : Rn × Rm → R)

Optimal value function:

V (x0) = min
u(·)∈U

J(x0, u(·))

subject to (2)

Definition (Feedback invariant)
Consider x+ = f(x, u). H : X × U → R is called feedback
invariant with respect to X × U if for all solution pairs
(x1(·), u1(·)), (x2(·), u2(·)) ∈ X × U with x1(0) = x2(0)
the equality

H(x1(·), u1(·)) = H(x2(·), u2(·)) holds.

Decomposition of the cost function

J(x0, u(·)) = H(x(·), u(·)) +
∞∑

k=0

Λ(x(k), u(k))

with

min
u∈Rm

Λ(x, u) = 0 ∀ x ∈ Rn

⇝ Optimal feedback stabilizer

µ(x(k)) = arg min
u∈Rm

Λ(x(k), u).
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The Linear Quadratic Regulator

Consider the linear system

x(k + 1) = Ax(k) +Bu(k), x(0) = x0 ∈ Rn

Theorem

Consider the discrete time linear system with solution pairs
(x(·), u(·)) ∈ Xs × U . Then, for any symmetric matrix
P ∈ Sn, the functional H : Xs × U → R defined as

H(x(·), u(·))

=−
∞∑

k=0

(Ax(k)+Bu(k))TP (Ax(k)+Bu(k))−x(k)TPx(k)

is a feedback invariant.

(⇝ Note the structure of the discrete time Lyapunov
equation)

Theorem

Consider the discrete time linear system and the quadratic
cost function

J(x0, u(·)) =
∞∑

k=0

x(k)TQx(k) + u(k)TRu(k)

defined through Q ∈ Sn
≥0, R ∈ Sm

>0. If there exists P ∈ Sn

satisfying the discrete time algebraic Riccati equation

Q+ATPA− P −ATPB
(
R+BTPB

)−1
BTPA = 0

and if

A−B(R+BTPB)−1BTPA

is a Schur matrix, then

µ(x) = −
(
R+BTPB

)−1
BTPAx

minimizes the cost function and the optimal value function
is given by V (x0) = xT

0 Px0.
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The Linear Quadratic Regulator (2)

Theorem

Consider the discrete time linear system and the quadratic
cost function

J(x0, u(·)) =
∞∑

k=0

x(k)TQx(k) + u(k)TRu(k)

defined through Q ∈ Sn
≥0, R ∈ Sm

>0. If there exists P ∈ Sn

satisfying the discrete time algebraic Riccati equation

Q+ATPA− P −ATPB
(
R+BTPB

)−1
BTPA = 0

and if

A−B(R+BTPB)−1BTPA

is a Schur matrix, then

µ(x) = −
(
R+BTPB

)−1
BTPAx

minimizes the cost function and the optimal value function
is given by V (x0) = xT

0 Px0.

Proof.
Same steps as in the continuous time setting:

J(x0, u(·))=H(x(·), u(·))+
∑∞

k=0x(k)
TQx(k)+u(k)TRu(k)

+
∑∞

k=0(Ax(k)+Bu(k))TP (Ax(k)+Bu(k))−x(k)TPx(k)

Define R̃ = R+BTPB. Then J(x0, u(·)) can be rewritten∑∞
k=0 x

TQx+uTRu+(Ax+Bu)T P (Ax+Bu)−xTPx

=
∑∞

k=0 x
T (Q+ATPA− P )x+ uT R̃u+ 2uTBTPAx

+
∑∞

k=0 x
TATPBR̃−1BTPAx−xTATPBR̃−1BTPAx

=
∑∞

k=0 x
T (Q+ATPA− P −ATPBR̃−1BTPA)x

+
∑∞

k=0(R̃u+BTPAx)T R̃−1(R̃u+BTPAx).

P positive definite⇝ BTPB positive semidefinite⇝
R̃ = R+BTPB positive definite⇝ R̃−1 well defined

We recover the algebraic Riccati equation

We recover the feedback law

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 12: Optimal Control 15 / 27



The Linear Quadratic Regulator (3)

Theorem (The discrete time linear quadratic regulator)
Consider the linear system with output y(k) = Cx(k), y ∈ Rp, and assume that the pair (A,B)
is stabilizable and (A,C) is detectable. Let Q ∈ Sp, R ∈ Sm and S ∈ Rp×m be such that[

Q S
ST R

]
> 0

and consider the quadratic cost function

J(x0, u(·)) =
∞∑

k=0

[
x(k)TCT u(k)T

] [ Q S
ST R

] [
Cx(k)
u(k)

]
.

