
Introduction to Nonlinear Control
Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett
School of Engineering,

Australian National University, Canberra, Australia

Part II:
Chapter 15: Model Predictive Control

15.1 The Basic MPC Formulation
15.2 MPC Closed-Loop Analysis
15.3 Model Predictive Schemes
15.4 Implementational Aspects of MPC

Model Predictive Control

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 1 / 38

Model Predictive Control

1 MPC Closed-Loop Analysis
Performance Estimates
Closed Loop Stability Properties
Viability & Recursive Feasibility
Hard and Soft Constraints

2 Model Predictive Control Schemes
Time-Varying Systems & Reference Tracking
Linear MPC Versus Nonlinar MPC
MPC Without Terminal Costs & Constraints
Explicit MPC
Economic MPC

3 Implementational Aspects of MPC
Warm-Start & Suboptimal MPC
Formulation of the Optimization Problem

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 2 / 38

Model Predictive Control

Past Future

x(k)

k k +N

Feedback µ

Predicted state trajectory
Reference
trajectory

Predicted
input trajectory

Closed-loop trajectory

Prediction horizon N

MPC is also known as
predictive control

receding horizon control

rolling horizon control

Here, we consider discrete time systems

x+ = f(x, u), x(0) = x0 ∈ Rn

with f : Rn × Rm → Rn f(0, 0) = 0.
State constraints x ∈ X ⊂ Rn

Input constraints u ∈ U(x) ⊂ Rm

If U(x) is independent of x we write U = U(x)
We combine the state and input constraints through

D = X× U(x)

By assumption (0, 0) ∈ D

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 3 / 38

Model Predictive Control

Past Future

x(k)

k k +N

Feedback µ

Predicted state trajectory
Reference
trajectory

Predicted
input trajectory

Closed-loop trajectory

Prediction horizon N

MPC is also known as
predictive control

receding horizon control

rolling horizon control

Here, we consider discrete time systems

x+ = f(x, u), x(0) = x0 ∈ Rn

with f : Rn × Rm → Rn f(0, 0) = 0.
State constraints x ∈ X ⊂ Rn

Input constraints u ∈ U(x) ⊂ Rm

If U(x) is independent of x we write U = U(x)
We combine the state and input constraints through

D = X× U(x)

By assumption (0, 0) ∈ D

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 3 / 38

Model Predictive Control

Past Future

x(k)

k k +N

Feedback µ

Predicted state trajectory
Reference
trajectory

Predicted
input trajectory

Closed-loop trajectory

Prediction horizon N

MPC is also known as
predictive control

receding horizon control

rolling horizon control

Here, we consider discrete time systems

x+ = f(x, u), x(0) = x0 ∈ Rn

with f : Rn × Rm → Rn f(0, 0) = 0.
State constraints x ∈ X ⊂ Rn

Input constraints u ∈ U(x) ⊂ Rm

If U(x) is independent of x we write U = U(x)
We combine the state and input constraints through

D = X× U(x)

By assumption (0, 0) ∈ D

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 3 / 38

Example: Polyhedral Constraints

For r1, r2 ∈ N consider

Γx,1 ∈ Rn×r1 , Γx,2 ∈ Rn×r2 , Γu ∈ Rm×r2 ,

γ1 ∈ Rr1 and γ2 ∈ Rr2 .

Then, state constraints can be described through

X = {x ∈ Rn : Γx,1x ≤ γ1} .

For a fixed x ∈ X, we can define the set (i.e., input
constraints)

U(x) = {u ∈ Rm : Γuu ≤ γ2 − Γx,2x} .

The state and input constraints:

D =

{
(x, u) ∈ Rn+m

∣∣∣∣ [Γx,1 0
Γx,2 Γu

] [
x
u

]
≤

[
γ1
γ2

]}

Simple example:
Consider X = [−1, 1]2 and U = [− 1

4
, 1
4
].

Then we can define the matrices and the vectors...

Γx,1 =

 1 0
0 1

−1 0
0 −1

 , γ1 =

 1
1
1
1

 ,

Γu =

[
1

−1

]
, Γx,2 =

[
0 0
0 0

]
, γ2 =

[1
4
1
4

]
.

... and combine them
1 0 0
0 1 0

−1 0 0
0 −1 0
0 0 1
0 0 −1


[

x
u

]
≤


1
1
1
1
1
4
1
4


to obtain a representation for D

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 4 / 38

Example: Polyhedral Constraints

For r1, r2 ∈ N consider

Γx,1 ∈ Rn×r1 , Γx,2 ∈ Rn×r2 , Γu ∈ Rm×r2 ,

γ1 ∈ Rr1 and γ2 ∈ Rr2 .

Then, state constraints can be described through

X = {x ∈ Rn : Γx,1x ≤ γ1} .

For a fixed x ∈ X, we can define the set (i.e., input
constraints)

U(x) = {u ∈ Rm : Γuu ≤ γ2 − Γx,2x} .

The state and input constraints:

D =

{
(x, u) ∈ Rn+m

∣∣∣∣ [Γx,1 0
Γx,2 Γu

] [
x
u

]
≤

[
γ1
γ2

]}

Simple example:
Consider X = [−1, 1]2 and U = [− 1

4
, 1
4
].

Then we can define the matrices and the vectors...

Γx,1 =

 1 0
0 1

−1 0
0 −1

 , γ1 =

 1
1
1
1

 ,

Γu =

[
1

−1

]
, Γx,2 =

[
0 0
0 0

]
, γ2 =

[1
4
1
4

]
.

... and combine them
1 0 0
0 1 0

−1 0 0
0 −1 0
0 0 1
0 0 −1


[

x
u

]
≤


1
1
1
1
1
4
1
4


to obtain a representation for D

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 4 / 38

Example: Polyhedral Constraints

For r1, r2 ∈ N consider

Γx,1 ∈ Rn×r1 , Γx,2 ∈ Rn×r2 , Γu ∈ Rm×r2 ,

γ1 ∈ Rr1 and γ2 ∈ Rr2 .

Then, state constraints can be described through

X = {x ∈ Rn : Γx,1x ≤ γ1} .

For a fixed x ∈ X, we can define the set (i.e., input
constraints)

U(x) = {u ∈ Rm : Γuu ≤ γ2 − Γx,2x} .

The state and input constraints:

D =

{
(x, u) ∈ Rn+m

∣∣∣∣ [Γx,1 0
Γx,2 Γu

] [
x
u

]
≤

[
γ1
γ2

]}

Simple example:
Consider X = [−1, 1]2 and U = [− 1

4
, 1
4
].

Then we can define the matrices and the vectors...

Γx,1 =

 1 0
0 1

−1 0
0 −1

 , γ1 =

 1
1
1
1

 ,

Γu =

[
1

−1

]
, Γx,2 =

[
0 0
0 0

]
, γ2 =

[1
4
1
4

]
.

... and combine them
1 0 0
0 1 0

−1 0 0
0 −1 0
0 0 1
0 0 −1


[

x
u

]
≤


1
1
1
1
1
4
1
4


to obtain a representation for D

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 4 / 38

Example: Polyhedral Constraints

For r1, r2 ∈ N consider

Γx,1 ∈ Rn×r1 , Γx,2 ∈ Rn×r2 , Γu ∈ Rm×r2 ,

γ1 ∈ Rr1 and γ2 ∈ Rr2 .

Then, state constraints can be described through

X = {x ∈ Rn : Γx,1x ≤ γ1} .

For a fixed x ∈ X, we can define the set (i.e., input
constraints)

U(x) = {u ∈ Rm : Γuu ≤ γ2 − Γx,2x} .

The state and input constraints:

D =

{
(x, u) ∈ Rn+m

∣∣∣∣ [Γx,1 0
Γx,2 Γu

] [
x
u

]
≤

[
γ1
γ2

]}

Simple example:
Consider X = [−1, 1]2 and U = [− 1

4
, 1
4
].

Then we can define the matrices and the vectors...

Γx,1 =

 1 0
0 1

−1 0
0 −1

 , γ1 =

 1
1
1
1

 ,

Γu =

[
1

−1

]
, Γx,2 =

[
0 0
0 0

]
, γ2 =

[1
4
1
4

]
.

... and combine them
1 0 0
0 1 0

−1 0 0
0 −1 0
0 0 1
0 0 −1


[

x
u

]
≤


1
1
1
1
1
4
1
4


to obtain a representation for D

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 4 / 38

The Basic MPC Formulation
Prediction horizon: N ∈ N ∪ {∞}
Set of feasible input trajectories of length N (depending on x0):

UN
D =

uN (·) : N[0,N−1] → Rm

∣∣∣∣∣∣∣
x(0) = x0,

x(k + 1) = f(x(k), u(k)),
(x(k), u(k)) ∈ D,

∀ k ∈ N[0,N−1]


We sometimes write uN (·;x0) = uN (·) to highlight the dependence on
the initial condition x0. For clarity, note that

uN (·) = [uN (0), uN (1), u(2), . . . , uN (N − 1)]

Cost function: JN : Rn × UN
D → R ∪ {∞},

JN (x0, uN (·)) =
∑N−1

i=0 ℓ(x(i), u(i))

(with running costs ℓ : Rn × Rm → R)

Terminal cost F : Rn → R and terminal constraints XF ⊂ Rn

Optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

(⇝ finite dimensional optimization problem if N is finite)

Even if VN : Rn → R ∪ {∞} is not
known explicitly, for a given
x0 ∈ Rn, the function VN (·) can be
evaluated in x0 by solving the OCP.

Note that, JN and VN are defined
as extended real valued functions
which satisfy JN (x0, uN (·)) = ∞
and VN (x0) = ∞ whenever UN

D = ∅
(i.e., when the OCP is infeasible).

Here and in the following assume
that the minimum in the OCP is
attained

Optimal open-loop input trajectory
u⋆
N (·;x0) ∈ UN

D s.t. x(N) ∈ XF &

VN (x0)=JN (x0, u
⋆
N (·;x0))+F (x(N))

u⋆
N (·;x0) is used to iteratively define

a feedback law µN , i.e.,

µN (x0) = u⋆
N (0;x0)

xµN (k + 1)=f(xµN (k), µN (x(k))

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 5 / 38

The Basic MPC Formulation
Prediction horizon: N ∈ N ∪ {∞}
Set of feasible input trajectories of length N (depending on x0):

UN
D =

uN (·) : N[0,N−1] → Rm

∣∣∣∣∣∣∣
x(0) = x0,

x(k + 1) = f(x(k), u(k)),
(x(k), u(k)) ∈ D,

∀ k ∈ N[0,N−1]


We sometimes write uN (·;x0) = uN (·) to highlight the dependence on
the initial condition x0. For clarity, note that

uN (·) = [uN (0), uN (1), u(2), . . . , uN (N − 1)]

Cost function: JN : Rn × UN
D → R ∪ {∞},

JN (x0, uN (·)) =
∑N−1

i=0 ℓ(x(i), u(i))

(with running costs ℓ : Rn × Rm → R)

Terminal cost F : Rn → R and terminal constraints XF ⊂ Rn

Optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

(⇝ finite dimensional optimization problem if N is finite)

Even if VN : Rn → R ∪ {∞} is not
known explicitly, for a given
x0 ∈ Rn, the function VN (·) can be
evaluated in x0 by solving the OCP.

Note that, JN and VN are defined
as extended real valued functions
which satisfy JN (x0, uN (·)) = ∞
and VN (x0) = ∞ whenever UN

D = ∅
(i.e., when the OCP is infeasible).

Here and in the following assume
that the minimum in the OCP is
attained

Optimal open-loop input trajectory
u⋆
N (·;x0) ∈ UN

D s.t. x(N) ∈ XF &

VN (x0)=JN (x0, u
⋆
N (·;x0))+F (x(N))

u⋆
N (·;x0) is used to iteratively define

a feedback law µN , i.e.,

µN (x0) = u⋆
N (0;x0)

xµN (k + 1)=f(xµN (k), µN (x(k))

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 5 / 38

The Basic MPC Formulation
Prediction horizon: N ∈ N ∪ {∞}
Set of feasible input trajectories of length N (depending on x0):

UN
D =

uN (·) : N[0,N−1] → Rm

∣∣∣∣∣∣∣
x(0) = x0,

x(k + 1) = f(x(k), u(k)),
(x(k), u(k)) ∈ D,

∀ k ∈ N[0,N−1]


We sometimes write uN (·;x0) = uN (·) to highlight the dependence on
the initial condition x0. For clarity, note that

uN (·) = [uN (0), uN (1), u(2), . . . , uN (N − 1)]

Cost function: JN : Rn × UN
D → R ∪ {∞},

JN (x0, uN (·)) =
∑N−1

i=0 ℓ(x(i), u(i))

(with running costs ℓ : Rn × Rm → R)

Terminal cost F : Rn → R and terminal constraints XF ⊂ Rn

Optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

(⇝ finite dimensional optimization problem if N is finite)

Even if VN : Rn → R ∪ {∞} is not
known explicitly, for a given
x0 ∈ Rn, the function VN (·) can be
evaluated in x0 by solving the OCP.

Note that, JN and VN are defined
as extended real valued functions
which satisfy JN (x0, uN (·)) = ∞
and VN (x0) = ∞ whenever UN

D = ∅
(i.e., when the OCP is infeasible).

Here and in the following assume
that the minimum in the OCP is
attained

Optimal open-loop input trajectory
u⋆
N (·;x0) ∈ UN

D s.t. x(N) ∈ XF &

VN (x0)=JN (x0, u
⋆
N (·;x0))+F (x(N))

u⋆
N (·;x0) is used to iteratively define

a feedback law µN , i.e.,

µN (x0) = u⋆
N (0;x0)

xµN (k + 1)=f(xµN (k), µN (x(k))

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 5 / 38

The Basic MPC Formulation
Prediction horizon: N ∈ N ∪ {∞}
Set of feasible input trajectories of length N (depending on x0):

UN
D =

uN (·) : N[0,N−1] → Rm

∣∣∣∣∣∣∣
x(0) = x0,

x(k + 1) = f(x(k), u(k)),
(x(k), u(k)) ∈ D,

∀ k ∈ N[0,N−1]


We sometimes write uN (·;x0) = uN (·) to highlight the dependence on
the initial condition x0. For clarity, note that

uN (·) = [uN (0), uN (1), u(2), . . . , uN (N − 1)]

Cost function: JN : Rn × UN
D → R ∪ {∞},

JN (x0, uN (·)) =
∑N−1

i=0 ℓ(x(i), u(i))

(with running costs ℓ : Rn × Rm → R)

Terminal cost F : Rn → R and terminal constraints XF ⊂ Rn

Optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

(⇝ finite dimensional optimization problem if N is finite)

Even if VN : Rn → R ∪ {∞} is not
known explicitly, for a given
x0 ∈ Rn, the function VN (·) can be
evaluated in x0 by solving the OCP.

Note that, JN and VN are defined
as extended real valued functions
which satisfy JN (x0, uN (·)) = ∞
and VN (x0) = ∞ whenever UN

D = ∅
(i.e., when the OCP is infeasible).

Here and in the following assume
that the minimum in the OCP is
attained

Optimal open-loop input trajectory
u⋆
N (·;x0) ∈ UN

D s.t. x(N) ∈ XF &

VN (x0)=JN (x0, u
⋆
N (·;x0))+F (x(N))

u⋆
N (·;x0) is used to iteratively define

a feedback law µN , i.e.,

µN (x0) = u⋆
N (0;x0)

xµN (k + 1)=f(xµN (k), µN (x(k))

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 5 / 38

The Basic MPC Formulation
Prediction horizon: N ∈ N ∪ {∞}
Set of feasible input trajectories of length N (depending on x0):

UN
D =

uN (·) : N[0,N−1] → Rm

∣∣∣∣∣∣∣
x(0) = x0,

x(k + 1) = f(x(k), u(k)),
(x(k), u(k)) ∈ D,

∀ k ∈ N[0,N−1]


We sometimes write uN (·;x0) = uN (·) to highlight the dependence on
the initial condition x0. For clarity, note that

uN (·) = [uN (0), uN (1), u(2), . . . , uN (N − 1)]

Cost function: JN : Rn × UN
D → R ∪ {∞},

JN (x0, uN (·)) =
∑N−1

i=0 ℓ(x(i), u(i))

(with running costs ℓ : Rn × Rm → R)

Terminal cost F : Rn → R and terminal constraints XF ⊂ Rn

Optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

(⇝ finite dimensional optimization problem if N is finite)

Even if VN : Rn → R ∪ {∞} is not
known explicitly, for a given
x0 ∈ Rn, the function VN (·) can be
evaluated in x0 by solving the OCP.

Note that, JN and VN are defined
as extended real valued functions
which satisfy JN (x0, uN (·)) = ∞
and VN (x0) = ∞ whenever UN

D = ∅
(i.e., when the OCP is infeasible).

Here and in the following assume
that the minimum in the OCP is
attained

Optimal open-loop input trajectory
u⋆
N (·;x0) ∈ UN

D s.t. x(N) ∈ XF &

VN (x0)=JN (x0, u
⋆
N (·;x0))+F (x(N))

u⋆
N (·;x0) is used to iteratively define

a feedback law µN , i.e.,

µN (x0) = u⋆
N (0;x0)

xµN (k + 1)=f(xµN (k), µN (x(k))

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 5 / 38

The Basic MPC Formulation
Prediction horizon: N ∈ N ∪ {∞}
Set of feasible input trajectories of length N (depending on x0):

UN
D =

uN (·) : N[0,N−1] → Rm

∣∣∣∣∣∣∣
x(0) = x0,

x(k + 1) = f(x(k), u(k)),
(x(k), u(k)) ∈ D,

∀ k ∈ N[0,N−1]


We sometimes write uN (·;x0) = uN (·) to highlight the dependence on
the initial condition x0. For clarity, note that

uN (·) = [uN (0), uN (1), u(2), . . . , uN (N − 1)]

Cost function: JN : Rn × UN
D → R ∪ {∞},

JN (x0, uN (·)) =
∑N−1

i=0 ℓ(x(i), u(i))

(with running costs ℓ : Rn × Rm → R)

Terminal cost F : Rn → R and terminal constraints XF ⊂ Rn

Optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

(⇝ finite dimensional optimization problem if N is finite)

Even if VN : Rn → R ∪ {∞} is not
known explicitly, for a given
x0 ∈ Rn, the function VN (·) can be
evaluated in x0 by solving the OCP.

Note that, JN and VN are defined
as extended real valued functions
which satisfy JN (x0, uN (·)) = ∞
and VN (x0) = ∞ whenever UN

D = ∅
(i.e., when the OCP is infeasible).

Here and in the following assume
that the minimum in the OCP is
attained

Optimal open-loop input trajectory
u⋆
N (·;x0) ∈ UN

D s.t. x(N) ∈ XF &

VN (x0)=JN (x0, u
⋆
N (·;x0))+F (x(N))

u⋆
N (·;x0) is used to iteratively define

a feedback law µN , i.e.,

µN (x0) = u⋆
N (0;x0)

xµN (k + 1)=f(xµN (k), µN (x(k))

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 5 / 38

The Basic MPC Formulation
Prediction horizon: N ∈ N ∪ {∞}
Set of feasible input trajectories of length N (depending on x0):

UN
D =

uN (·) : N[0,N−1] → Rm

∣∣∣∣∣∣∣
x(0) = x0,

x(k + 1) = f(x(k), u(k)),
(x(k), u(k)) ∈ D,

∀ k ∈ N[0,N−1]


We sometimes write uN (·;x0) = uN (·) to highlight the dependence on
the initial condition x0. For clarity, note that

uN (·) = [uN (0), uN (1), u(2), . . . , uN (N − 1)]

Cost function: JN : Rn × UN
D → R ∪ {∞},

JN (x0, uN (·)) =
∑N−1

i=0 ℓ(x(i), u(i))

(with running costs ℓ : Rn × Rm → R)

Terminal cost F : Rn → R and terminal constraints XF ⊂ Rn

Optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

(⇝ finite dimensional optimization problem if N is finite)

Even if VN : Rn → R ∪ {∞} is not
known explicitly, for a given
x0 ∈ Rn, the function VN (·) can be
evaluated in x0 by solving the OCP.

Note that, JN and VN are defined
as extended real valued functions
which satisfy JN (x0, uN (·)) = ∞
and VN (x0) = ∞ whenever UN

D = ∅
(i.e., when the OCP is infeasible).

Here and in the following assume
that the minimum in the OCP is
attained

Optimal open-loop input trajectory
u⋆
N (·;x0) ∈ UN

D s.t. x(N) ∈ XF &

VN (x0)=JN (x0, u
⋆
N (·;x0))+F (x(N))

u⋆
N (·;x0) is used to iteratively define

a feedback law µN , i.e.,

µN (x0) = u⋆
N (0;x0)

xµN (k + 1)=f(xµN (k), µN (x(k))

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 5 / 38

The Basic MPC Formulation
Prediction horizon: N ∈ N ∪ {∞}
Set of feasible input trajectories of length N (depending on x0):

UN
D =

uN (·) : N[0,N−1] → Rm

∣∣∣∣∣∣∣
x(0) = x0,

x(k + 1) = f(x(k), u(k)),
(x(k), u(k)) ∈ D,

∀ k ∈ N[0,N−1]


We sometimes write uN (·;x0) = uN (·) to highlight the dependence on
the initial condition x0. For clarity, note that

uN (·) = [uN (0), uN (1), u(2), . . . , uN (N − 1)]

Cost function: JN : Rn × UN
D → R ∪ {∞},

JN (x0, uN (·)) =
∑N−1

i=0 ℓ(x(i), u(i))

(with running costs ℓ : Rn × Rm → R)

Terminal cost F : Rn → R and terminal constraints XF ⊂ Rn

Optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

(⇝ finite dimensional optimization problem if N is finite)

Even if VN : Rn → R ∪ {∞} is not
known explicitly, for a given
x0 ∈ Rn, the function VN (·) can be
evaluated in x0 by solving the OCP.

Note that, JN and VN are defined
as extended real valued functions
which satisfy JN (x0, uN (·)) = ∞
and VN (x0) = ∞ whenever UN

D = ∅
(i.e., when the OCP is infeasible).

Here and in the following assume
that the minimum in the OCP is
attained

Optimal open-loop input trajectory
u⋆
N (·;x0) ∈ UN

D s.t. x(N) ∈ XF &

VN (x0)=JN (x0, u
⋆
N (·;x0))+F (x(N))

u⋆
N (·;x0) is used to iteratively define

a feedback law µN , i.e.,

µN (x0) = u⋆
N (0;x0)

xµN (k + 1)=f(xµN (k), µN (x(k))

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 5 / 38

The Basic MPC Formulation (2)

Input: Measurement of the initial condition x(0); prediction
horizon N ∈ N ∪ {∞}; running cost ℓ : Rn+m → R; constraints
D ⊂ Rn+m; terminal cost F : Rn → R and terminal constraints
XF ⊂ Rn.

For k = 0, 1, 2, . . .

1 Measure the current state of the system x+ = f(x, u) and
define x0 = x(k).

2 Solve the optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

to obtain the open-loop input u⋆
N (·;x0).

3 Define the feedback law

µN (x(k)) = u⋆
N (0;x0).

4 Compute x(k + 1) = f(x(k), µN (x(k))), increment k to
k + 1 and go to 1.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 6 / 38

The Basic MPC Formulation (3)

Note that:
Optimal open-loop input trajectory:
u⋆
N (·;x0)

Optimal open-loop solution for
k = 0, . . . , N − 2

x⋆
N (0) = x0

x⋆
N (k + 1) = f(x⋆

N (k), u⋆
N (k;x0))

In many applications, the discrete time
system is an approximation of a plant

ẋp = fp(xp, u), xp(0) ∈ Rn

⇝ In this setting the MPC feedback law is
usually defined as a sample-and-hold
feedback

Remark
It is not guaranteed that xp(·) satisfies the
state constraints xp(t) ∈ X for all t ∈ R≥0

since the constraints are only enforced at
discrete time steps.

Input: Measurement of the initial condition xp(0); N ∈ N ∪ {∞};
ℓ : Rn+m → R; D ⊂ Rn+m; F : Rn → R and XF ⊂ Rn; ∆ > 0.

For k = 0, 1, 2, . . .

1 Measure the current state of the plant ẋp = fp(xp, u) and
define x0 = xp(k∆).

2 Solve the optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

to obtain the open-loop control law u⋆
N (·;x0).

3 Define the feedback law

µN (xp(k∆)) = u⋆
N (0;x0).

4 Apply the feedback law, i.e., for t ∈ [k∆, (k + 1)∆) solve

ẋp(t) = fp(xp(t), µN (xp(k∆))), xp(k∆) ∈ Rn,

increment k to k + 1 and go to 1.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 7 / 38

The Basic MPC Formulation (3)

Note that:
Optimal open-loop input trajectory:
u⋆
N (·;x0)

Optimal open-loop solution for
k = 0, . . . , N − 2

x⋆
N (0) = x0

x⋆
N (k + 1) = f(x⋆

N (k), u⋆
N (k;x0))

In many applications, the discrete time
system is an approximation of a plant

ẋp = fp(xp, u), xp(0) ∈ Rn

⇝ In this setting the MPC feedback law is
usually defined as a sample-and-hold
feedback

Remark
It is not guaranteed that xp(·) satisfies the
state constraints xp(t) ∈ X for all t ∈ R≥0

since the constraints are only enforced at
discrete time steps.

Input: Measurement of the initial condition xp(0); N ∈ N ∪ {∞};
ℓ : Rn+m → R; D ⊂ Rn+m; F : Rn → R and XF ⊂ Rn; ∆ > 0.

For k = 0, 1, 2, . . .

1 Measure the current state of the plant ẋp = fp(xp, u) and
define x0 = xp(k∆).

2 Solve the optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

to obtain the open-loop control law u⋆
N (·;x0).

3 Define the feedback law

µN (xp(k∆)) = u⋆
N (0;x0).

4 Apply the feedback law, i.e., for t ∈ [k∆, (k + 1)∆) solve

ẋp(t) = fp(xp(t), µN (xp(k∆))), xp(k∆) ∈ Rn,

increment k to k + 1 and go to 1.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 7 / 38

The Basic MPC Formulation (3)

Note that:
Optimal open-loop input trajectory:
u⋆
N (·;x0)

Optimal open-loop solution for
k = 0, . . . , N − 2

x⋆
N (0) = x0

x⋆
N (k + 1) = f(x⋆

N (k), u⋆
N (k;x0))

In many applications, the discrete time
system is an approximation of a plant

ẋp = fp(xp, u), xp(0) ∈ Rn

⇝ In this setting the MPC feedback law is
usually defined as a sample-and-hold
feedback

Remark
It is not guaranteed that xp(·) satisfies the
state constraints xp(t) ∈ X for all t ∈ R≥0

since the constraints are only enforced at
discrete time steps.

Input: Measurement of the initial condition xp(0); N ∈ N ∪ {∞};
ℓ : Rn+m → R; D ⊂ Rn+m; F : Rn → R and XF ⊂ Rn; ∆ > 0.

For k = 0, 1, 2, . . .

1 Measure the current state of the plant ẋp = fp(xp, u) and
define x0 = xp(k∆).

2 Solve the optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

to obtain the open-loop control law u⋆
N (·;x0).

3 Define the feedback law

µN (xp(k∆)) = u⋆
N (0;x0).

4 Apply the feedback law, i.e., for t ∈ [k∆, (k + 1)∆) solve

ẋp(t) = fp(xp(t), µN (xp(k∆))), xp(k∆) ∈ Rn,

increment k to k + 1 and go to 1.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 7 / 38

The Basic MPC Formulation (Illustration of properties)

Consider x+ = Ax+Bu with unstable origin and

A =

[6
5

6
5

− 1
2

6
5

]
and B =

[
1
1
2

]
Prediction horizon: N = 5

The running cost: ℓ(x, u) = xT x+ 5u2

Constraints: u ∈ U = [−2.5, 2.5], x ∈ R2 (i.e.,
D = R2 × U)

Terminal cost & constraints: F (x) = xT x, XF = R2.

0 10 20 30

-4

-2

0

2

4

0 10 20 30

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

0 10 20 30

-2

-1

0

1

2

Now, use the terminal constraint XF = {0} (which
makes F (x) superfluous)

Prediction horizon N = 11 (since for N < 11 the OCP
is not feasible for x0 = [3 3]T)

-2 0 2 4

-3

-2

-1

0

1

2

3

0 10 20 30

-2

-1

0

1

2

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 8 / 38

The Basic MPC Formulation (Illustration of properties)

Consider x+ = Ax+Bu with unstable origin and

A =

[6
5

6
5

− 1
2

6
5

]
and B =

[
1
1
2

]
Prediction horizon: N = 5

The running cost: ℓ(x, u) = xT x+ 5u2

Constraints: u ∈ U = [−2.5, 2.5], x ∈ R2 (i.e.,
D = R2 × U)

Terminal cost & constraints: F (x) = xT x, XF = R2.

0 10 20 30

-4

-2

0

2

4

0 10 20 30

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

0 10 20 30

-2

-1

0

1

2

Now, use the terminal constraint XF = {0} (which
makes F (x) superfluous)

Prediction horizon N = 11 (since for N < 11 the OCP
is not feasible for x0 = [3 3]T)

-2 0 2 4

-3

-2

-1

0

1

2

3

0 10 20 30

-2

-1

0

1

2

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 8 / 38

The Basic MPC Formulation (Illustration of properties, 2)

Consider again x+ = Ax+Bu with unstable origin and

A =

[6
5

6
5

− 1
2

6
5

]
and B =

[
1
1
2

]
The discrete dynamics define the Euler approximation of

ẋp = Apx+Bpx =

[1
5

12
5

−1 1
5

]
xp +

[
2
1

]
u

for ∆ = 0.5

Prediction horizon: N = 5

The running cost: ℓ(x, u) = xT x+ 5u2

Constraints: u ∈ U = [−2.5, 2.5], x ∈ R2

Terminal cost & constraints: F (x) = xT x, XF = R2.

Remark
Since a rather large ∆ is used, the two solutions differ
significantly. This highlights an important difference
between a feedback law and an open loop control law and
provides one explanation why in MPC in general only the
first piece of u⋆

N (·) is used to define a feedback law.

Closed-loop solution

0 2 4

-1

0

1

2

3

0 10 20 30

-2

-1

0

1

2

Open-loop solution

-2 0 2 4 6

-4

-2

0

2

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 9 / 38

The Basic MPC Formulation (Illustration of properties, 2)

Consider again x+ = Ax+Bu with unstable origin and

A =

[6
5

6
5

− 1
2

6
5

]
and B =

[
1
1
2

]
The discrete dynamics define the Euler approximation of

ẋp = Apx+Bpx =

[1
5

12
5

−1 1
5

]
xp +

[
2
1

]
u

for ∆ = 0.5

Prediction horizon: N = 5

The running cost: ℓ(x, u) = xT x+ 5u2

Constraints: u ∈ U = [−2.5, 2.5], x ∈ R2

Terminal cost & constraints: F (x) = xT x, XF = R2.

Remark
Since a rather large ∆ is used, the two solutions differ
significantly. This highlights an important difference
between a feedback law and an open loop control law and
provides one explanation why in MPC in general only the
first piece of u⋆

N (·) is used to define a feedback law.

Closed-loop solution

0 2 4

-1

0

1

2

3

0 10 20 30

-2

-1

0

1

2

Open-loop solution

-2 0 2 4 6

-4

-2

0

2

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 9 / 38

Section 1

MPC Closed-Loop Analysis

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 10 / 38

MPC Closed-Loop Analysis

Advantage:
MPC can be applied to general nonlinear systems
and constraints can be taken into account directly in
the controller design.

Disadvantage:
Since the feedback law is only defined implicitly, the
analysis of the closed-loop dynamics is rather difficult.

Performance Analysis:
Often the OCP solved in every iteration of the MPC
algorithm is a compromise between numerical
complexity and optimality.

In many applications, one is interested in solving the
OCP for N = ∞.

However the underlying infinite dimensional
optimization problem is usually intractable.

Reasonable questions: What is the relation between
▶ VN (·) (N < ∞) and V∞(·)?
▶ the MPC closed-loop performance

J∞(x0, µN (·)) and V∞(·)?

Here, the MPC closed-loop costs are defined as

J∞(x0, µN (·))=
∞∑

k=0

ℓ(xµN (k), u⋆
N (0;x(k)), x(0) = x0

We assume that ℓ : Rn × Rm → R≥0 is positive
semidefinite

If F (x) = 0 and XF = Rn, then it holds that

VN (x0) = JN (x0, u
⋆
N (·))

≤ JN (x0, (u
⋆
∞(0), . . . , u⋆

∞(N − 1)))

≤ J∞(x0, u
⋆
∞(·)) = V∞(x0) ≤ J∞(x0, µN (·))

It is in general more interesting to establish bounds

J∞(x0, µN (·)) ≤ 1
αN

V∞(x0) ∀ x ∈ Rn

for an αN ∈ (0, 1]. ⇝ level of suboptimality

For example, if αN = 1
2

, the MPC closed loop cost is
at most twice the infinite horizon optimal control cost.

Under appropriate assumptions, one can expect
αN → 1 for N → ∞.

⇝ Out of the scope of this lecture

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 11 / 38

MPC Closed-Loop Analysis

Advantage:
MPC can be applied to general nonlinear systems
and constraints can be taken into account directly in
the controller design.

Disadvantage:
Since the feedback law is only defined implicitly, the
analysis of the closed-loop dynamics is rather difficult.

Performance Analysis:
Often the OCP solved in every iteration of the MPC
algorithm is a compromise between numerical
complexity and optimality.

In many applications, one is interested in solving the
OCP for N = ∞.

However the underlying infinite dimensional
optimization problem is usually intractable.

Reasonable questions: What is the relation between
▶ VN (·) (N < ∞) and V∞(·)?
▶ the MPC closed-loop performance

J∞(x0, µN (·)) and V∞(·)?

Here, the MPC closed-loop costs are defined as

J∞(x0, µN (·))=
∞∑

k=0

ℓ(xµN (k), u⋆
N (0;x(k)), x(0) = x0

We assume that ℓ : Rn × Rm → R≥0 is positive
semidefinite

If F (x) = 0 and XF = Rn, then it holds that

VN (x0) = JN (x0, u
⋆
N (·))

≤ JN (x0, (u
⋆
∞(0), . . . , u⋆

∞(N − 1)))

≤ J∞(x0, u
⋆
∞(·)) = V∞(x0) ≤ J∞(x0, µN (·))

It is in general more interesting to establish bounds

J∞(x0, µN (·)) ≤ 1
αN

V∞(x0) ∀ x ∈ Rn

for an αN ∈ (0, 1]. ⇝ level of suboptimality

For example, if αN = 1
2

, the MPC closed loop cost is
at most twice the infinite horizon optimal control cost.

Under appropriate assumptions, one can expect
αN → 1 for N → ∞.

⇝ Out of the scope of this lecture

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 11 / 38

MPC Closed-Loop Analysis

Advantage:
MPC can be applied to general nonlinear systems
and constraints can be taken into account directly in
the controller design.

Disadvantage:
Since the feedback law is only defined implicitly, the
analysis of the closed-loop dynamics is rather difficult.

Performance Analysis:
Often the OCP solved in every iteration of the MPC
algorithm is a compromise between numerical
complexity and optimality.

In many applications, one is interested in solving the
OCP for N = ∞.

However the underlying infinite dimensional
optimization problem is usually intractable.

Reasonable questions: What is the relation between
▶ VN (·) (N < ∞) and V∞(·)?
▶ the MPC closed-loop performance

J∞(x0, µN (·)) and V∞(·)?

Here, the MPC closed-loop costs are defined as

J∞(x0, µN (·))=
∞∑

k=0

ℓ(xµN (k), u⋆
N (0;x(k)), x(0) = x0

We assume that ℓ : Rn × Rm → R≥0 is positive
semidefinite

If F (x) = 0 and XF = Rn, then it holds that

VN (x0) = JN (x0, u
⋆
N (·))

≤ JN (x0, (u
⋆
∞(0), . . . , u⋆

∞(N − 1)))

≤ J∞(x0, u
⋆
∞(·)) = V∞(x0) ≤ J∞(x0, µN (·))

It is in general more interesting to establish bounds

J∞(x0, µN (·)) ≤ 1
αN

V∞(x0) ∀ x ∈ Rn

for an αN ∈ (0, 1]. ⇝ level of suboptimality

For example, if αN = 1
2

, the MPC closed loop cost is
at most twice the infinite horizon optimal control cost.