1 The Riccati equation

CTQC +ATPA− P − (ATPB + CTS)
(
R+BTPB

)−1
(BTPA+ STC) = 0

has a unique positive definite solution P ∈ Sn
>0.

2 The state feedback µ(x) = −
(
R+BTPB

)−1
(BTPA+ STC)x ensures that

the closed loop matrix A−B
(
R+BTPB

)−1
(BTPA+ STC) is a Schur matrix.

3 The optimal value function minimizing the cost function is given by V (x0) = xT
0 Px0 and

V defines a Lyapunov function of the closed loop system.
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Section 3

From Infinite to Finite Dimensional Optimization
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From Infinite to Finite Dimensional Optimization

Consider

x(k + 1) = f(x(k), u(k)), x(0) = x0 (3)

Cost functional

J(x0, u(·)) =
∞∑

k=0

ℓ(x(k), u(k)).

(with running costs ℓ : Rn × Rm → R)

Optimal value function:

V (x0) = min
u(·)∈U

J(x0, u(·))

subject to (3)

(Optimal control problem)

Optimal solution pair

(x⋆(·), u⋆(·)) ∈ X × U

Recapitulation of results:
(x⋆(·), u⋆(·)) ∈ X × U is optimal with respect to a
specific measure (i.e., a specific cost functional).

To obtain the optimal solution pair an infinite
dimensional optimization problem needs to be solved.

⇝ In general only possible under specific assumptions
on the system dynamics and the input and solution
space U and X .

⇝ Even if it is possible to solve the optimization problem
for a specific initial value x0 ∈ Rn, to obtain an
optimal feedback law µ(x(t)) (instead of an optimal
open loop input u(t)) it needs to be solved for all
x0 ∈ Rn.

How can we overcome the restriction to linear
dynamics?

How can we incorporate state/input constraints?

How can we simplify the infinite horizon (or infinite
dimensional) optimization problem?
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From Infinite to Finite Dimensional Optimization: The Principle of Optimality
The principle of optimality:

In words, for any point on an optimal solution x⋆(·),
the remaining control inputs u⋆(·) are also optimal.

More formally:
Assume that solutions of the optimal control problem
are unique.

For x0 ∈ Rn let (x⋆(·;x0), u⋆(·;x0)) be the optimal
solution pair of

u⋆(·;x0) = arg min
u(·)∈U

J(x0, u(·))

subject to dynamics & initial cond.

For any T ≥ 0 let (x̄⋆(·;x⋆(T ;x0)), ū⋆(·;x⋆(T ;x0)))
be the optimal solution pair of

ū⋆(·;x⋆(T ;x0)) = arg min
u(·)∈U

J(x⋆(T ;x0), u(·))

subject to dynamics & initial cond.

Then the principle of optimality states that

ū⋆(·;x⋆(T ;x0)) = u⋆(·+ T ;x0)

x̄⋆(·;x⋆(T ;x0)) = x⋆(·+ T ;x0)

x0

0 x1

x2

x⋆(T ;x0)

x⋆(·;x0)

x̄⋆(·;x⋆(T ;x0))

Note that:
In the case that optimal solutions are not unique, ‘only’

J(x⋆(T ;x), ū⋆(·;x⋆(T ;x)))=J(x⋆(T ;x), u⋆(·+ T ;x))

is guaranteed.

Same result in the discrete time setting
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be the optimal solution pair of
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Constrained Optimal Control for Linear Systems

Consider

x(k + 1) = f(x(k), u(k)), x(0) = x0

Set of inputs and set of solutions:

U = {u(·) : N0 → Rm}, X = {x(·) : N0 → Rn}.

Cost functional

J(x0, u(·)) =
∑∞

k=0 ℓ(x(k), u(k))

=
∑∞

k=0 x(k)Qx(k) + u(k)Ru(k)

Optimal value function:

V (x0) = min
u(·)∈U

J(x0, u(·))

subject to dynamics & init. cond.

⇝ For linear systems and quadratic running costs we
derived a stabilizing feedback law (i.e., an explicit
solutions) through algebraic Riccati equation

⇝ This was only possible due to the special structure of
the dynamics, the cost function, and the input and
solution spaces

Now:
We restrict the input space to

UU = {u(·) : N0 → Rm| u(k) ∈ U ∀k ∈ N},

for U ⊂ Rm closed and convex, 0 ∈ int(U)
Corresponding OCP:

V (x0) = min
u(·)∈UU

J(x0, u(·))

subject to dynamics & initial cond.