Under appropriate assumptions, one can expect
αN → 1 for N → ∞.

⇝ Out of the scope of this lecture

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 11 / 38

MPC Closed-Loop Analysis

Advantage:
MPC can be applied to general nonlinear systems
and constraints can be taken into account directly in
the controller design.

Disadvantage:
Since the feedback law is only defined implicitly, the
analysis of the closed-loop dynamics is rather difficult.

Performance Analysis:
Often the OCP solved in every iteration of the MPC
algorithm is a compromise between numerical
complexity and optimality.

In many applications, one is interested in solving the
OCP for N = ∞.

However the underlying infinite dimensional
optimization problem is usually intractable.

Reasonable questions: What is the relation between
▶ VN (·) (N < ∞) and V∞(·)?
▶ the MPC closed-loop performance

J∞(x0, µN (·)) and V∞(·)?

Here, the MPC closed-loop costs are defined as

J∞(x0, µN (·))=
∞∑

k=0

ℓ(xµN (k), u⋆
N (0;x(k)), x(0) = x0

We assume that ℓ : Rn × Rm → R≥0 is positive
semidefinite

If F (x) = 0 and XF = Rn, then it holds that

VN (x0) = JN (x0, u
⋆
N (·))

≤ JN (x0, (u
⋆
∞(0), . . . , u⋆

∞(N − 1)))

≤ J∞(x0, u
⋆
∞(·)) = V∞(x0) ≤ J∞(x0, µN (·))

It is in general more interesting to establish bounds

J∞(x0, µN (·)) ≤ 1
αN

V∞(x0) ∀ x ∈ Rn

for an αN ∈ (0, 1]. ⇝ level of suboptimality

For example, if αN = 1
2

, the MPC closed loop cost is
at most twice the infinite horizon optimal control cost.

Under appropriate assumptions, one can expect
αN → 1 for N → ∞.

⇝ Out of the scope of this lecture

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 11 / 38

MPC Closed-Loop Analysis

Advantage:
MPC can be applied to general nonlinear systems
and constraints can be taken into account directly in
the controller design.

Disadvantage:
Since the feedback law is only defined implicitly, the
analysis of the closed-loop dynamics is rather difficult.

Performance Analysis:
Often the OCP solved in every iteration of the MPC
algorithm is a compromise between numerical
complexity and optimality.

In many applications, one is interested in solving the
OCP for N = ∞.

However the underlying infinite dimensional
optimization problem is usually intractable.

Reasonable questions: What is the relation between
▶ VN (·) (N < ∞) and V∞(·)?
▶ the MPC closed-loop performance

J∞(x0, µN (·)) and V∞(·)?

Here, the MPC closed-loop costs are defined as

J∞(x0, µN (·))=
∞∑

k=0

ℓ(xµN (k), u⋆
N (0;x(k)), x(0) = x0

We assume that ℓ : Rn × Rm → R≥0 is positive
semidefinite

If F (x) = 0 and XF = Rn, then it holds that

VN (x0) = JN (x0, u
⋆
N (·))

≤ JN (x0, (u
⋆
∞(0), . . . , u⋆

∞(N − 1)))

≤ J∞(x0, u
⋆
∞(·)) = V∞(x0) ≤ J∞(x0, µN (·))

It is in general more interesting to establish bounds

J∞(x0, µN (·)) ≤ 1
αN

V∞(x0) ∀ x ∈ Rn

for an αN ∈ (0, 1]. ⇝ level of suboptimality

For example, if αN = 1
2

, the MPC closed loop cost is
at most twice the infinite horizon optimal control cost.

Under appropriate assumptions, one can expect
αN → 1 for N → ∞.

⇝ Out of the scope of this lecture

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 11 / 38

MPC Closed-Loop Analysis

Advantage:
MPC can be applied to general nonlinear systems
and constraints can be taken into account directly in
the controller design.

Disadvantage:
Since the feedback law is only defined implicitly, the
analysis of the closed-loop dynamics is rather difficult.

Performance Analysis:
Often the OCP solved in every iteration of the MPC
algorithm is a compromise between numerical
complexity and optimality.

In many applications, one is interested in solving the
OCP for N = ∞.

However the underlying infinite dimensional
optimization problem is usually intractable.

Reasonable questions: What is the relation between
▶ VN (·) (N < ∞) and V∞(·)?
▶ the MPC closed-loop performance

J∞(x0, µN (·)) and V∞(·)?

Here, the MPC closed-loop costs are defined as

J∞(x0, µN (·))=
∞∑

k=0

ℓ(xµN (k), u⋆
N (0;x(k)), x(0) = x0

We assume that ℓ : Rn × Rm → R≥0 is positive
semidefinite

If F (x) = 0 and XF = Rn, then it holds that

VN (x0) = JN (x0, u
⋆
N (·))

≤ JN (x0, (u
⋆
∞(0), . . . , u⋆

∞(N − 1)))

≤ J∞(x0, u
⋆
∞(·)) = V∞(x0) ≤ J∞(x0, µN (·))

It is in general more interesting to establish bounds

J∞(x0, µN (·)) ≤ 1
αN

V∞(x0) ∀ x ∈ Rn

for an αN ∈ (0, 1]. ⇝ level of suboptimality

For example, if αN = 1
2

, the MPC closed loop cost is
at most twice the infinite horizon optimal control cost.

Under appropriate assumptions, one can expect
αN → 1 for N → ∞.

⇝ Out of the scope of this lecture

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 11 / 38

MPC Closed-Loop Analysis

Advantage:
MPC can be applied to general nonlinear systems
and constraints can be taken into account directly in
the controller design.

Disadvantage:
Since the feedback law is only defined implicitly, the
analysis of the closed-loop dynamics is rather difficult.

Performance Analysis:
Often the OCP solved in every iteration of the MPC
algorithm is a compromise between numerical
complexity and optimality.

In many applications, one is interested in solving the
OCP for N = ∞.

However the underlying infinite dimensional
optimization problem is usually intractable.

Reasonable questions: What is the relation between
▶ VN (·) (N < ∞) and V∞(·)?
▶ the MPC closed-loop performance

J∞(x0, µN (·)) and V∞(·)?

Here, the MPC closed-loop costs are defined as

J∞(x0, µN (·))=
∞∑

k=0

ℓ(xµN (k), u⋆
N (0;x(k)), x(0) = x0

We assume that ℓ : Rn × Rm → R≥0 is positive
semidefinite

If F (x) = 0 and XF = Rn, then it holds that

VN (x0) = JN (x0, u
⋆
N (·))

≤ JN (x0, (u
⋆
∞(0), . . . , u⋆

∞(N − 1)))

≤ J∞(x0, u
⋆
∞(·)) = V∞(x0) ≤ J∞(x0, µN (·))

It is in general more interesting to establish bounds

J∞(x0, µN (·)) ≤ 1
αN

V∞(x0) ∀ x ∈ Rn

for an αN ∈ (0, 1]. ⇝ level of suboptimality

For example, if αN = 1
2

, the MPC closed loop cost is
at most twice the infinite horizon optimal control cost.

Under appropriate assumptions, one can expect
αN → 1 for N → ∞.

⇝ Out of the scope of this lecture
P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 11 / 38

MPC Closed-Loop Analysis (2)

As an example consider:

x+ = Ax+Bu =


1 4 0 3 2
2 4 2 4 2
3 3 3 0 4
3 1 3 0 3
2 3 1 4 4

x+


2
3
1
2
3

u

ℓ(x, u) = xT x+ u2; F (x) = xT x; XF = {0};
U = [−40, 40]

Remark
The performance estimate discussed here compares the
MPC closed loop cost with a particular infinite horizon
optimal cost functional. To argue that an MPC controller
provides nearly optimal performance (if the parameter αN

is close to 1) while operating a plant is only true with
respect to the particular infinite horizon cost functional.
Thus, the selection of the running cost needs to be well
justified when talking about optimality of a controller.

Costs corresponding to x0 = [1, 1, 1, 1, 1]T

5 6 7 8 9 10

1

1.2

1.4

1.6

1.8

2
10

4

(To be precise, V∞(x0) is approximated through V1000(x0))
Note that:

The plot only shows the costs for a particular initial
condition x0 and thus, it does not provide an estimate
with respect to all initial conditions.

However, for the particular initial condition, small N
lead to almost optimal performance.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 12 / 38

MPC Closed-Loop Analysis (2)

As an example consider:

x+ = Ax+Bu =


1 4 0 3 2
2 4 2 4 2
3 3 3 0 4
3 1 3 0 3
2 3 1 4 4

x+


2
3
1
2
3

u

ℓ(x, u) = xT x+ u2; F (x) = xT x; XF = {0};
U = [−40, 40]

Remark
The performance estimate discussed here compares the
MPC closed loop cost with a particular infinite horizon
optimal cost functional. To argue that an MPC controller
provides nearly optimal performance (if the parameter αN

is close to 1) while operating a plant is only true with
respect to the particular infinite horizon cost functional.
Thus, the selection of the running cost needs to be well
justified when talking about optimality of a controller.

Costs corresponding to x0 = [1, 1, 1, 1, 1]T

5 6 7 8 9 10

1

1.2

1.4

1.6

1.8

2
10

4

(To be precise, V∞(x0) is approximated through V1000(x0))
Note that:

The plot only shows the costs for a particular initial
condition x0 and thus, it does not provide an estimate
with respect to all initial conditions.

However, for the particular initial condition, small N
lead to almost optimal performance.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 12 / 38

Closed Loop Stability Properties

Consider:

x+ = f(x, µN (x))

A standard control application of MPC:
Stabilization of an equilibrium pair (xe, ue) ∈ X× U
Reasonable running costs: (Q ≥ 0, R ≥ 0):

ℓ(x, u) = (x− xe)TQ(x− xe) + (u− ue)TR(u− ue)

⇝ How to ensure asymptotic stability of xe (if µN (·) is
not known explicitly)?

A sufficient condition:
Stability follows if VN is a Lyapunov function, i.e.,

VN (f(x, µN (x))) < VN (x) ∀x ∈ X\{xe}

Even though VN and µN are only known implicitly,
conditions on f , N ∈ N ∪ {∞}, ℓ, F and XF can be
derived, to ensure that VN is a Lyapunov function

⇝ Often relies on the principle of optimality and dynamic
programming

A sufficient condition using XF = {xe}:
If XF = {xe} and ℓ(x, u) > ℓ(0, 0) = 0 for all
(x, u) ̸= (xe, ue) then VN is a Lyapunov function

(W.l.o.g. we assume that (xe, ue) = (0, 0)) Then for
all x0 ∈ X it holds that

VN (x0) = JN (x0, u
⋆
N (·;x0)) =

N−1∑
i=0

ℓ(x(i), u⋆
N (i;x0))

=ℓ(x(0), u⋆
N (0;x0))+

N−1∑
i=1

ℓ(x(i), u⋆
N (i;x0))+ℓ(x(N), 0)

≥ ℓ(x(0), u⋆
N (0;x0)) + VN (f(x0, u

⋆
N (0;x0)).

⇝ Since ℓ(x0, u) > 0 for x0 ̸= 0 it follows that

VN (f(x, µN (x))) < VN (x) ∀x ∈ X\{0}

However: Here, we have assumed (or need to
assume) that the optimization problem is feasible for
all initial values x0 ∈ X!

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 13 / 38

Closed Loop Stability Properties

Consider:

x+ = f(x, µN (x))

A standard control application of MPC:
Stabilization of an equilibrium pair (xe, ue) ∈ X× U
Reasonable running costs: (Q ≥ 0, R ≥ 0):

ℓ(x, u) = (x− xe)TQ(x− xe) + (u− ue)TR(u− ue)

⇝ How to ensure asymptotic stability of xe (if µN (·) is
not known explicitly)?

A sufficient condition:
Stability follows if VN is a Lyapunov function, i.e.,

VN (f(x, µN (x))) < VN (x) ∀x ∈ X\{xe}

Even though VN and µN are only known implicitly,
conditions on f , N ∈ N ∪ {∞}, ℓ, F and XF can be
derived, to ensure that VN is a Lyapunov function

⇝ Often relies on the principle of optimality and dynamic
programming

A sufficient condition using XF = {xe}:
If XF = {xe} and ℓ(x, u) > ℓ(0, 0) = 0 for all
(x, u) ̸= (xe, ue) then VN is a Lyapunov function

(W.l.o.g. we assume that (xe, ue) = (0, 0)) Then for
all x0 ∈ X it holds that

VN (x0) = JN (x0, u
⋆
N (·;x0)) =

N−1∑
i=0

ℓ(x(i), u⋆
N (i;x0))

=ℓ(x(0), u⋆
N (0;x0))+

N−1∑
i=1

ℓ(x(i), u⋆
N (i;x0))+ℓ(x(N), 0)

≥ ℓ(x(0), u⋆
N (0;x0)) + VN (f(x0, u

⋆
N (0;x0)).

⇝ Since ℓ(x0, u) > 0 for x0 ̸= 0 it follows that

VN (f(x, µN (x))) < VN (x) ∀x ∈ X\{0}

However: Here, we have assumed (or need to
assume) that the optimization problem is feasible for
all initial values x0 ∈ X!

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 13 / 38

Closed Loop Stability Properties

Consider:

x+ = f(x, µN (x))

A standard control application of MPC:
Stabilization of an equilibrium pair (xe, ue) ∈ X× U
Reasonable running costs: (Q ≥ 0, R ≥ 0):

ℓ(x, u) = (x− xe)TQ(x− xe) + (u− ue)TR(u− ue)

⇝ How to ensure asymptotic stability of xe (if µN (·) is
not known explicitly)?

A sufficient condition:
Stability follows if VN is a Lyapunov function, i.e.,

VN (f(x, µN (x))) < VN (x) ∀x ∈ X\{xe}

Even though VN and µN are only known implicitly,
conditions on f , N ∈ N ∪ {∞}, ℓ, F and XF can be
derived, to ensure that VN is a Lyapunov function

⇝ Often relies on the principle of optimality and dynamic
programming

A sufficient condition using XF = {xe}:
If XF = {xe} and ℓ(x, u) > ℓ(0, 0) = 0 for all
(x, u) ̸= (xe, ue) then VN is a Lyapunov function

(W.l.o.g. we assume that (xe, ue) = (0, 0)) Then for
all x0 ∈ X it holds that

VN (x0) = JN (x0, u
⋆
N (·;x0)) =

N−1∑
i=0

ℓ(x(i), u⋆
N (i;x0))

=ℓ(x(0), u⋆
N (0;x0))+

N−1∑
i=1

ℓ(x(i), u⋆
N (i;x0))+ℓ(x(N), 0)

≥ ℓ(x(0), u⋆
N (0;x0)) + VN (f(x0, u

⋆
N (0;x0)).

⇝ Since ℓ(x0, u) > 0 for x0 ̸= 0 it follows that

VN (f(x, µN (x))) < VN (x) ∀x ∈ X\{0}

However: Here, we have assumed (or need to
assume) that the optimization problem is feasible for
all initial values x0 ∈ X!

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 13 / 38

Closed Loop Stability Properties

Consider:

x+ = f(x, µN (x))

A standard control application of MPC:
Stabilization of an equilibrium pair (xe, ue) ∈ X× U
Reasonable running costs: (Q ≥ 0, R ≥ 0):

ℓ(x, u) = (x− xe)TQ(x− xe) + (u− ue)TR(u− ue)

⇝ How to ensure asymptotic stability of xe (if µN (·) is
not known explicitly)?

A sufficient condition:
Stability follows if VN is a Lyapunov function, i.e.,

VN (f(x, µN (x))) < VN (x) ∀x ∈ X\{xe}

Even though VN and µN are only known implicitly,
conditions on f , N ∈ N ∪ {∞}, ℓ, F and XF can be
derived, to ensure that VN is a Lyapunov function

⇝ Often relies on the principle of optimality and dynamic
programming

A sufficient condition using XF = {xe}:
If XF = {xe} and ℓ(x, u) > ℓ(0, 0) = 0 for all
(x, u) ̸= (xe, ue) then VN is a Lyapunov function

(W.l.o.g. we assume that (xe, ue) = (0, 0)) Then for
all x0 ∈ X it holds that

VN (x0) = JN (x0, u
⋆
N (·;x0)) =

N−1∑
i=0

ℓ(x(i), u⋆
N (i;x0))

=ℓ(x(0), u⋆
N (0;x0))+

N−1∑
i=1

ℓ(x(i), u⋆
N (i;x0))+ℓ(x(N), 0)

≥ ℓ(x(0), u⋆
N (0;x0)) + VN (f(x0, u

⋆
N (0;x0)).

⇝ Since ℓ(x0, u) > 0 for x0 ̸= 0 it follows that

VN (f(x, µN (x))) < VN (x) ∀x ∈ X\{0}

However: Here, we have assumed (or need to
assume) that the optimization problem is feasible for
all initial values x0 ∈ X!

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 13 / 38

Closed Loop Stability Properties

Consider:

x+ = f(x, µN (x))

A standard control application of MPC:
Stabilization of an equilibrium pair (xe, ue) ∈ X× U
Reasonable running costs: (Q ≥ 0, R ≥ 0):

ℓ(x, u) = (x− xe)TQ(x− xe) + (u− ue)TR(u− ue)

⇝ How to ensure asymptotic stability of xe (if µN (·) is
not known explicitly)?

A sufficient condition:
Stability follows if VN is a Lyapunov function, i.e.,

VN (f(x, µN (x))) < VN (x) ∀x ∈ X\{xe}

Even though VN and µN are only known implicitly,
conditions on f , N ∈ N ∪ {∞}, ℓ, F and XF can be
derived, to ensure that VN is a Lyapunov function

⇝ Often relies on the principle of optimality and dynamic
programming

A sufficient condition using XF = {xe}:
If XF = {xe} and ℓ(x, u) > ℓ(0, 0) = 0 for all
(x, u) ̸= (xe, ue) then VN is a Lyapunov function

(W.l.o.g. we assume that (xe, ue) = (0, 0)) Then for
all x0 ∈ X it holds that

VN (x0) = JN (x0, u
⋆
N (·;x0)) =

N−1∑
i=0

ℓ(x(i), u⋆
N (i;x0))

=ℓ(x(0), u⋆
N (0;x0))+

N−1∑
i=1

ℓ(x(i), u⋆
N (i;x0))+ℓ(x(N), 0)

≥ ℓ(x(0), u⋆
N (0;x0)) + VN (f(x0, u

⋆
N (0;x0)).

⇝ Since ℓ(x0, u) > 0 for x0 ̸= 0 it follows that

VN (f(x, µN (x))) < VN (x) ∀x ∈ X\{0}

However: Here, we have assumed (or need to
assume) that the optimization problem is feasible for
all initial values x0 ∈ X!

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 13 / 38

Closed Loop Stability Properties

Consider:

x+ = f(x, µN (x))

A standard control application of MPC:
Stabilization of an equilibrium pair (xe, ue) ∈ X× U
Reasonable running costs: (Q ≥ 0, R ≥ 0):

ℓ(x, u) = (x− xe)TQ(x− xe) + (u− ue)TR(u− ue)

⇝ How to ensure asymptotic stability of xe (if µN (·) is
not known explicitly)?

A sufficient condition:
Stability follows if VN is a Lyapunov function, i.e.,

VN (f(x, µN (x))) < VN (x) ∀x ∈ X\{xe}

Even though VN and µN are only known implicitly,
conditions on f , N ∈ N ∪ {∞}, ℓ, F and XF can be
derived, to ensure that VN is a Lyapunov function

⇝ Often relies on the principle of optimality and dynamic
programming

A sufficient condition using XF = {xe}:
If XF = {xe} and ℓ(x, u) > ℓ(0, 0) = 0 for all
(x, u) ̸= (xe, ue) then VN is a Lyapunov function

(W.l.o.g. we assume that (xe, ue) = (0, 0)) Then for
all x0 ∈ X it holds that

VN (x0) = JN (x0, u
⋆
N (·;x0)) =

N−1∑
i=0

ℓ(x(i), u⋆
N (i;x0))

=ℓ(x(0), u⋆
N (0;x0))+

N−1∑
i=1

ℓ(x(i), u⋆
N (i;x0))+ℓ(x(N), 0)

≥ ℓ(x(0), u⋆
N (0;x0)) + VN (f(x0, u

⋆
N (0;x0)).

⇝ Since ℓ(x0, u) > 0 for x0 ̸= 0 it follows that

VN (f(x, µN (x))) < VN (x) ∀x ∈ X\{0}

However: Here, we have assumed (or need to
assume) that the optimization problem is feasible for
all initial values x0 ∈ X!

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 13 / 38

Closed Loop Stability Properties (Example)

As an example consider:

x+ = Ax+Bu =


1 4 0 3 2
2 4 2 4 2
3 3 3 0 4
3 1 3 0 3
2 3 1 4 4

x+


2
3
1
2
3

u

ℓ(x, u) = xT x+ u2; F (x) = xT x; XF = {0};
U = [−40, 40]

x0 = [1, 1, 1, 1, 1]T

Without terminal constraints:
Feasibility is guaranteed for all N ∈ N
VN is only strictly decreasing for N ≥ 10

With terminal constraints:
Feasibility only guaranteed for N ≥ 6

VN is strictly decreasing for all N ≥ 6 (as expected)
Note that:

Here, we only look at one initial condition!

The observations are not necessarily satisfied for all x0!

Open loop costs VN (x(k)) without terminal constraints and with terminal constraints

0 2 4 6 8 10

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10

0

2000

4000

6000

8000

10000

12000

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 14 / 38

Viability & Recursive Feasibility

Note that:
If X ̸= Rn then the OCP may be infeasible.

To define implementable feedback laws it is
necessary that the OCP is feasible for all k ∈ N.

⇝ We need to discuss viability and recursive feasibility.

Definition (Viability)
Consider x+ = f(x, u) together with X ⊂ Rn and
U(x) ⊂ Rm for all x ∈ X. The set X is called viable if

∀ x ∈ X ∃ u ∈ U(x) such that f(x, u) ∈ X.

A viable set X is also called a control invariant set.

Example

For a ∈ R, consider x+ = ax+ u

X = [−1, 1] and U = [−1, 1]

Example (continued)
Case 1: |a| ≤ 1

The origin is asymptotically stable (for u = 0)

For u = 0 it holds that |x+| ≤ |x| ≤ 1

∀ x ∈ X ∃ u ∈ U (namely u = 0) such that x+ ∈ X.
Case 2: |a| ∈ (1, 2]

Define u(x) = − sign(a)x

Then, for all x ∈ X, x+ satisfies

|x+| = |ax− sign(a)x| = |a− sign(a)| · |x|
= ||a| − 1| · |x| ≤ |x| ≤ 1⇝ X is viable

Case 3: |a| > 2

Consider x = sign(a).

For u = 0, x+ satisfies x+ = a sign(a) = |a| > 2.

The best we can is to select u = −1. Thus
x+ = a sign(a)− 1 = |a| − 1 > 1

⇝ For |a| > 2, the set X is not viable.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 15 / 38

Viability & Recursive Feasibility

Note that:
If X ̸= Rn then the OCP may be infeasible.

To define implementable feedback laws it is
necessary that the OCP is feasible for all k ∈ N.

⇝ We need to discuss viability and recursive feasibility.

Definition (Viability)
Consider x+ = f(x, u) together with X ⊂ Rn and
U(x) ⊂ Rm for all x ∈ X. The set X is called viable if

∀ x ∈ X ∃ u ∈ U(x) such that f(x, u) ∈ X.

A viable set X is also called a control invariant set.

Example

For a ∈ R, consider x+ = ax+ u

X = [−1, 1] and U = [−1, 1]

Example (continued)
Case 1: |a| ≤ 1

The origin is asymptotically stable (for u = 0)

For u = 0 it holds that |x+| ≤ |x| ≤ 1

∀ x ∈ X ∃ u ∈ U (namely u = 0) such that x+ ∈ X.
Case 2: |a| ∈ (1, 2]

Define u(x) = − sign(a)x

Then, for all x ∈ X, x+ satisfies

|x+| = |ax− sign(a)x| = |a− sign(a)| · |x|
= ||a| − 1| · |x| ≤ |x| ≤ 1⇝ X is viable

Case 3: |a| > 2

Consider x = sign(a).

For u = 0, x+ satisfies x+ = a sign(a) = |a| > 2.

The best we can is to select u = −1. Thus
x+ = a sign(a)− 1 = |a| − 1 > 1

⇝ For |a| > 2, the set X is not viable.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 15 / 38

Viability & Recursive Feasibility

Note that:
If X ̸= Rn then the OCP may be infeasible.

To define implementable feedback laws it is
necessary that the OCP is feasible for all k ∈ N.

⇝ We need to discuss viability and recursive feasibility.

Definition (Viability)
Consider x+ = f(x, u) together with X ⊂ Rn and
U(x) ⊂ Rm for all x ∈ X. The set X is called viable if

∀ x ∈ X ∃ u ∈ U(x) such that f(x, u) ∈ X.

A viable set X is also called a control invariant set.

Example

For a ∈ R, consider x+ = ax+ u

X = [−1, 1] and U = [−1, 1]

Example (continued)
Case 1: |a| ≤ 1

The origin is asymptotically stable (for u = 0)

For u = 0 it holds that |x+| ≤ |x| ≤ 1

∀ x ∈ X ∃ u ∈ U (namely u = 0) such that x+ ∈ X.
Case 2: |a| ∈ (1, 2]

Define u(x) = − sign(a)x

Then, for all x ∈ X, x+ satisfies

|x+| = |ax− sign(a)x| = |a− sign(a)| · |x|
= ||a| − 1| · |x| ≤ |x| ≤ 1⇝ X is viable

Case 3: |a| > 2

Consider x = sign(a).

For u = 0, x+ satisfies x+ = a sign(a) = |a| > 2.

The best we can is to select u = −1. Thus
x+ = a sign(a)− 1 = |a| − 1 > 1

⇝ For |a| > 2, the set X is not viable.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 15 / 38

Viability & Recursive Feasibility

Note that:
If X ̸= Rn then the OCP may be infeasible.

To define implementable feedback laws it is
necessary that the OCP is feasible for all k ∈ N.

⇝ We need to discuss viability and recursive feasibility.

Definition (Viability)
Consider x+ = f(x, u) together with X ⊂ Rn and
U(x) ⊂ Rm for all x ∈ X. The set X is called viable if

∀ x ∈ X ∃ u ∈ U(x) such that f(x, u) ∈ X.

A viable set X is also called a control invariant set.

Example

For a ∈ R, consider x+ = ax+ u

X = [−1, 1] and U = [−1, 1]

Example (continued)
Case 1: |a| ≤ 1

The origin is asymptotically stable (for u = 0)

For u = 0 it holds that |x+| ≤ |x| ≤ 1

∀ x ∈ X ∃ u ∈ U (namely u = 0) such that x+ ∈ X.

Case 2: |a| ∈ (1, 2]

Define u(x) = − sign(a)x

Then, for all x ∈ X, x+ satisfies

|x+| = |ax− sign(a)x| = |a− sign(a)| · |x|
= ||a| − 1| · |x| ≤ |x| ≤ 1⇝ X is viable

Case 3: |a| > 2

Consider x = sign(a).

For u = 0, x+ satisfies x+ = a sign(a) = |a| > 2.

The best we can is to select u = −1. Thus
x+ = a sign(a)− 1 = |a| − 1 > 1

⇝ For |a| > 2, the set X is not viable.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 15 / 38

Viability & Recursive Feasibility

Note that:
If X ̸= Rn then the OCP may be infeasible.

To define implementable feedback laws it is
necessary that the OCP is feasible for all k ∈ N.

⇝ We need to discuss viability and recursive feasibility.

Definition (Viability)
Consider x+ = f(x, u) together with X ⊂ Rn and
U(x) ⊂ Rm for all x ∈ X. The set X is called viable if

∀ x ∈ X ∃ u ∈ U(x) such that f(x, u) ∈ X.

A viable set X is also called a control invariant set.

Example

For a ∈ R, consider x+ = ax+ u

X = [−1, 1] and U = [−1, 1]

Example (continued)
Case 1: |a| ≤ 1

The origin is asymptotically stable (for u = 0)

For u = 0 it holds that |x+| ≤ |x| ≤ 1

∀ x ∈ X ∃ u ∈ U (namely u = 0) such that x+ ∈ X.
Case 2: |a| ∈ (1, 2]

Define u(x) = − sign(a)x

Then, for all x ∈ X, x+ satisfies

|x+| = |ax− sign(a)x| = |a− sign(a)| · |x|
= ||a| − 1| · |x| ≤ |x| ≤ 1⇝ X is viable

Case 3: |a| > 2

Consider x = sign(a).

For u = 0, x+ satisfies x+ = a sign(a) = |a| > 2.

The best we can is to select u = −1. Thus
x+ = a sign(a)− 1 = |a| − 1 > 1

⇝ For |a| > 2, the set X is not viable.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 15 / 38

Viability & Recursive Feasibility

Note that:
If X ̸= Rn then the OCP may be infeasible.

To define implementable feedback laws it is
necessary that the OCP is feasible for all k ∈ N.

⇝ We need to discuss viability and recursive feasibility.

Definition (Viability)
Consider x+ = f(x, u) together with X ⊂ Rn and
U(x) ⊂ Rm for all x ∈ X. The set X is called viable if

∀ x ∈ X ∃ u ∈ U(x) such that f(x, u) ∈ X.

A viable set X is also called a control invariant set.

Example

For a ∈ R, consider x+ = ax+ u

X = [−1, 1] and U = [−1, 1]

Example (continued)
Case 1: |a| ≤ 1

The origin is asymptotically stable (for u = 0)

For u = 0 it holds that |x+| ≤ |x| ≤ 1

∀ x ∈ X ∃ u ∈ U (namely u = 0) such that x+ ∈ X.
Case 2: |a| ∈ (1, 2]

Define u(x) = − sign(a)x

Then, for all x ∈ X, x+ satisfies

|x+| = |ax− sign(a)x| = |a− sign(a)| · |x|
= ||a| − 1| · |x| ≤ |x| ≤ 1⇝ X is viable

Case 3: |a| > 2

Consider x = sign(a).

For u = 0, x+ satisfies x+ = a sign(a) = |a| > 2.

The best we can is to select u = −1. Thus
x+ = a sign(a)− 1 = |a| − 1 > 1

⇝ For |a| > 2, the set X is not viable.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 15 / 38

Viability & Recursive Feasibility (2)

For |a| > 2, consider x+ = ax+ u

X = [−1, 1] and U = [−1, 1]

⇝ The set X = [−1, 1] is not viable, i.e., there exist
x0 ∈ X such that every corresponding trajectory
x(·;x0) necessarily leaves the domain X.
⇝ Is it possible to find a viable subset Xv ⊂ X?

Example
We continue with the Example and consider

x+ = 3x+ u, X = [−1, 1], U = [−1, 1]

Since x = 0 ∈ X is an equilibrium of the system (and
u = 0 ∈ U), the set {0} ⊂ X is trivially viable.

Is it possible to enlarge the viable set and what is its
maximal size?

Assume that Xv = [−c1, c2] for unknown constants
c1, c2 ∈ [0, 1].

Example (continued)

Then, for x = c2, there needs to exist a u ∈ U such
that x+ ∈ [−c1, c2].

Since a > 0, and c2 ≥ 0 by assumption, in the worst
case it is only possible to guarantee that x+ = c2 but
x+ /∈ (−c1, c2).

This leads to the condition

c2 = 3c2 + u = 3c2 − 1 ⇝ c2 = 1
2

Moreover, the selection of u = −1 implies that

x+ = 3x− 1 > c2 ∀ x > c2 and

x+ = 3x− 1 < c2 ∀ x < c2.

For x ≤ 0 the same arguments (with u = 1) lead to
c1 = c2.

⇝ The maximal viable set contained in X is given by
Xv = [− 1

2
, 1
2
].

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 16 / 38

Viability & Recursive Feasibility (2)

For |a| > 2, consider x+ = ax+ u

X = [−1, 1] and U = [−1, 1]

⇝ The set X = [−1, 1] is not viable, i.e., there exist
x0 ∈ X such that every corresponding trajectory
x(·;x0) necessarily leaves the domain X.
⇝ Is it possible to find a viable subset Xv ⊂ X?

Example
We continue with the Example and consider

x+ = 3x+ u, X = [−1, 1], U = [−1, 1]

Since x = 0 ∈ X is an equilibrium of the system (and
u = 0 ∈ U), the set {0} ⊂ X is trivially viable.

Is it possible to enlarge the viable set and what is its
maximal size?

Assume that Xv = [−c1, c2] for unknown constants
c1, c2 ∈ [0, 1].

Example (continued)

Then, for x = c2, there needs to exist a u ∈ U such
that x+ ∈ [−c1, c2].

Since a > 0, and c2 ≥ 0 by assumption, in the worst
case it is only possible to guarantee that x+ = c2 but
x+ /∈ (−c1, c2).

This leads to the condition

c2 = 3c2 + u = 3c2 − 1 ⇝ c2 = 1
2

Moreover, the selection of u = −1 implies that

x+ = 3x− 1 > c2 ∀ x > c2 and

x+ = 3x− 1 < c2 ∀ x < c2.

For x ≤ 0 the same arguments (with u = 1) lead to
c1 = c2.

⇝ The maximal viable set contained in X is given by
Xv = [− 1

2
, 1
2
].

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 16 / 38

Viability & Recursive Feasibility (2)

For |a| > 2, consider x+ = ax+ u

X = [−1, 1] and U = [−1, 1]

⇝ The set X = [−1, 1] is not viable, i.e., there exist
x0 ∈ X such that every corresponding trajectory
x(·;x0) necessarily leaves the domain X.
⇝ Is it possible to find a viable subset Xv ⊂ X?

Example
We continue with the Example and consider

x+ = 3x+ u, X = [−1, 1], U = [−1, 1]

Since x = 0 ∈ X is an equilibrium of the system (and
u = 0 ∈ U), the set {0} ⊂ X is trivially viable.

Is it possible to enlarge the viable set and what is its
maximal size?

Assume that Xv = [−c1, c2] for unknown constants
c1, c2 ∈ [0, 1].

Example (continued)

Then, for x = c2, there needs to exist a u ∈ U such
that x+ ∈ [−c1, c2].

Since a > 0, and c2 ≥ 0 by assumption, in the worst
case it is only possible to guarantee that x+ = c2 but
x+ /∈ (−c1, c2).

This leads to the condition

c2 = 3c2 + u = 3c2 − 1 ⇝ c2 = 1
2

Moreover, the selection of u = −1 implies that

x+ = 3x− 1 > c2 ∀ x > c2 and

x+ = 3x− 1 < c2 ∀ x < c2.

For x ≤ 0 the same arguments (with u = 1) lead to
c1 = c2.

⇝ The maximal viable set contained in X is given by
Xv = [− 1

2
, 1
2
].

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 16 / 38

Viability & Recursive Feasibility (2)

For |a| > 2, consider x+ = ax+ u

X = [−1, 1] and U = [−1, 1]

⇝ The set X = [−1, 1] is not viable, i.e., there exist
x0 ∈ X such that every corresponding trajectory
x(·;x0) necessarily leaves the domain X.
⇝ Is it possible to find a viable subset Xv ⊂ X?

Example
We continue with the Example and consider

x+ = 3x+ u, X = [−1, 1], U = [−1, 1]

Since x = 0 ∈ X is an equilibrium of the system (and
u = 0 ∈ U), the set {0} ⊂ X is trivially viable.

Is it possible to enlarge the viable set and what is its
maximal size?

Assume that Xv = [−c1, c2] for unknown constants
c1, c2 ∈ [0, 1].

Example (continued)

Then, for x = c2, there needs to exist a u ∈ U such
that x+ ∈ [−c1, c2].

Since a > 0, and c2 ≥ 0 by assumption, in the worst
case it is only possible to guarantee that x+ = c2 but
x+ /∈ (−c1, c2).