⇝ The approach followed so far is in general not
applicable

⇝ Standard (convex) optimization algorithms are not
directly applicable since the OCP is infinite
dimensional

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 12: Optimal Control 20 / 27



Constrained Optimal Control for Linear Systems

Consider

x(k + 1) = f(x(k), u(k)), x(0) = x0

Set of inputs and set of solutions:

U = {u(·) : N0 → Rm}, X = {x(·) : N0 → Rn}.

Cost functional

J(x0, u(·)) =
∑∞

k=0 ℓ(x(k), u(k))

=
∑∞

k=0 x(k)Qx(k) + u(k)Ru(k)

Optimal value function:

V (x0) = min
u(·)∈U

J(x0, u(·))

subject to dynamics & init. cond.

⇝ For linear systems and quadratic running costs we
derived a stabilizing feedback law (i.e., an explicit
solutions) through algebraic Riccati equation

⇝ This was only possible due to the special structure of
the dynamics, the cost function, and the input and
solution spaces

Now:
We restrict the input space to

UU = {u(·) : N0 → Rm| u(k) ∈ U ∀k ∈ N},

for U ⊂ Rm closed and convex, 0 ∈ int(U)
Corresponding OCP:

V (x0) = min
u(·)∈UU

J(x0, u(·))

subject to dynamics & initial cond.

⇝ The approach followed so far is in general not
applicable

⇝ Standard (convex) optimization algorithms are not
directly applicable since the OCP is infinite
dimensional

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 12: Optimal Control 20 / 27



Constrained Optimal Control for Linear Systems

Consider

x(k + 1) = f(x(k), u(k)), x(0) = x0

Set of inputs and set of solutions:

U = {u(·) : N0 → Rm}, X = {x(·) : N0 → Rn}.

Cost functional

J(x0, u(·)) =
∑∞

k=0 ℓ(x(k), u(k))

=
∑∞

k=0 x(k)Qx(k) + u(k)Ru(k)

Optimal value function:

V (x0) = min
u(·)∈U

J(x0, u(·))

subject to dynamics & init. cond.

⇝ For linear systems and quadratic running costs we
derived a stabilizing feedback law (i.e., an explicit
solutions) through algebraic Riccati equation

⇝ This was only possible due to the special structure of
the dynamics, the cost function, and the input and
solution spaces

Now:
We restrict the input space to

UU = {u(·) : N0 → Rm| u(k) ∈ U ∀k ∈ N},

for U ⊂ Rm closed and convex, 0 ∈ int(U)
Corresponding OCP:

V (x0) = min
u(·)∈UU

J(x0, u(·))

subject to dynamics & initial cond.

⇝ The approach followed so far is in general not
applicable

⇝ Standard (convex) optimization algorithms are not
directly applicable since the OCP is infinite
dimensional

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 12: Optimal Control 20 / 27



Constrained Optimal Control for Linear Systems

Consider

x(k + 1) = f(x(k), u(k)), x(0) = x0

Set of inputs and set of solutions:

U = {u(·) : N0 → Rm}, X = {x(·) : N0 → Rn}.

Cost functional

J(x0, u(·)) =
∑∞

k=0 ℓ(x(k), u(k))

=
∑∞

k=0 x(k)Qx(k) + u(k)Ru(k)

Optimal value function:

V (x0) = min
u(·)∈U

J(x0, u(·))

subject to dynamics & init. cond.

⇝ For linear systems and quadratic running costs we
derived a stabilizing feedback law (i.e., an explicit
solutions) through algebraic Riccati equation

⇝ This was only possible due to the special structure of
the dynamics, the cost function, and the input and
solution spaces

Now:
We restrict the input space to

UU = {u(·) : N0 → Rm| u(k) ∈ U ∀k ∈ N},

for U ⊂ Rm closed and convex, 0 ∈ int(U)
Corresponding OCP:

V (x0) = min
u(·)∈UU

J(x0, u(·))

subject to dynamics & initial cond.