This leads to the condition

c2 = 3c2 + u = 3c2 − 1 ⇝ c2 = 1
2

Moreover, the selection of u = −1 implies that

x+ = 3x− 1 > c2 ∀ x > c2 and

x+ = 3x− 1 < c2 ∀ x < c2.

For x ≤ 0 the same arguments (with u = 1) lead to
c1 = c2.

⇝ The maximal viable set contained in X is given by
Xv = [− 1

2
, 1
2
].

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 16 / 38

Viability & Recursive Feasibility (2)

For |a| > 2, consider x+ = ax+ u

X = [−1, 1] and U = [−1, 1]

⇝ The set X = [−1, 1] is not viable, i.e., there exist
x0 ∈ X such that every corresponding trajectory
x(·;x0) necessarily leaves the domain X.
⇝ Is it possible to find a viable subset Xv ⊂ X?

Example
We continue with the Example and consider

x+ = 3x+ u, X = [−1, 1], U = [−1, 1]

Since x = 0 ∈ X is an equilibrium of the system (and
u = 0 ∈ U), the set {0} ⊂ X is trivially viable.

Is it possible to enlarge the viable set and what is its
maximal size?

Assume that Xv = [−c1, c2] for unknown constants
c1, c2 ∈ [0, 1].

Example (continued)

Then, for x = c2, there needs to exist a u ∈ U such
that x+ ∈ [−c1, c2].

Since a > 0, and c2 ≥ 0 by assumption, in the worst
case it is only possible to guarantee that x+ = c2 but
x+ /∈ (−c1, c2).

This leads to the condition

c2 = 3c2 + u = 3c2 − 1 ⇝ c2 = 1
2

Moreover, the selection of u = −1 implies that

x+ = 3x− 1 > c2 ∀ x > c2 and

x+ = 3x− 1 < c2 ∀ x < c2.

For x ≤ 0 the same arguments (with u = 1) lead to
c1 = c2.

⇝ The maximal viable set contained in X is given by
Xv = [− 1

2
, 1
2
].

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 16 / 38

Viability & Recursive Feasibility (2)

For |a| > 2, consider x+ = ax+ u

X = [−1, 1] and U = [−1, 1]

⇝ The set X = [−1, 1] is not viable, i.e., there exist
x0 ∈ X such that every corresponding trajectory
x(·;x0) necessarily leaves the domain X.
⇝ Is it possible to find a viable subset Xv ⊂ X?

Example
We continue with the Example and consider

x+ = 3x+ u, X = [−1, 1], U = [−1, 1]

Since x = 0 ∈ X is an equilibrium of the system (and
u = 0 ∈ U), the set {0} ⊂ X is trivially viable.

Is it possible to enlarge the viable set and what is its
maximal size?

Assume that Xv = [−c1, c2] for unknown constants
c1, c2 ∈ [0, 1].

Example (continued)

Then, for x = c2, there needs to exist a u ∈ U such
that x+ ∈ [−c1, c2].

Since a > 0, and c2 ≥ 0 by assumption, in the worst
case it is only possible to guarantee that x+ = c2 but
x+ /∈ (−c1, c2).

This leads to the condition

c2 = 3c2 + u = 3c2 − 1 ⇝ c2 = 1
2

Moreover, the selection of u = −1 implies that

x+ = 3x− 1 > c2 ∀ x > c2 and

x+ = 3x− 1 < c2 ∀ x < c2.

For x ≤ 0 the same arguments (with u = 1) lead to
c1 = c2.

⇝ The maximal viable set contained in X is given by
Xv = [− 1

2
, 1
2
].

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 16 / 38

Viability & Recursive Feasibility (3)
Note that:

For linear one dimensional linear systems it is
relatively simple to check viability of X, or to compute
a viable set Xv.

For higher dimensional linear systems subject to
constraints X and U the verification of viability quickly
becomes tedious

For more general nonlinear systems subject to
nonlinear constraints it might be impossible.

For linear systems subject to polyhedral constraints
the Fourier-Motzkin elimination can be used to
compute viable sets. (In Matlab the MPT-toolbox can
be used to perform these calculations.)

Example

Consider[
x+
1

x+
2

]
= Ax+Bu =

[
1 1
0 1

]
x+

[
0.5
1

]
u

and X = [−1, 1]2 and U = [− 1
4
, 1
4
].

Example (continued)
Alternatively:

Γ0 =

 1 0
0 1

−1 0
0 −1

 , γ0 =

111
1

 ,Γu =

[
1

−1

]
, γu =

[1
4
1
4

]

Idea: Starting with X0 = X iteratively define

Xi+1 = {x ∈ Xi : ∃u ∈ U such that Ax+Bu ∈ Xi}

If Xi+1 = Xi is satisfied then Xv = Xi is viable.
Define

X̃i = {[xT , u]T ∈ R3 : ∆i(x
T , u)T ≤ δi} (1)

with

∆i =

 Γi 0
ΓiA ΓiB
0 Γu

 and δi =

 γi
γi
γu

 .

Then, Xi+1 = Px(X̃i) is obtained by projecting X̃i on the
(x1, x2)-subspace.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 17 / 38

Viability & Recursive Feasibility (3)
Note that:

For linear one dimensional linear systems it is
relatively simple to check viability of X, or to compute
a viable set Xv.

For higher dimensional linear systems subject to
constraints X and U the verification of viability quickly
becomes tedious

For more general nonlinear systems subject to
nonlinear constraints it might be impossible.

For linear systems subject to polyhedral constraints
the Fourier-Motzkin elimination can be used to
compute viable sets. (In Matlab the MPT-toolbox can
be used to perform these calculations.)

Example

Consider[
x+
1

x+
2

]
= Ax+Bu =

[
1 1
0 1

]
x+

[
0.5
1

]
u

and X = [−1, 1]2 and U = [− 1
4
, 1
4
].

Example (continued)
Alternatively:

Γ0 =

 1 0
0 1

−1 0
0 −1

 , γ0 =

111
1

 ,Γu =

[
1

−1

]
, γu =

[1
4
1
4

]

Idea: Starting with X0 = X iteratively define

Xi+1 = {x ∈ Xi : ∃u ∈ U such that Ax+Bu ∈ Xi}

If Xi+1 = Xi is satisfied then Xv = Xi is viable.
Define

X̃i = {[xT , u]T ∈ R3 : ∆i(x
T , u)T ≤ δi} (1)

with

∆i =

 Γi 0
ΓiA ΓiB
0 Γu

 and δi =

 γi
γi
γu

 .

Then, Xi+1 = Px(X̃i) is obtained by projecting X̃i on the
(x1, x2)-subspace.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 17 / 38

Viability & Recursive Feasibility (3)
Note that:

For linear one dimensional linear systems it is
relatively simple to check viability of X, or to compute
a viable set Xv.

For higher dimensional linear systems subject to
constraints X and U the verification of viability quickly
becomes tedious

For more general nonlinear systems subject to
nonlinear constraints it might be impossible.

For linear systems subject to polyhedral constraints
the Fourier-Motzkin elimination can be used to
compute viable sets. (In Matlab the MPT-toolbox can
be used to perform these calculations.)

Example

Consider[
x+
1

x+
2

]
= Ax+Bu =

[
1 1
0 1

]
x+

[
0.5
1

]
u

and X = [−1, 1]2 and U = [− 1
4
, 1
4
].

Example (continued)
Alternatively:

Γ0 =

 1 0
0 1

−1 0
0 −1

 , γ0 =

111
1

 ,Γu =

[
1

−1

]
, γu =

[1
4
1
4

]

Idea: Starting with X0 = X iteratively define

Xi+1 = {x ∈ Xi : ∃u ∈ U such that Ax+Bu ∈ Xi}

If Xi+1 = Xi is satisfied then Xv = Xi is viable.
Define

X̃i = {[xT , u]T ∈ R3 : ∆i(x
T , u)T ≤ δi} (1)

with

∆i =

 Γi 0
ΓiA ΓiB
0 Γu

 and δi =

 γi
γi
γu

 .

Then, Xi+1 = Px(X̃i) is obtained by projecting X̃i on the
(x1, x2)-subspace.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 17 / 38

Viability & Recursive Feasibility (3)
Note that:

For linear one dimensional linear systems it is
relatively simple to check viability of X, or to compute
a viable set Xv.

For higher dimensional linear systems subject to
constraints X and U the verification of viability quickly
becomes tedious

For more general nonlinear systems subject to
nonlinear constraints it might be impossible.

For linear systems subject to polyhedral constraints
the Fourier-Motzkin elimination can be used to
compute viable sets. (In Matlab the MPT-toolbox can
be used to perform these calculations.)

Example

Consider[
x+
1

x+
2

]
= Ax+Bu =

[
1 1
0 1

]
x+

[
0.5
1

]
u

and X = [−1, 1]2 and U = [− 1
4
, 1
4
].

Example (continued)
Alternatively:

Γ0 =

 1 0
0 1

−1 0
0 −1

 , γ0 =

111
1

 ,Γu =

[
1

−1

]
, γu =

[1
4
1
4

]

Idea: Starting with X0 = X iteratively define

Xi+1 = {x ∈ Xi : ∃u ∈ U such that Ax+Bu ∈ Xi}

If Xi+1 = Xi is satisfied then Xv = Xi is viable.
Define

X̃i = {[xT , u]T ∈ R3 : ∆i(x
T , u)T ≤ δi} (1)

with

∆i =

 Γi 0
ΓiA ΓiB
0 Γu

 and δi =

 γi
γi
γu

 .

Then, Xi+1 = Px(X̃i) is obtained by projecting X̃i on the
(x1, x2)-subspace.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 17 / 38

Viability & Recursive Feasibility (3)
Note that:

For linear one dimensional linear systems it is
relatively simple to check viability of X, or to compute
a viable set Xv.

For higher dimensional linear systems subject to
constraints X and U the verification of viability quickly
becomes tedious

For more general nonlinear systems subject to
nonlinear constraints it might be impossible.

For linear systems subject to polyhedral constraints
the Fourier-Motzkin elimination can be used to
compute viable sets. (In Matlab the MPT-toolbox can
be used to perform these calculations.)

Example

Consider[
x+
1

x+
2

]
= Ax+Bu =

[
1 1
0 1

]
x+

[
0.5
1

]
u

and X = [−1, 1]2 and U = [− 1
4
, 1
4
].

Example (continued)
Alternatively:

Γ0 =

 1 0
0 1

−1 0
0 −1

 , γ0 =

111
1

 ,Γu =

[
1

−1

]
, γu =

[1
4
1
4

]

Idea: Starting with X0 = X iteratively define

Xi+1 = {x ∈ Xi : ∃u ∈ U such that Ax+Bu ∈ Xi}

If Xi+1 = Xi is satisfied then Xv = Xi is viable.
Define

X̃i = {[xT , u]T ∈ R3 : ∆i(x
T , u)T ≤ δi} (1)

with

∆i =

 Γi 0
ΓiA ΓiB
0 Γu

 and δi =

 γi
γi
γu

 .

Then, Xi+1 = Px(X̃i) is obtained by projecting X̃i on the
(x1, x2)-subspace.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 17 / 38

Viability & Recursive Feasibility (3)
Note that:

For linear one dimensional linear systems it is
relatively simple to check viability of X, or to compute
a viable set Xv.

For higher dimensional linear systems subject to
constraints X and U the verification of viability quickly
becomes tedious

For more general nonlinear systems subject to
nonlinear constraints it might be impossible.

For linear systems subject to polyhedral constraints
the Fourier-Motzkin elimination can be used to
compute viable sets. (In Matlab the MPT-toolbox can
be used to perform these calculations.)

Example

Consider[
x+
1

x+
2

]
= Ax+Bu =

[
1 1
0 1

]
x+

[
0.5
1

]
u

and X = [−1, 1]2 and U = [− 1
4
, 1
4
].

Example (continued)
Alternatively:

Γ0 =

 1 0
0 1

−1 0
0 −1

 , γ0 =

111
1

 ,Γu =

[
1

−1

]
, γu =

[1
4
1
4

]

Idea: Starting with X0 = X iteratively define

Xi+1 = {x ∈ Xi : ∃u ∈ U such that Ax+Bu ∈ Xi}

If Xi+1 = Xi is satisfied then Xv = Xi is viable.

Define

X̃i = {[xT , u]T ∈ R3 : ∆i(x
T , u)T ≤ δi} (1)

with

∆i =

 Γi 0
ΓiA ΓiB
0 Γu

 and δi =

 γi
γi
γu

 .

Then, Xi+1 = Px(X̃i) is obtained by projecting X̃i on the
(x1, x2)-subspace.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 17 / 38

Viability & Recursive Feasibility (3)
Note that:

For linear one dimensional linear systems it is
relatively simple to check viability of X, or to compute
a viable set Xv.

For higher dimensional linear systems subject to
constraints X and U the verification of viability quickly
becomes tedious

For more general nonlinear systems subject to
nonlinear constraints it might be impossible.

For linear systems subject to polyhedral constraints
the Fourier-Motzkin elimination can be used to
compute viable sets. (In Matlab the MPT-toolbox can
be used to perform these calculations.)

Example

Consider[
x+
1

x+
2

]
= Ax+Bu =

[
1 1
0 1

]
x+

[
0.5
1

]
u

and X = [−1, 1]2 and U = [− 1
4
, 1
4
].

Example (continued)
Alternatively:

Γ0 =

 1 0
0 1

−1 0
0 −1

 , γ0 =

111
1

 ,Γu =

[
1

−1

]
, γu =

[1
4
1
4

]

Idea: Starting with X0 = X iteratively define

Xi+1 = {x ∈ Xi : ∃u ∈ U such that Ax+Bu ∈ Xi}

If Xi+1 = Xi is satisfied then Xv = Xi is viable.
Define

X̃i = {[xT , u]T ∈ R3 : ∆i(x
T , u)T ≤ δi} (1)

with

∆i =

 Γi 0
ΓiA ΓiB
0 Γu

 and δi =

 γi
γi
γu

 .

Then, Xi+1 = Px(X̃i) is obtained by projecting X̃i on the
(x1, x2)-subspace.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 17 / 38

Viability & Recursive Feasibility (4)

The projection X1 = Px(X̃0) leads to the
conditions represented in the figure:

-2 -1 0 1 2 3 4 5

-2

-1

0

1

2

(⇝ Have a look in the lecture notes for details.)

X1 Xv

The viable set Xv is defined through:

−0.24 −0.97
−0.32 −0.95
0.71 0.71
0.32 0.95

−0.45 −0.89
0.24 0.97
0.45 0.89

−0.71 −0.71
1.00 0.00

−1.00 0.00


x ≤



0.73
0.67
0.80
0.67
0.67
0.73
0.67
0.80
1.00
1.00



P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 18 / 38

Viability & Recursive Feasibility (4)

The projection X1 = Px(X̃0) leads to the
conditions represented in the figure:

-2 -1 0 1 2 3 4 5

-2

-1

0

1

2

(⇝ Have a look in the lecture notes for details.)

X1 Xv

The viable set Xv is defined through:

−0.24 −0.97
−0.32 −0.95
0.71 0.71
0.32 0.95

−0.45 −0.89
0.24 0.97
0.45 0.89

−0.71 −0.71
1.00 0.00

−1.00 0.00


x ≤



0.73
0.67
0.80
0.67
0.67
0.73
0.67
0.80
1.00
1.00


P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 18 / 38

Viability & Recursive Feasibility (4)

Definition (Recursive feasibility)

Consider the MPC Algorithm with input constraints U and a
set of initial states XN

rf ⊂ X. The set XN
rf is called

recursively feasible with respect to the MPC Algorithm and
the prediction horizon N ∈ N if feasibility of the OCP for
x(0) = x0 ∈ XN

rf implies feasibility of the OCP for all k ∈ N.

Example

Consider[
x+
1

x+
2

]
= Ax+Bu =

[
1 1
0 1

]
x+

[
0.5
1

]
u

X = [−1, 1]2 and U = [− 1
4
, 1
4
].

Running cost ℓ(x, u) = xT x+ 10u2

No terminal cost/constraint

Initial condition x0 = [−1, 1]T ∈ Xv

Example (continued)

For N = 3 we arrive at an infeasible OCP after 2
iterations (left)

For N = 4 (and in fact also for N ≥ 4), the MPC
algorithm does not run into an infeasible optimization
problem (right).

Note that:
If we replace X by Xv in the MPC algorithm, then
infeasibility is not a problem. (However, this means we
need to know Xv.)

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 19 / 38

Viability & Recursive Feasibility (4)

Definition (Recursive feasibility)

Consider the MPC Algorithm with input constraints U and a
set of initial states XN

rf ⊂ X. The set XN
rf is called

recursively feasible with respect to the MPC Algorithm and
the prediction horizon N ∈ N if feasibility of the OCP for
x(0) = x0 ∈ XN

rf implies feasibility of the OCP for all k ∈ N.

Example

Consider[
x+
1

x+
2

]
= Ax+Bu =

[
1 1
0 1

]
x+

[
0.5
1

]
u

X = [−1, 1]2 and U = [− 1
4
, 1
4
].

Running cost ℓ(x, u) = xT x+ 10u2

No terminal cost/constraint

Initial condition x0 = [−1, 1]T ∈ Xv

Example (continued)

For N = 3 we arrive at an infeasible OCP after 2
iterations (left)

For N = 4 (and in fact also for N ≥ 4), the MPC
algorithm does not run into an infeasible optimization
problem (right).

Note that:
If we replace X by Xv in the MPC algorithm, then
infeasibility is not a problem. (However, this means we
need to know Xv.)

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 19 / 38

Viability & Recursive Feasibility (4)

Definition (Recursive feasibility)

Consider the MPC Algorithm with input constraints U and a
set of initial states XN

rf ⊂ X. The set XN
rf is called

recursively feasible with respect to the MPC Algorithm and
the prediction horizon N ∈ N if feasibility of the OCP for
x(0) = x0 ∈ XN

rf implies feasibility of the OCP for all k ∈ N.

Example

Consider[
x+
1

x+
2

]
= Ax+Bu =

[
1 1
0 1

]
x+

[
0.5
1

]
u

X = [−1, 1]2 and U = [− 1
4
, 1
4
].

Running cost ℓ(x, u) = xT x+ 10u2

No terminal cost/constraint

Initial condition x0 = [−1, 1]T ∈ Xv

Example (continued)

For N = 3 we arrive at an infeasible OCP after 2
iterations (left)

For N = 4 (and in fact also for N ≥ 4), the MPC
algorithm does not run into an infeasible optimization
problem (right).

Note that:
If we replace X by Xv in the MPC algorithm, then
infeasibility is not a problem. (However, this means we
need to know Xv.)

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 19 / 38

Viability & Recursive Feasibility (4)

Definition (Recursive feasibility)

Consider the MPC Algorithm with input constraints U and a
set of initial states XN

rf ⊂ X. The set XN
rf is called

recursively feasible with respect to the MPC Algorithm and
the prediction horizon N ∈ N if feasibility of the OCP for
x(0) = x0 ∈ XN

rf implies feasibility of the OCP for all k ∈ N.

Example

Consider[
x+
1

x+
2

]
= Ax+Bu =

[
1 1
0 1

]
x+

[
0.5
1

]
u

X = [−1, 1]2 and U = [− 1
4
, 1
4
].

Running cost ℓ(x, u) = xT x+ 10u2

No terminal cost/constraint

Initial condition x0 = [−1, 1]T ∈ Xv

Example (continued)

For N = 3 we arrive at an infeasible OCP after 2
iterations (left)

For N = 4 (and in fact also for N ≥ 4), the MPC
algorithm does not run into an infeasible optimization
problem (right).

Note that:
If we replace X by Xv in the MPC algorithm, then
infeasibility is not a problem. (However, this means we
need to know Xv.)

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 19 / 38

Viability & Recursive Feasibility (5)
Note that:

Recursive feasibility shifts the problem of running into
an infeasible optimization problem from viability to
recursive feasibility. However, similar to viability,
recursive feasibility of a set XN

rf is in general nontrivial
to establish.

Lemma
Consider the MPC Algorithm and assume that
U(x) = U ⊂ Rm for all x ∈ X and XF = Rn. If X is viable,
then XN

rf = X is recursively feasible for all N ∈ N.

Proof.

Since X is viable, for all x(k) ∈ X there exist u(k) ∈ U
such that x(k + 1) ∈ X, k = 0, . . . , N − 1.

If x(0) = x0 ∈ X is satisfied, the OCP is feasible.

At the next time step, the OCP is initialized through
f(x0, u⋆(0;x0)) ∈ X and the same argument can be
applied iteratively.

Lemma
Consider the MPC Algorithm and assume that
U(x) = U ⊂ Rm for all x ∈ X. Additionally assume that
XF ⊂ X defines a viable set. If the OCP is feasible for all
x0 ∈ XN

rf , then XN
rf = X is recursively feasible.

Proof.

Let the OCP be feasible for all x0 ∈ XN
rf .

Then there exist u(k) ∈ U such that x(k + 1) ∈ X for
all k = 0, . . . , N − 1 and x(N) ∈ XF .

Moreover, since XF is viable, there exists u(N) ∈ U
such that x(N + 1) ∈ XF . In particular
u(1), . . . , u(N) is feasible for the OCP at time k = 1
initialized through x0 = x(1).

This argument can be applied iteratively showing
recursive feasibility.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 20 / 38

Viability & Recursive Feasibility (5)
Note that:

Recursive feasibility shifts the problem of running into
an infeasible optimization problem from viability to
recursive feasibility. However, similar to viability,
recursive feasibility of a set XN

rf is in general nontrivial
to establish.

Lemma
Consider the MPC Algorithm and assume that
U(x) = U ⊂ Rm for all x ∈ X and XF = Rn. If X is viable,
then XN

rf = X is recursively feasible for all N ∈ N.

Proof.

Since X is viable, for all x(k) ∈ X there exist u(k) ∈ U
such that x(k + 1) ∈ X, k = 0, . . . , N − 1.

If x(0) = x0 ∈ X is satisfied, the OCP is feasible.

At the next time step, the OCP is initialized through
f(x0, u⋆(0;x0)) ∈ X and the same argument can be
applied iteratively.

Lemma
Consider the MPC Algorithm and assume that
U(x) = U ⊂ Rm for all x ∈ X. Additionally assume that
XF ⊂ X defines a viable set. If the OCP is feasible for all
x0 ∈ XN

rf , then XN
rf = X is recursively feasible.

Proof.

Let the OCP be feasible for all x0 ∈ XN
rf .

Then there exist u(k) ∈ U such that x(k + 1) ∈ X for
all k = 0, . . . , N − 1 and x(N) ∈ XF .

Moreover, since XF is viable, there exists u(N) ∈ U
such that x(N + 1) ∈ XF . In particular
u(1), . . . , u(N) is feasible for the OCP at time k = 1
initialized through x0 = x(1).

This argument can be applied iteratively showing
recursive feasibility.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 20 / 38

Viability & Recursive Feasibility (5)
Note that:

Recursive feasibility shifts the problem of running into
an infeasible optimization problem from viability to
recursive feasibility. However, similar to viability,
recursive feasibility of a set XN

rf is in general nontrivial
to establish.

Lemma
Consider the MPC Algorithm and assume that
U(x) = U ⊂ Rm for all x ∈ X and XF = Rn. If X is viable,
then XN

rf = X is recursively feasible for all N ∈ N.

Proof.

Since X is viable, for all x(k) ∈ X there exist u(k) ∈ U
such that x(k + 1) ∈ X, k = 0, . . . , N − 1.

If x(0) = x0 ∈ X is satisfied, the OCP is feasible.

At the next time step, the OCP is initialized through
f(x0, u⋆(0;x0)) ∈ X and the same argument can be
applied iteratively.

Lemma
Consider the MPC Algorithm and assume that
U(x) = U ⊂ Rm for all x ∈ X. Additionally assume that
XF ⊂ X defines a viable set. If the OCP is feasible for all
x0 ∈ XN

rf , then XN
rf = X is recursively feasible.

Proof.

Let the OCP be feasible for all x0 ∈ XN
rf .

Then there exist u(k) ∈ U such that x(k + 1) ∈ X for
all k = 0, . . . , N − 1 and x(N) ∈ XF .

Moreover, since XF is viable, there exists u(N) ∈ U
such that x(N + 1) ∈ XF . In particular
u(1), . . . , u(N) is feasible for the OCP at time k = 1
initialized through x0 = x(1).

This argument can be applied iteratively showing
recursive feasibility.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 20 / 38

Hard and Soft Constraints

Note that:
Infeasibility of the OCP can only occur in the presence
of state constraints X ̸= Rn.

In some applications it is justifiable to circumvent
infeasible optimization problems by rewriting hard
constraints as soft constraints.

Recall
The combined state and input constraints: D ⊂ Rn+m

Define
Distance to D:

dD(x, u) = min
(v,w)∈D

√
|x− v|2 + |u− w|2

Distance to the terminal set XF : dF : Rn → R≥0,

dF (x) = min
v∈XF

|x− v|

Introduce costs: (α, αF ∈ K)

ℓs(x, u) = α(dD(x, u)) and Fs(x) = αF (dF (x)).

Redefine feasible input trajectories:

UN =

uN (·)

∣∣∣∣∣∣
x(0) = x0,

x(k + 1) = f(x(k), u(k))
∀ k ∈ N[0,N−1]


OCP:

VN (x0) = min
uN (·)∈UN

JN (x0, uN (·)) + F (x(N))

+

N−1∑
i=0

ℓs(x(i), u(i)) + Fs(x(N))

subject to x+ = f(x, u), x(0) = x0,

Note that:
⇝ A solution doesn’t necessarily satisfy the constraints

⇝ The OCP is feasible by construction

⇝ (x, u) ∈ D, x ∈ XF are hard constraints, while
ℓs(x, u), Fs(x) in the cost function define soft constr.

⇝ If (x, u) ∈ D & x ∈ XF then ℓs(x, u) = 0 & Fs(x) = 0

⇝ If (x, u) /∈ D & x /∈ XF then ℓs(x, u) > 0 & Fs(x) > 0
impose additional costs.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 21 / 38

Hard and Soft Constraints

Note that:
Infeasibility of the OCP can only occur in the presence
of state constraints X ̸= Rn.

In some applications it is justifiable to circumvent
infeasible optimization problems by rewriting hard
constraints as soft constraints.

Recall
The combined state and input constraints: D ⊂ Rn+m

Define
Distance to D:

dD(x, u) = min
(v,w)∈D

√
|x− v|2 + |u− w|2

Distance to the terminal set XF : dF : Rn → R≥0,

dF (x) = min
v∈XF

|x− v|

Introduce costs: (α, αF ∈ K)

ℓs(x, u) = α(dD(x, u)) and Fs(x) = αF (dF (x)).

Redefine feasible input trajectories:

UN =

uN (·)

∣∣∣∣∣∣
x(0) = x0,

x(k + 1) = f(x(k), u(k))
∀ k ∈ N[0,N−1]


OCP:

VN (x0) = min
uN (·)∈UN

JN (x0, uN (·)) + F (x(N))

+

N−1∑
i=0

ℓs(x(i), u(i)) + Fs(x(N))

subject to x+ = f(x, u), x(0) = x0,

Note that:
⇝ A solution doesn’t necessarily satisfy the constraints

⇝ The OCP is feasible by construction

⇝ (x, u) ∈ D, x ∈ XF are hard constraints, while
ℓs(x, u), Fs(x) in the cost function define soft constr.

⇝ If (x, u) ∈ D & x ∈ XF then ℓs(x, u) = 0 & Fs(x) = 0

⇝ If (x, u) /∈ D & x /∈ XF then ℓs(x, u) > 0 & Fs(x) > 0
impose additional costs.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 21 / 38

Hard and Soft Constraints

Note that:
Infeasibility of the OCP can only occur in the presence
of state constraints X ̸= Rn.

In some applications it is justifiable to circumvent
infeasible optimization problems by rewriting hard
constraints as soft constraints.

Recall
The combined state and input constraints: D ⊂ Rn+m

Define
Distance to D:

dD(x, u) = min
(v,w)∈D

√
|x− v|2 + |u− w|2

Distance to the terminal set XF : dF : Rn → R≥0,

dF (x) = min
v∈XF

|x− v|

Introduce costs: (α, αF ∈ K)

ℓs(x, u) = α(dD(x, u)) and Fs(x) = αF (dF (x)).

Redefine feasible input trajectories:

UN =

uN (·)

∣∣∣∣∣∣
x(0) = x0,

x(k + 1) = f(x(k), u(k))
∀ k ∈ N[0,N−1]


OCP:

VN (x0) = min
uN (·)∈UN

JN (x0, uN (·)) + F (x(N))

+

N−1∑
i=0

ℓs(x(i), u(i)) + Fs(x(N))

subject to x+ = f(x, u), x(0) = x0,

Note that:
⇝ A solution doesn’t necessarily satisfy the constraints

⇝ The OCP is feasible by construction

⇝ (x, u) ∈ D, x ∈ XF are hard constraints, while
ℓs(x, u), Fs(x) in the cost function define soft constr.

⇝ If (x, u) ∈ D & x ∈ XF then ℓs(x, u) = 0 & Fs(x) = 0

⇝ If (x, u) /∈ D & x /∈ XF then ℓs(x, u) > 0 & Fs(x) > 0
impose additional costs.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 21 / 38

Hard and Soft Constraints

Note that:
Infeasibility of the OCP can only occur in the presence
of state constraints X ̸= Rn.

In some applications it is justifiable to circumvent
infeasible optimization problems by rewriting hard
constraints as soft constraints.

Recall
The combined state and input constraints: D ⊂ Rn+m

Define
Distance to D:

dD(x, u) = min
(v,w)∈D

√
|x− v|2 + |u− w|2

Distance to the terminal set XF : dF : Rn → R≥0,

dF (x) = min
v∈XF

|x− v|

Introduce costs: (α, αF ∈ K)

ℓs(x, u) = α(dD(x, u)) and Fs(x) = αF (dF (x)).

Redefine feasible input trajectories:

UN =

uN (·)

∣∣∣∣∣∣
x(0) = x0,

x(k + 1) = f(x(k), u(k))
∀ k ∈ N[0,N−1]


OCP:

VN (x0) = min
uN (·)∈UN

JN (x0, uN (·)) + F (x(N))

+

N−1∑
i=0

ℓs(x(i), u(i)) + Fs(x(N))

subject to x+ = f(x, u), x(0) = x0,

Note that:
⇝ A solution doesn’t necessarily satisfy the constraints

⇝ The OCP is feasible by construction

⇝ (x, u) ∈ D, x ∈ XF are hard constraints, while
ℓs(x, u), Fs(x) in the cost function define soft constr.

⇝ If (x, u) ∈ D & x ∈ XF then ℓs(x, u) = 0 & Fs(x) = 0

⇝ If (x, u) /∈ D & x /∈ XF then ℓs(x, u) > 0 & Fs(x) > 0
impose additional costs.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 21 / 38

Hard and Soft Constraints: Example

Example

Consider[
x+
1

x+
2

]
= Ax+Bu =

[
1 1
0 1

]
x+

[
0.5
1

]
u

X = [−1, 1]2 and U = [− 1
4
, 1
4
].

Running cost ℓ(x, u) = xT x+ 10u2

No terminal cost/constraint; N = 3

Initial condition x0 = [−1, 1]T ∈ Xv

Rewrite hard constraints into soft constraints: 1 0
0 1

−1 0
0 −1

 x −

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 s ≤

 1
1
1
1


Penalize 10000s(i)T s(i) in the cost function

Note that, alternatively the constraints 1 0
0 1

−1 0
0 −1

x−

 1
1
1
1

 s ≤

 1
1
1
1


with cost function 10000s2 could have been used, for
example.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 22 / 38

Hard and Soft Constraints: Example

Example

Consider[
x+
1

x+
2

]
= Ax+Bu =

[
1 1
0 1

]
x+

[
0.5
1

]
u

X = [−1, 1]2 and U = [− 1
4
, 1
4
].

Running cost ℓ(x, u) = xT x+ 10u2

No terminal cost/constraint; N = 3

Initial condition x0 = [−1, 1]T ∈ Xv

Rewrite hard constraints into soft constraints: 1 0
0 1

−1 0
0 −1

 x −

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 s ≤

 1
1
1
1


Penalize 10000s(i)T s(i) in the cost function

Note that, alternatively the constraints 1 0
0 1

−1 0
0 −1

x−

 1
1
1
1

 s ≤

 1
1
1
1


with cost function 10000s2 could have been used, for
example.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 22 / 38

Section 2

Model Predictive Control Schemes

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 23 / 38

Model Predictive Control Schemes

Model Predictive Control Schemes: (not a comprehensive list)
MPC for Time-Varying Systems & Reference Tracking

Linear MPC

Nonlinar MPC

MPC Without Terminal Costs & Constraints (a.k.a.
unconstrained MPC)

Explicit MPC

Economic MPC

Robust MPC

Tube Based MPC

Stochastic MPC

Chance constraint MPC

Distributed MPC

Multi-step MPC

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 24 / 38

Model Predictive Control Schemes: Time-Varying Systems & Reference Tracking

Consider: f : N0 × Rn × Rm → Rn

x(k + 1) = f(k, x, u), x(k0) = x0 ∈ Rn, k0 ∈ N0

Time-varying sets/constraints

X(k) ⊂ Rn and U(k, x) ⊂ Rm ∀k ∈ N0

D(k) = X(k)× U(k, x) ⊂ Rn × Rm ∀ k ∈ N0

Set of feasible input trajectories

UN
D (k) =

uN (·; k) : N[k,k+N−1] → Rm

∣∣∣∣∣∣∣
x(k)= x0,

x(i+ 1)= f(i, x(i), u(i))
(x(i), u(i)) ∈ D(i),

∀ i ∈ N[k,k+N−1]



Cost function & running cost:
JN : N0 × Rn × UN

D (k) → R ∪ {∞}, ℓ : N0 × Rn × Rm → R

JN (k, x0, uN (·)) =
∑k+N−1

i=k ℓ(i, x(i), u(i))

Terminal cost & terminal constraints

F : N0 × Rn → R XF (k) ⊂ Rn, ∀k ∈ N0

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 25 / 38

Model Predictive Control Schemes: Time-Varying Systems & Reference Tracking

Consider: f : N0 × Rn × Rm → Rn

x(k + 1) = f(k, x, u), x(k0) = x0 ∈ Rn, k0 ∈ N0

Time-varying sets/constraints

X(k) ⊂ Rn and U(k, x) ⊂ Rm ∀k ∈ N0

D(k) = X(k)× U(k, x) ⊂ Rn × Rm ∀ k ∈ N0

Set of feasible input trajectories

UN
D (k) =

uN (·; k) : N[k,k+N−1] → Rm

∣∣∣∣∣∣∣
x(k)= x0,

x(i+ 1)= f(i, x(i), u(i))
(x(i), u(i)) ∈ D(i),

∀ i ∈ N[k,k+N−1]


Cost function & running cost:
JN : N0 × Rn × UN

D (k) → R ∪ {∞}, ℓ : N0 × Rn × Rm → R

JN (k, x0, uN (·)) =
∑k+N−1

i=k ℓ(i, x(i), u(i))

Terminal cost & terminal constraints

F : N0 × Rn → R XF (k) ⊂ Rn, ∀k ∈ N0

Optimal control problem:

VN (k, x0) =min
uN (·;k)∈UN

D (k)
JN (k, x0, uN (·))+F (k, x(N))

s.t. dynamics & x(N) = XF (k)

Input: k0 ∈ N0; x(k0); N ∈ N ∪ {∞};
ℓ : N0 × Rn+m → R; D(k) ⊂ Rn+m;
F : N0 × Rn → R; XF (k) ⊂ Rn.
For k = k0, k0 + 1, k0 + 2, . . .

1 Measure the current state and
define x0 = x(k).

2 Solve OCP to obtain open-loop
control law u⋆

N (·; k, x0).