⇝ The approach followed so far is in general not
applicable

⇝ Standard (convex) optimization algorithms are not
directly applicable since the OCP is infinite
dimensional

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 12: Optimal Control 20 / 27



Constrained Optimal Control for Linear Systems (2)

Consider

x(k + 1) = f(x(k), u(k)), x(0) = x0

Cost functional

J(x0, u(·)) =
∑∞

k=0 x(k)Qx(k) + u(k)Ru(k)

Now:
We restrict the input space to

UU = {u(·) : N0 → Rm| u(k) ∈ U ∀k ∈ N},

for U ⊂ Rm closed and convex, 0 ∈ intU
Corresponding OCP:

V (x0) = min
u(·)∈UU

J(x0, u(·))

subject to dynamics & initial cond.

Step 1: Apply the results of the unconstrained setting
(i.e., U = Rm) to obtain Lyapunov function
V (x) = xTPF x and the optimal feedback law

µ(x) = Kx = −
(
R+BTPB

)−1
BTPAx.

Since V is a Lyapunov function for x+ = (A+BK)x
the sublevel set XF = {x ∈ Rn|V (x) ≤ c} is forward
invariant for c > 0

If c is selected such that Kx ∈ U for all x ∈ XF , then
0 is locally asymptotically stable and the basin of
attraction contains XF

Step 2: For all x0 ∈ Rn assume there exists an input
u(·) ∈ UU such that x = 0 can be globally asymp.
stabilized.

Then ∀x0 ∈ Rn ∃ N ∈ N and (x⋆(·), u⋆(·)) ∈ X × UU
such that x⋆(k) ∈ XF ∀ k ≥ N .

Under the assumption that x⋆(N) ∈ XF it holds that

min
u(·)∈UU

J(x0, u(·)) =
∑∞

k=0(x
⋆)TQx⋆ + (u⋆)TRu⋆

=
∑N−1

k=0 (x⋆(k))TQx⋆(k) + (u⋆(k))TRu⋆(k)

+
∑∞

k=N (x⋆(k))TQx⋆(k) + (u⋆(k))TRu⋆(k)

=
∑N−1

k=0 (x⋆)TQx⋆+(u⋆)TRu⋆+(x⋆(N))TPF x⋆(N)

Moreover

V (x⋆(N)) = (x⋆(N))TPF x⋆(N)
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Constrained Optimal Control for Linear Systems (3)

Restrict the definitions to a finite horizon:

UN = {uN (·) = (u(0), . . . , u(N − 1))| u(·) ∈ U}

JN (x0, uN (·)) =
∑N−1

k=0 ℓ(x(k), u(k))

Continue to rewrite the OCP:

min
u(·)∈UU

J(x0, u(·))

= min
uN (·)∈UN

U

∑N−1
k=0 xTQx+ uTRu+ x(N)TPF x(N)

= min
uN (·)∈UN

U

JN (x0, uN (·)) + x(N)TPF x(N)

V (x0) = min
uN (·)∈UN

U

JN (x0, u
N (·)) + x(N)TPF x(N)

subject to dynamics & init. cond.

⇝ We have rewritten the infinite dimensional problem as
a finite dimensional optimization problem

The optimal open loop input is given by

u⋆(·) = (u⋆
N (0), . . . , u⋆

N (N − 1),Kx⋆(N),Kx⋆(N + 1), . . .)

Note that:
u⋆ and V (x) are only implicitly known as the solution
of the optimization problem.

The equivalence of the OCPs needs to be understood
with caution! It relies on the nontrivial assumption that
x⋆(N) ∈ XF

Alternatively, consider terminal constraints

min
uN (·)∈UN

U

JN (x0, uN (·)) + x(N)TPF x(N)

subject to dynamics & init. cond., x(N) ∈ XF

However

▶ in this case the optimal solution might not be
optimal with respect to the cost function (i.e., it
might be cheaper to reach XF in more than N
steps)

▶ the optimization problem is infeasible if it is not
possible to reach the set XF in N steps
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Dynamic Programming & the Backward Recursion
Now, consider finite horizon OCP (for N ∈ N and with XF = {0}):

VN (x0) = min
uN (·)∈UN

U

JN (x0, uN (·))

subject to dynamics & initial cond., and x(N) = 0

The set of states for which the problem is feasible:

XN
{0} =

x0 ∈ Rn

∣∣∣∣∣∣ ∃uN (·) ∈ UN
U such that

x(N) = 0
x+ = f(x, u)
x(0) = x0


(depends on UN

U , the dynamics, and on the horizon N )

If (xe, ue) = (0, 0) is an equilibrium pair then XN
{0} ⊂ XN+1

{0} ∀ N ∈ N

For N = 0, the set XN
{0} can be initialized through X0

{0} = {0}

⇝ The principle of optimality can be used to iteratively compute XN
{0}

and VN for N ∈ N.

Note that the OCP is equivalent to

VN (x0) = min
uN (·)∈UN

U

ℓ(x0, u(0)) + JN−1(f(x0, u(0)), uN−1(·+ 1))

subject to dynamics & initial cond., and x(N) ∈ {0}.

Rewriting the optimal value function

VN (x0) =

min
u(0)∈U

ℓ(x0, u(0)) + VN−1(f(x0, u(0)))

subject to · · · and f(x0, u(0)) ∈ XN−1
{0} .

⇝ If VN−1 is known, VN can be computed
by minimizing the OCP with respect to
u(0).

⇝ If XN−1
{0} is known, then XN

{0} can be
constructed

Note that the condition x(N) ∈ {0} can
be replaced by alternative conditions on
the final state.
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x+ = f(x, u)
x(0) = x0


(depends on UN

U , the dynamics, and on the horizon N )

If (xe, ue) = (0, 0) is an equilibrium pair then XN
{0} ⊂ XN+1

{0} ∀ N ∈ N

For N = 0, the set XN
{0} can be initialized through X0

{0} = {0}

⇝ The principle of optimality can be used to iteratively compute XN
{0}

and VN for N ∈ N.

Note that the OCP is equivalent to

VN (x0) = min
uN (·)∈UN

U

ℓ(x0, u(0)) + JN−1(f(x0, u(0)), uN−1(·+ 1))

subject to dynamics & initial cond., and x(N) ∈ {0}.

Rewriting the optimal value function

VN (x0) =

min
u(0)∈U

ℓ(x0, u(0)) + VN−1(f(x0, u(0)))

subject to · · · and f(x0, u(0)) ∈ XN−1
{0} .

⇝ If VN−1 is known, VN can be computed
by minimizing the OCP with respect to
u(0).

⇝ If XN−1
{0} is known, then XN

{0} can be
constructed

Note that the condition x(N) ∈ {0} can
be replaced by alternative conditions on
the final state.
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Dynamic Programming & the Backward Recursion (Example)

Consider the discrete time system

x+
1 = x1 + 2x2, x+

2 = −x2 + 2u

together with the running costs ℓ(x, u) = u2

Initialize backward recursion: V0(x0) = 0 and
X0
{0} = {0}

N = 1: Optimization problem

V1(x0) = min
u(0)∈R

u(0)2

subject to 0 = x1(0) + 2x2(0)

0 = −x2(0) + 2u(0)

⇝ Rearranging the equality constraints shows that

u⋆
1(0) =

1
2
x2(0) and thus V1(x0) =

1
4
x2(0)

2.

⇝ Feasibility condition: x1(0) = −2x2(0), i.e.,

X1
{0} = {x ∈ R2| x1 = −2x2}

N = 2: Optimization problem

V2(x0) = min
u(0),u(1)∈R

u(0)2 + u(1)2

subject to 0 = −x1(1) + x1(0) + 2x2(0)

0 = −x2(1)− x2(0) + 2u(0)

0 = x1(1) + 2x2(1)

0 = −x2(1) + 2u(1).

⇝ Using the result from V1, i.e., u⋆
1(0) = u(1) = 1

2
x2(1)

and x1(1) = −2x2(1), then

V2(x0) = min
u(0)∈R

u(0)2 + 1
4
x2(1)

2

subject to 0 = 2x2(1) + x1(0) + 2x2(0)

0 = −x2(1)− x2(0) + 2u(0).

⇝ Eliminating x2(1):

V2(x0) = min
u(0)∈R

u(0)2 + 1
4
(−x2(0) + 2u(0))2

subject to 0 = x1(0) + 4u(0).
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Dynamic Programming & the Backward Recursion (Example)

N = 2: Optimization problem

V2(x0) = min
u(0),u(1)∈R

u(0)2 + u(1)2

subject to 0 = −x1(1) + x1(0) + 2x2(0)

0 = −x2(1)− x2(0) + 2u(0)

0 = x1(1) + 2x2(1)

0 = −x2(1) + 2u(1).

⇝ Using the result from V1, i.e., u⋆
1(0) = u(1) = 1

2
x2(1)

and x1(1) = −2x2(1), then

V2(x0) = min
u(0)∈R

u(0)2 + 1
4
x2(1)

2

subject to 0 = 2x2(1) + x1(0) + 2x2(0)

0 = −x2(1)− x2(0) + 2u(0).