3 Define the feedback law
µN (k, x(k)) = u⋆

N (0; k, x0)

4 x(k+1)= f(k, x(k), µN (k, x(k)))
increment k to k + 1 and go to 1.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 25 / 38

Model Predictive Control Schemes: Time-Varying Systems & Reference Tracking

Consider: f : N0 × Rn × Rm → Rn

x(k + 1) = f(k, x, u), x(k0) = x0 ∈ Rn, k0 ∈ N0

Time-varying sets/constraints

X(k) ⊂ Rn and U(k, x) ⊂ Rm ∀k ∈ N0

D(k) = X(k)× U(k, x) ⊂ Rn × Rm ∀ k ∈ N0

Set of feasible input trajectories

UN
D (k) =

uN (·; k) : N[k,k+N−1] → Rm

∣∣∣∣∣∣∣
x(k)= x0,

x(i+ 1)= f(i, x(i), u(i))
(x(i), u(i)) ∈ D(i),

∀ i ∈ N[k,k+N−1]


Cost function & running cost:
JN : N0 × Rn × UN

D (k) → R ∪ {∞}, ℓ : N0 × Rn × Rm → R

JN (k, x0, uN (·)) =
∑k+N−1

i=k ℓ(i, x(i), u(i))

Terminal cost & terminal constraints

F : N0 × Rn → R XF (k) ⊂ Rn, ∀k ∈ N0

Optimal control problem:

VN (k, x0) =min
uN (·;k)∈UN

D (k)
JN (k, x0, uN (·))+F (k, x(N))

s.t. dynamics & x(N) = XF (k)

Input: k0 ∈ N0; x(k0); N ∈ N ∪ {∞};
ℓ : N0 × Rn+m → R; D(k) ⊂ Rn+m;
F : N0 × Rn → R; XF (k) ⊂ Rn.
For k = k0, k0 + 1, k0 + 2, . . .

1 Measure the current state and
define x0 = x(k).

2 Solve OCP to obtain open-loop
control law u⋆

N (·; k, x0).

3 Define the feedback law
µN (k, x(k)) = u⋆

N (0; k, x0)

4 x(k+1)= f(k, x(k), µN (k, x(k)))
increment k to k + 1 and go to 1.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 25 / 38

Model Predictive Control Schemes: Time-Varying Systems & Reference Tracking

Consider: f : N0 × Rn × Rm → Rn

x(k + 1) = f(k, x, u), x(k0) = x0 ∈ Rn, k0 ∈ N0

Time-varying sets/constraints

X(k) ⊂ Rn and U(k, x) ⊂ Rm ∀k ∈ N0

D(k) = X(k)× U(k, x) ⊂ Rn × Rm ∀ k ∈ N0

Set of feasible input trajectories

UN
D (k) =

uN (·; k) : N[k,k+N−1] → Rm

∣∣∣∣∣∣∣
x(k)= x0,

x(i+ 1)= f(i, x(i), u(i))
(x(i), u(i)) ∈ D(i),

∀ i ∈ N[k,k+N−1]


Cost function & running cost:
JN : N0 × Rn × UN

D (k) → R ∪ {∞}, ℓ : N0 × Rn × Rm → R

JN (k, x0, uN (·)) =
∑k+N−1

i=k ℓ(i, x(i), u(i))

Terminal cost & terminal constraints

F : N0 × Rn → R XF (k) ⊂ Rn, ∀k ∈ N0

Typical Running costs for reference tracking

ℓ(k, x, u) = (x− xref(k))
TQ(x− xref(k))

+ (u− uref(k))
TR(u− uref(k))

Q ∈ Sn
≥0, R ∈ Sm

≥0

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 25 / 38

Model Predictive Control Schemes: Linear & Nonlinear MPC

The distinction between linear & nonlinear MPC is
not uniform in the literature

For example:

MPC based on
▶ x+ = Ax+Bu⇝ linear MPC
▶ x+ = f(x, u)⇝ nonlinear MPC

Alternatively, based on the OCP:
▶ if the OCP is a linear/quadratic program⇝ linear

MPC
▶ if the OCP is a nonlinear program⇝ nonlinear

MPC

Alternatively, it is common to distinguish between
‘simple OCPs’ and ‘general OCPs’:

▶ convex optimization⇝ linear MPC
▶ nonconvex optimization⇝ nonlinear MPC

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 26 / 38

Model Predictive Control Schemes: Linear & Nonlinear MPC

The distinction between linear & nonlinear MPC is
not uniform in the literature

For example:
MPC based on

▶ x+ = Ax+Bu⇝ linear MPC
▶ x+ = f(x, u)⇝ nonlinear MPC

Alternatively, based on the OCP:
▶ if the OCP is a linear/quadratic program⇝ linear

MPC
▶ if the OCP is a nonlinear program⇝ nonlinear

MPC

Alternatively, it is common to distinguish between
‘simple OCPs’ and ‘general OCPs’:

▶ convex optimization⇝ linear MPC
▶ nonconvex optimization⇝ nonlinear MPC

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 26 / 38

Model Predictive Control Schemes: Linear & Nonlinear MPC

The distinction between linear & nonlinear MPC is
not uniform in the literature

For example:
MPC based on

▶ x+ = Ax+Bu⇝ linear MPC
▶ x+ = f(x, u)⇝ nonlinear MPC

Alternatively, based on the OCP:
▶ if the OCP is a linear/quadratic program⇝ linear

MPC
▶ if the OCP is a nonlinear program⇝ nonlinear

MPC

Alternatively, it is common to distinguish between
‘simple OCPs’ and ‘general OCPs’:

▶ convex optimization⇝ linear MPC
▶ nonconvex optimization⇝ nonlinear MPC

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 26 / 38

Model Predictive Control Schemes: Linear & Nonlinear MPC

The distinction between linear & nonlinear MPC is
not uniform in the literature

For example:
MPC based on

▶ x+ = Ax+Bu⇝ linear MPC
▶ x+ = f(x, u)⇝ nonlinear MPC

Alternatively, based on the OCP:
▶ if the OCP is a linear/quadratic program⇝ linear

MPC
▶ if the OCP is a nonlinear program⇝ nonlinear

MPC

Alternatively, it is common to distinguish between
‘simple OCPs’ and ‘general OCPs’:

▶ convex optimization⇝ linear MPC
▶ nonconvex optimization⇝ nonlinear MPC

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 26 / 38

Model Predictive Control Schemes: Linear & Nonlinear MPC

The distinction between linear & nonlinear MPC is
not uniform in the literature

For example:
MPC based on

▶ x+ = Ax+Bu⇝ linear MPC
▶ x+ = f(x, u)⇝ nonlinear MPC

Alternatively, based on the OCP:
▶ if the OCP is a linear/quadratic program⇝ linear

MPC
▶ if the OCP is a nonlinear program⇝ nonlinear

MPC

Alternatively, it is common to distinguish between
‘simple OCPs’ and ‘general OCPs’:

▶ convex optimization⇝ linear MPC
▶ nonconvex optimization⇝ nonlinear MPC

Example (Quadratic Program)
For linear dynamics x+ = Ax+Bu, Q,P ∈ Sn

≥0, R ∈ Sm
≥0

and polyhedral constraints defined through Γx ∈ Rr×n,
Γu ∈ Rr×m, γ ∈ Rr , ΓN ∈ Rq×n, γN ∈ Rq .
OCP can be written as a QP of the form

min
u(i)∈Rm

i∈N[0,N−1]

N−1∑
i=0

x(i)TQx(i) + u(i)TRu(i) + x(N)TPx(N)

subject to 0 = x(0)− x0

0 = x(i+ 1)−Ax(i)−Bu(i) ∀ i
γ ≥ Γxx(i) + Γuu(i) ∀ i

γN ≥ ΓNx(N)

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 26 / 38

Model Predictive Control Schemes: Linear & Nonlinear MPC

The distinction between linear & nonlinear MPC is
not uniform in the literature

For example:
MPC based on

▶ x+ = Ax+Bu⇝ linear MPC
▶ x+ = f(x, u)⇝ nonlinear MPC

Alternatively, based on the OCP:
▶ if the OCP is a linear/quadratic program⇝ linear

MPC
▶ if the OCP is a nonlinear program⇝ nonlinear

MPC

Alternatively, it is common to distinguish between
‘simple OCPs’ and ‘general OCPs’:

▶ convex optimization⇝ linear MPC
▶ nonconvex optimization⇝ nonlinear MPC

Example (Convex programs)
Terminal constraints based on a quadratic Lyapunov
function, i.e., (P ∈ Sn

>0, c ∈ R>0)

XF = {x ∈ Rn : xTPx ≤ c}

Convex running cost:

ℓ(x, u) = (xT x)2 + (uTu)2

Convex optimization problem:

min
u(i)∈Rm

i∈N[0,N−1]

N−1∑
i=0

(x(i)T x(i))2 + (u(i)Tu(i))2

subject to 0 = x(0)− x0

0 = x(i+ 1)−Ax(i)−Bu(i) ∀ i
γ ≥ Γxx(i) + Γuu(i) ∀ i
c ≥ x(N)TPx(N).

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 26 / 38

Model Predictive Control Schemes: Linear & Nonlinear MPC

The distinction between linear & nonlinear MPC is
not uniform in the literature

For example:
MPC based on

▶ x+ = Ax+Bu⇝ linear MPC
▶ x+ = f(x, u)⇝ nonlinear MPC

Alternatively, based on the OCP:
▶ if the OCP is a linear/quadratic program⇝ linear

MPC
▶ if the OCP is a nonlinear program⇝ nonlinear

MPC

Alternatively, it is common to distinguish between
‘simple OCPs’ and ‘general OCPs’:

▶ convex optimization⇝ linear MPC
▶ nonconvex optimization⇝ nonlinear MPC

Example (Nonlinear optimization)

Inverted pendulum on a cart

min
u(i)∈Rm

i∈N[0,N−1]

N−1∑
i=0

x2
1 + (1− cos(x2))

2 + x2
3 + x2

4 + u2

subject to 0 = x(0)− x0

0 = x(i+ 1)− x(i)−∆f(x(i), u(i)) ∀ i
cu ≥ u(i) ∀ i
cu ≥ −u(i) ∀ i
cx ≥ x1(i) ∀ i
cx ≥ −x1(i) ∀ i

Here ẋ = f(x, u) =
x3

x4
−J̄ c̄x3−J̄ sin(x2)x

2
4−γ̄ cos(x2)x4+g cos(x2) sin(x2)+J̄u

M̄J̄−cos2(x2)
−M̄γ̄x4+M̄g sin(x2)−c̄ cos(x2)x3−cos(x2) sin(x2)x

2
4+cos(x2)u

M̄J̄−cos2(x2)


P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 26 / 38

Model Predictive Control Schemes: MPC Without Terminal Costs & Constraints

Infinite horizon optimal control problem

V∞(x0) = min
u∞(·)∈U∞

D
J∞(x0, u(·))

subject to dyn. & init. cond.

Finite horizon optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

Often, a finite horizon OCP is used to approximate a corresponding infinite horizon OCP

⇝ Compromise in numerical complexity versus optimality

What is a “good” approximation of the infinite horizon OCP?

How to select N , XF and F?

(Note that this question ignores the problem of how to define good running costs for an infinite horizon optimal control
problem in the first place)

For linear systems: XF and F can be defined based on (sublevel sets of) Lyapunov functions (See Chapter 12).
What about nonlinear systems?

Are terminal costs/constraints necessary?

▶ ‘For sufficiently large prediction horizons N ∈ N, the MPC closed loop without terminal costs/constraints
approximates the corresponding infinite horizon solution arbitrarily well.’

▶ Found in publications on ‘MPC Without Terminal Costs & Constraints’ or ‘Unconstrained MPC’

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 27 / 38

Model Predictive Control Schemes: MPC Without Terminal Costs & Constraints

Infinite horizon optimal control problem

V∞(x0) = min
u∞(·)∈U∞

D
J∞(x0, u(·))

subject to dyn. & init. cond.

Finite horizon optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

Often, a finite horizon OCP is used to approximate a corresponding infinite horizon OCP

⇝ Compromise in numerical complexity versus optimality

What is a “good” approximation of the infinite horizon OCP?

How to select N , XF and F?

(Note that this question ignores the problem of how to define good running costs for an infinite horizon optimal control
problem in the first place)

For linear systems: XF and F can be defined based on (sublevel sets of) Lyapunov functions (See Chapter 12).
What about nonlinear systems?

Are terminal costs/constraints necessary?

▶ ‘For sufficiently large prediction horizons N ∈ N, the MPC closed loop without terminal costs/constraints
approximates the corresponding infinite horizon solution arbitrarily well.’

▶ Found in publications on ‘MPC Without Terminal Costs & Constraints’ or ‘Unconstrained MPC’

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 27 / 38

Model Predictive Control Schemes: MPC Without Terminal Costs & Constraints

Infinite horizon optimal control problem

V∞(x0) = min
u∞(·)∈U∞

D
J∞(x0, u(·))

subject to dyn. & init. cond.

Finite horizon optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

Often, a finite horizon OCP is used to approximate a corresponding infinite horizon OCP

⇝ Compromise in numerical complexity versus optimality

What is a “good” approximation of the infinite horizon OCP?

How to select N , XF and F?

(Note that this question ignores the problem of how to define good running costs for an infinite horizon optimal control
problem in the first place)

For linear systems: XF and F can be defined based on (sublevel sets of) Lyapunov functions (See Chapter 12).
What about nonlinear systems?

Are terminal costs/constraints necessary?

▶ ‘For sufficiently large prediction horizons N ∈ N, the MPC closed loop without terminal costs/constraints
approximates the corresponding infinite horizon solution arbitrarily well.’

▶ Found in publications on ‘MPC Without Terminal Costs & Constraints’ or ‘Unconstrained MPC’

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 27 / 38

Model Predictive Control Schemes: MPC Without Terminal Costs & Constraints

Infinite horizon optimal control problem

V∞(x0) = min
u∞(·)∈U∞

D
J∞(x0, u(·))

subject to dyn. & init. cond.

Finite horizon optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

Often, a finite horizon OCP is used to approximate a corresponding infinite horizon OCP

⇝ Compromise in numerical complexity versus optimality

What is a “good” approximation of the infinite horizon OCP?

How to select N , XF and F?

(Note that this question ignores the problem of how to define good running costs for an infinite horizon optimal control
problem in the first place)

For linear systems: XF and F can be defined based on (sublevel sets of) Lyapunov functions (See Chapter 12).
What about nonlinear systems?

Are terminal costs/constraints necessary?

▶ ‘For sufficiently large prediction horizons N ∈ N, the MPC closed loop without terminal costs/constraints
approximates the corresponding infinite horizon solution arbitrarily well.’

▶ Found in publications on ‘MPC Without Terminal Costs & Constraints’ or ‘Unconstrained MPC’

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 27 / 38

Model Predictive Control Schemes: MPC Without Terminal Costs & Constraints

Infinite horizon optimal control problem

V∞(x0) = min
u∞(·)∈U∞

D
J∞(x0, u(·))

subject to dyn. & init. cond.

Finite horizon optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

Often, a finite horizon OCP is used to approximate a corresponding infinite horizon OCP

⇝ Compromise in numerical complexity versus optimality

What is a “good” approximation of the infinite horizon OCP?

How to select N , XF and F?

(Note that this question ignores the problem of how to define good running costs for an infinite horizon optimal control
problem in the first place)

For linear systems: XF and F can be defined based on (sublevel sets of) Lyapunov functions (See Chapter 12).
What about nonlinear systems?

Are terminal costs/constraints necessary?

▶ ‘For sufficiently large prediction horizons N ∈ N, the MPC closed loop without terminal costs/constraints
approximates the corresponding infinite horizon solution arbitrarily well.’

▶ Found in publications on ‘MPC Without Terminal Costs & Constraints’ or ‘Unconstrained MPC’

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 27 / 38

Model Predictive Control Schemes: MPC Without Terminal Costs & Constraints

Infinite horizon optimal control problem

V∞(x0) = min
u∞(·)∈U∞

D
J∞(x0, u(·))

subject to dyn. & init. cond.

Finite horizon optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

Often, a finite horizon OCP is used to approximate a corresponding infinite horizon OCP

⇝ Compromise in numerical complexity versus optimality

What is a “good” approximation of the infinite horizon OCP?

How to select N , XF and F?

(Note that this question ignores the problem of how to define good running costs for an infinite horizon optimal control
problem in the first place)

For linear systems: XF and F can be defined based on (sublevel sets of) Lyapunov functions (See Chapter 12).
What about nonlinear systems?

Are terminal costs/constraints necessary?
▶ ‘For sufficiently large prediction horizons N ∈ N, the MPC closed loop without terminal costs/constraints

approximates the corresponding infinite horizon solution arbitrarily well.’
▶ Found in publications on ‘MPC Without Terminal Costs & Constraints’ or ‘Unconstrained MPC’

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 27 / 38

Model Predictive Control Schemes: Explicit MPC

For k = 0, 1, 2, . . .

1 Measure the current state of the system
x+ = f(x, u) and define x0 = x(k).

2 Solve OCP⇝ open-loop input u⋆
N (·;x0)

3 Define µN (x(k)) = u⋆
N (0;x0)

4 Compute x(k + 1) = f(x(k), µN (x(k))),
increment k to k + 1 and go to 1.

Note that:
At every time step an optimization problem needs to
be solved

The optimal value function and the optimal feedback
law is only known implicitly

However:
In some cases it is possible to compute an explicit
solution of the OCP as a function of x0.

Explicit MPC shifts the problem of solving an optimization
problem online for all k to a multiparametric program which
only needs to be solved once and can be solved offline.

Example

Consider x+ = x+ 0.5u with u ∈ [−1, 1].
The origin is stable but not asymptotically stable.

Every state x0 ∈ R can be driven to the origin in finite
time.

OCP with ℓ(x, u) = x2 + u2 and N = 2:

min
u(0),u(1)

x(0)2 + x(1)2 + u(0)2 + u(1)2

subject to 0 = x(0)− x0

0 = x(1)− x(0)− 0.5u(0)
0 = x(2)− x(1)− 0.5u(1)

u(0), u(1) ∈ [−1, 1].

Equivalently

min
u(0),u(1)

2x2
0 + x0u(0) + 1.25u(0)2 + u(1)2

subject to u(0), u(1) ∈ [−1, 1].

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 28 / 38

Model Predictive Control Schemes: Explicit MPC

For k = 0, 1, 2, . . .

1 Measure the current state of the system
x+ = f(x, u) and define x0 = x(k).

2 Solve OCP⇝ open-loop input u⋆
N (·;x0)

3 Define µN (x(k)) = u⋆
N (0;x0)

4 Compute x(k + 1) = f(x(k), µN (x(k))),
increment k to k + 1 and go to 1.

Note that:
At every time step an optimization problem needs to
be solved

The optimal value function and the optimal feedback
law is only known implicitly

However:
In some cases it is possible to compute an explicit
solution of the OCP as a function of x0.