⇝ Eliminating x2(1):

V2(x0) = min
u(0)∈R

u(0)2 + 1
4
(−x2(0) + 2u(0))2

subject to 0 = x1(0) + 4u(0).

⇝ Thus u⋆
2(·) is given by

u⋆
2(0) = − 1

4
x1(0),

u⋆
2(1) =

1
2
x2(1) =

1
2
(−x2(0) + 2u∗

2(0))

= − 1
2
x2(0)− 1

4
x1(0).

⇝ The optimal value function V2 satisfies

V2(x(0)) =
1
16

x1(0)
2 +

(
1
2
x2(0) +

1
4
x1(0)

)2
= 1

8
x1(0)

2 + 1
4
x1(0)x2(0) +

1
4
x2(0)

2

⇝ The optimization problem is feasible for all
x0 ∈ X2

{0} = R2, i.e., the origin can be reached from
any point in two discrete time steps.

(This is consistent with the observation that for
controllable systems, in general n steps are
necessary to reach the origin from an initial state.)
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Dynamic Programming & the Backward Recursion (Example, 2)

Consider a general linear system

x+ = Ax+Bu,

x ∈ Rn, u ∈ Rm, together with quadratic running costs

ℓ(x, u) = xTQx+ uTRu, Q ∈ Sn
≥0, R ∈ Sm

>0

Here,
we drop the condition that x needs to reach the
origin in N steps. Instead we assume that the
system needs to be controlled for N ∈ N discrete
time steps and the behavior of the dynamics
x(k) for k ≥ N does not matter.

for N = 0 we initialize: V0(x0) = xT
0 P0x0 for

P0 = 0 ∈ Sn and u⋆(k) = 0 for all k ∈ N.

For N = 1:

V1(x0) = min
u1(·)∈U1

xT
0 Qx0 + u(0)TRu(0) + V0(x

+)

subject to x+ = Ax0 +Bu(0)

which simplifies to

V1(x0) = min
u(0)∈U1

xT
0 Qx0 + u(0)TRu(0).

⇝ Since R ∈ Sm
>0 the optimal input is given by u⋆

1(·;x0) = 0
and

V1(x0) = xT
0 P1x0 = xT

0 Qx0

For N = 2 :

V2(x0) = min
u2(·)∈U2

xT
0 Qx0 + u(0)TRu(0) + V1(x

+)

subject to x+ = Ax0 +Bu(0)

which can be rewritten as

V2(x0) = min
u∈Rm

xT
0 Qx0 + uTRu+ (Ax0 +Bu)TP1(Ax0 +Bu)

= min
u∈Rm

xT
0 (Q+ATP1A−ATP1B(R+BTP1B)−1BTP1A)x0

+ ((R+BTP1B)u−BTP1Ax0)
T (R+BTP1B)−1

· ((R+BTP1B)u−BTP1Ax0).
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Dynamic Programming & the Backward Recursion (Example, 2)

which simplifies to

V1(x0) = min
u(0)∈U1

xT
0 Qx0 + u(0)TRu(0).

⇝ Since R ∈ Sm
>0 the optimal input is given by u⋆

1(·;x0) = 0
and

V1(x0) = xT
0 P1x0 = xT

0 Qx0

For N = 2 :

V2(x0) = min
u2(·)∈U2

xT
0 Qx0 + u(0)TRu(0) + V1(x

+)

subject to x+ = Ax0 +Bu(0)

which can be rewritten as

V2(x0) = min
u∈Rm

xT
0 Qx0 + uTRu+ (Ax0 +Bu)TP1(Ax0 +Bu)

= min
u∈Rm

xT
0 (Q+ATP1A−ATP1B(R+BTP1B)−1BTP1A)x0

+ ((R+BTP1B)u−BTP1Ax0)
T (R+BTP1B)−1

· ((R+BTP1B)u−BTP1Ax0).

We can thus conclude that

u⋆
2(0;x0) = −(R+BTP1B)−1BTP1Ax0

and V2(x0) = xT
0 P2x0 where

P2 = Q+ATP1A−ATP1B(R+BTP1B)−1BTP1A

For N ∈ N it holds that

u⋆
N (0, x0) = −(R+BTPN−1B)−1BTPN−1Ax0

and VN (x0) = xT
0 PNx0 for

PN = Q+ATPN−1A−ATPN−1B

· (R+BTPN−1B)−1BTPN−1A

⇝ If PN = PN−1 then the algebraic Riccati equation
is recovered
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