Explicit MPC shifts the problem of solving an optimization
problem online for all k to a multiparametric program which
only needs to be solved once and can be solved offline.

Example

Consider x+ = x+ 0.5u with u ∈ [−1, 1].
The origin is stable but not asymptotically stable.

Every state x0 ∈ R can be driven to the origin in finite
time.

OCP with ℓ(x, u) = x2 + u2 and N = 2:

min
u(0),u(1)

x(0)2 + x(1)2 + u(0)2 + u(1)2

subject to 0 = x(0)− x0

0 = x(1)− x(0)− 0.5u(0)
0 = x(2)− x(1)− 0.5u(1)

u(0), u(1) ∈ [−1, 1].

Equivalently

min
u(0),u(1)

2x2
0 + x0u(0) + 1.25u(0)2 + u(1)2

subject to u(0), u(1) ∈ [−1, 1].

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 28 / 38

Model Predictive Control Schemes: Explicit MPC

For k = 0, 1, 2, . . .

1 Measure the current state of the system
x+ = f(x, u) and define x0 = x(k).

2 Solve OCP⇝ open-loop input u⋆
N (·;x0)

3 Define µN (x(k)) = u⋆
N (0;x0)

4 Compute x(k + 1) = f(x(k), µN (x(k))),
increment k to k + 1 and go to 1.

Note that:
At every time step an optimization problem needs to
be solved

The optimal value function and the optimal feedback
law is only known implicitly

However:
In some cases it is possible to compute an explicit
solution of the OCP as a function of x0.

Explicit MPC shifts the problem of solving an optimization
problem online for all k to a multiparametric program which
only needs to be solved once and can be solved offline.

Example

Consider x+ = x+ 0.5u with u ∈ [−1, 1].
The origin is stable but not asymptotically stable.

Every state x0 ∈ R can be driven to the origin in finite
time.

OCP with ℓ(x, u) = x2 + u2 and N = 2:

min
u(0),u(1)

x(0)2 + x(1)2 + u(0)2 + u(1)2

subject to 0 = x(0)− x0

0 = x(1)− x(0)− 0.5u(0)
0 = x(2)− x(1)− 0.5u(1)

u(0), u(1) ∈ [−1, 1].

Equivalently

min
u(0),u(1)

2x2
0 + x0u(0) + 1.25u(0)2 + u(1)2

subject to u(0), u(1) ∈ [−1, 1].

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 28 / 38

Model Predictive Control Schemes: Explicit MPC (2)

Example

Consider x+ = x+ 0.5u with u ∈ [−1, 1].
The origin is stable but not asymptotically stable.

Every state x0 ∈ R can be driven to the origin in finite
time.

OCP with ℓ(x, u) = x2 + u2 and N = 2:

min
u(0),u(1)

x(0)2 + x(1)2 + u(0)2 + u(1)2

subject to 0 = x(0)− x0

0 = x(1)− x(0)− 0.5u(0)
0 = x(2)− x(1)− 0.5u(1)

u(0), u(1) ∈ [−1, 1].

Equivalently

min
u(0),u(1)

2x2
0 + x0u(0) + 1.25u(0)2 + u(1)2

subject to u(0), u(1) ∈ [−1, 1].

The gradient of the objective function

J2(u(·);x0) = 2x2
0 + x0u(0) + 1.25u(0)2 + u(1)2

is given by

∇uJ2(u(·);x0) =

[
2.5u(0) + x0

2u(1)

]
!
= 0

⇝ u(0) = −0.4x0, u(1) = 0 if we ignore the constraints

x0 ∈ [−2.5, 2.5] implies u(0) ∈ [−1, 1]

⇝ µ(x0) = −0.4x0

Optimal feedback law: (cont., piecewise affine)

µ2(x0) =

 0x0 + 1 if x0 ≤ −2.5
−0.4x0 + 0 if x0 ∈ [−2.5, 2.5]

0x0 − 1 if x0 ≥ 2.5

The optimal value function: (cont. differentiable)

V2(x0) =

 2x2
0 + x0 + 1.25 if x0 ≤ −2.5

1.8x2
0 if x0 ∈ [−2.5, 2.5]

2x2
0 − x0 + 1.25 if x0 ≥ 2.5

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 29 / 38

Model Predictive Control Schemes: Explicit MPC (2)

Example

Consider x+ = x+ 0.5u with u ∈ [−1, 1].
The origin is stable but not asymptotically stable.

Every state x0 ∈ R can be driven to the origin in finite
time.

OCP with ℓ(x, u) = x2 + u2 and N = 2:

min
u(0),u(1)

x(0)2 + x(1)2 + u(0)2 + u(1)2

subject to 0 = x(0)− x0

0 = x(1)− x(0)− 0.5u(0)
0 = x(2)− x(1)− 0.5u(1)

u(0), u(1) ∈ [−1, 1].

Equivalently

min
u(0),u(1)

2x2
0 + x0u(0) + 1.25u(0)2 + u(1)2

subject to u(0), u(1) ∈ [−1, 1].

The gradient of the objective function

J2(u(·);x0) = 2x2
0 + x0u(0) + 1.25u(0)2 + u(1)2

is given by

∇uJ2(u(·);x0) =

[
2.5u(0) + x0

2u(1)

]
!
= 0

⇝ u(0) = −0.4x0, u(1) = 0 if we ignore the constraints

x0 ∈ [−2.5, 2.5] implies u(0) ∈ [−1, 1]

⇝ µ(x0) = −0.4x0

Optimal feedback law: (cont., piecewise affine)

µ2(x0) =

 0x0 + 1 if x0 ≤ −2.5
−0.4x0 + 0 if x0 ∈ [−2.5, 2.5]

0x0 − 1 if x0 ≥ 2.5

The optimal value function: (cont. differentiable)

V2(x0) =

 2x2
0 + x0 + 1.25 if x0 ≤ −2.5

1.8x2
0 if x0 ∈ [−2.5, 2.5]

2x2
0 − x0 + 1.25 if x0 ≥ 2.5

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 29 / 38

Model Predictive Control Schemes: Explicit MPC (2)

Example

Consider x+ = x+ 0.5u with u ∈ [−1, 1].
The origin is stable but not asymptotically stable.

Every state x0 ∈ R can be driven to the origin in finite
time.

OCP with ℓ(x, u) = x2 + u2 and N = 2:

min
u(0),u(1)

x(0)2 + x(1)2 + u(0)2 + u(1)2

subject to 0 = x(0)− x0

0 = x(1)− x(0)− 0.5u(0)
0 = x(2)− x(1)− 0.5u(1)

u(0), u(1) ∈ [−1, 1].

Equivalently

min
u(0),u(1)

2x2
0 + x0u(0) + 1.25u(0)2 + u(1)2

subject to u(0), u(1) ∈ [−1, 1].

The gradient of the objective function

J2(u(·);x0) = 2x2
0 + x0u(0) + 1.25u(0)2 + u(1)2

is given by

∇uJ2(u(·);x0) =

[
2.5u(0) + x0

2u(1)

]
!
= 0

⇝ u(0) = −0.4x0, u(1) = 0 if we ignore the constraints

x0 ∈ [−2.5, 2.5] implies u(0) ∈ [−1, 1]

⇝ µ(x0) = −0.4x0

Optimal feedback law: (cont., piecewise affine)

µ2(x0) =

 0x0 + 1 if x0 ≤ −2.5
−0.4x0 + 0 if x0 ∈ [−2.5, 2.5]

0x0 − 1 if x0 ≥ 2.5

The optimal value function: (cont. differentiable)

V2(x0) =

 2x2
0 + x0 + 1.25 if x0 ≤ −2.5

1.8x2
0 if x0 ∈ [−2.5, 2.5]

2x2
0 − x0 + 1.25 if x0 ≥ 2.5

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 29 / 38

Model Predictive Control Schemes: Explicit MPC (2)

Example

Consider x+ = x+ 0.5u with u ∈ [−1, 1].
The origin is stable but not asymptotically stable.

Every state x0 ∈ R can be driven to the origin in finite
time.

OCP with ℓ(x, u) = x2 + u2 and N = 2:

min
u(0),u(1)

x(0)2 + x(1)2 + u(0)2 + u(1)2

subject to 0 = x(0)− x0

0 = x(1)− x(0)− 0.5u(0)
0 = x(2)− x(1)− 0.5u(1)

u(0), u(1) ∈ [−1, 1].

Equivalently

min
u(0),u(1)

2x2
0 + x0u(0) + 1.25u(0)2 + u(1)2

subject to u(0), u(1) ∈ [−1, 1].

The gradient of the objective function

J2(u(·);x0) = 2x2
0 + x0u(0) + 1.25u(0)2 + u(1)2

is given by

∇uJ2(u(·);x0) =

[
2.5u(0) + x0

2u(1)

]
!
= 0

⇝ u(0) = −0.4x0, u(1) = 0 if we ignore the constraints

x0 ∈ [−2.5, 2.5] implies u(0) ∈ [−1, 1]

⇝ µ(x0) = −0.4x0

Optimal feedback law: (cont., piecewise affine)

µ2(x0) =

 0x0 + 1 if x0 ≤ −2.5
−0.4x0 + 0 if x0 ∈ [−2.5, 2.5]

0x0 − 1 if x0 ≥ 2.5

The optimal value function: (cont. differentiable)

V2(x0) =

 2x2
0 + x0 + 1.25 if x0 ≤ −2.5

1.8x2
0 if x0 ∈ [−2.5, 2.5]

2x2
0 − x0 + 1.25 if x0 ≥ 2.5

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 29 / 38

Model Predictive Control Schemes: Explicit MPC (2)

Example

Consider x+ = x+ 0.5u with u ∈ [−1, 1].
The origin is stable but not asymptotically stable.

Every state x0 ∈ R can be driven to the origin in finite
time.

OCP with ℓ(x, u) = x2 + u2 and N = 2:

min
u(0),u(1)

x(0)2 + x(1)2 + u(0)2 + u(1)2

subject to 0 = x(0)− x0

0 = x(1)− x(0)− 0.5u(0)
0 = x(2)− x(1)− 0.5u(1)

u(0), u(1) ∈ [−1, 1].

Equivalently

min
u(0),u(1)

2x2
0 + x0u(0) + 1.25u(0)2 + u(1)2

subject to u(0), u(1) ∈ [−1, 1].

The gradient of the objective function

J2(u(·);x0) = 2x2
0 + x0u(0) + 1.25u(0)2 + u(1)2

is given by

∇uJ2(u(·);x0) =

[
2.5u(0) + x0

2u(1)

]
!
= 0

⇝ u(0) = −0.4x0, u(1) = 0 if we ignore the constraints

x0 ∈ [−2.5, 2.5] implies u(0) ∈ [−1, 1]

⇝ µ(x0) = −0.4x0

Optimal feedback law: (cont., piecewise affine)

µ2(x0) =

 0x0 + 1 if x0 ≤ −2.5
−0.4x0 + 0 if x0 ∈ [−2.5, 2.5]

0x0 − 1 if x0 ≥ 2.5

The optimal value function: (cont. differentiable)

V2(x0) =

 2x2
0 + x0 + 1.25 if x0 ≤ −2.5

1.8x2
0 if x0 ∈ [−2.5, 2.5]

2x2
0 − x0 + 1.25 if x0 ≥ 2.5

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 29 / 38

Model Predictive Control Schemes: Explicit MPC (3)

Example (More general setting)
Consider the linear system x+ = Ax+Bu defined through

A =

[
1 1

− 1
4

1

]
and B =

[
−1
0

]
Constraints: x ∈ [−5, 5]2, u ∈ [−1, 1]; Horizon:
N = 5.

Running cost, terminal cost:
ℓ(x, u) = xTQx+ uTRu, F (x) = xTPx,

Q = P =

[
1 0
0 1

]
, and R = 1,

⇝ OCP is a quadratic program

⇝ Feasible region is convex (partition in 53 polyhedral
sets)

⇝ µ5(x0) is continuous and piecewise affine

⇝ V5(x0) is continuously differentiable

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 30 / 38

Model Predictive Control Schemes: Economic MPC
Note that:

So far we have tacitly assumed that the running cost ℓ
is a positive semidefinite function penalizing the
distance to a reference trajectory (xref(t), uref(t)).

⇝ The optimal behavior in terms of a reference
point/trajectory needs to be known.

Questions:
How to phrase “maximize the revenue of a plant” in
this setting?

Is the closed loop solution converging to an optimal
reference point or optimal reference trajectory, even if
the optimal point or the optimal trajectory is not known
in advance?

⇝ Economic MPC investigates the performance of MPC
with non-classical positive semidefinite running costs

Note that:
The MPC Algorithm can be applied independently of
the definition of the running cost ℓ, as long as an
optimal solution of the OCP can be obtained in every
iteration. However, the methods to analyze control
schemes with non positive semidefinite running costs
are significantly different.

Example: Consider

x(k + 1) = 2x(k) + u(k), ℓ(x, u) = u2 − x

OCP:

min
u(·)

N−1∑
i=0

(
u(i)2 − x(i)

)
subject to 0 = x(0)− x0

0 = x(i+ 1)− 2x(i)− u(i) ∀i

(Maximize revenue x and minimize operational cost u2.)

Note that:
The OCP is only well defined for N < ∞.

How to compare solution to the infinite horizon OCP?

⇝ Average cost: V̄∞(x0) = lim supK→∞
1
K
VK(x0)

Even if V∞(x0) = ∞, V̄∞(x0) ∈ R may hold.

However, not the case here since the running cost is
not bounded from below.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 31 / 38

Model Predictive Control Schemes: Economic MPC
Note that:

So far we have tacitly assumed that the running cost ℓ
is a positive semidefinite function penalizing the
distance to a reference trajectory (xref(t), uref(t)).

⇝ The optimal behavior in terms of a reference
point/trajectory needs to be known.

Questions:
How to phrase “maximize the revenue of a plant” in
this setting?

Is the closed loop solution converging to an optimal
reference point or optimal reference trajectory, even if
the optimal point or the optimal trajectory is not known
in advance?

⇝ Economic MPC investigates the performance of MPC
with non-classical positive semidefinite running costs

Note that:
The MPC Algorithm can be applied independently of
the definition of the running cost ℓ, as long as an
optimal solution of the OCP can be obtained in every
iteration. However, the methods to analyze control
schemes with non positive semidefinite running costs
are significantly different.

Example: Consider

x(k + 1) = 2x(k) + u(k), ℓ(x, u) = u2 − x

OCP:

min
u(·)

N−1∑
i=0

(
u(i)2 − x(i)

)
subject to 0 = x(0)− x0

0 = x(i+ 1)− 2x(i)− u(i) ∀i

(Maximize revenue x and minimize operational cost u2.)

Note that:
The OCP is only well defined for N < ∞.

How to compare solution to the infinite horizon OCP?

⇝ Average cost: V̄∞(x0) = lim supK→∞
1
K
VK(x0)

Even if V∞(x0) = ∞, V̄∞(x0) ∈ R may hold.

However, not the case here since the running cost is
not bounded from below.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 31 / 38

Model Predictive Control Schemes: Economic MPC
Note that:

So far we have tacitly assumed that the running cost ℓ
is a positive semidefinite function penalizing the
distance to a reference trajectory (xref(t), uref(t)).

⇝ The optimal behavior in terms of a reference
point/trajectory needs to be known.

Questions:
How to phrase “maximize the revenue of a plant” in
this setting?

Is the closed loop solution converging to an optimal
reference point or optimal reference trajectory, even if
the optimal point or the optimal trajectory is not known
in advance?

⇝ Economic MPC investigates the performance of MPC
with non-classical positive semidefinite running costs

Note that:
The MPC Algorithm can be applied independently of
the definition of the running cost ℓ, as long as an
optimal solution of the OCP can be obtained in every
iteration. However, the methods to analyze control
schemes with non positive semidefinite running costs
are significantly different.

Example: Consider

x(k + 1) = 2x(k) + u(k), ℓ(x, u) = u2 − x

OCP:

min
u(·)

N−1∑
i=0

(
u(i)2 − x(i)

)
subject to 0 = x(0)− x0

0 = x(i+ 1)− 2x(i)− u(i) ∀i

(Maximize revenue x and minimize operational cost u2.)

Note that:
The OCP is only well defined for N < ∞.

How to compare solution to the infinite horizon OCP?

⇝ Average cost: V̄∞(x0) = lim supK→∞
1
K
VK(x0)

Even if V∞(x0) = ∞, V̄∞(x0) ∈ R may hold.

However, not the case here since the running cost is
not bounded from below.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 31 / 38

Model Predictive Control Schemes: Economic MPC
Note that:

So far we have tacitly assumed that the running cost ℓ
is a positive semidefinite function penalizing the
distance to a reference trajectory (xref(t), uref(t)).

⇝ The optimal behavior in terms of a reference
point/trajectory needs to be known.

Questions:
How to phrase “maximize the revenue of a plant” in
this setting?

Is the closed loop solution converging to an optimal
reference point or optimal reference trajectory, even if
the optimal point or the optimal trajectory is not known
in advance?

⇝ Economic MPC investigates the performance of MPC
with non-classical positive semidefinite running costs

Note that:
The MPC Algorithm can be applied independently of
the definition of the running cost ℓ, as long as an
optimal solution of the OCP can be obtained in every
iteration. However, the methods to analyze control
schemes with non positive semidefinite running costs
are significantly different.

Example: Consider

x(k + 1) = 2x(k) + u(k), ℓ(x, u) = u2 − x

OCP:

min
u(·)

N−1∑
i=0

(
u(i)2 − x(i)

)
subject to 0 = x(0)− x0

0 = x(i+ 1)− 2x(i)− u(i) ∀i

(Maximize revenue x and minimize operational cost u2.)

Note that:
The OCP is only well defined for N < ∞.

How to compare solution to the infinite horizon OCP?

⇝ Average cost: V̄∞(x0) = lim supK→∞
1
K
VK(x0)

Even if V∞(x0) = ∞, V̄∞(x0) ∈ R may hold.

However, not the case here since the running cost is
not bounded from below.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 31 / 38

Model Predictive Control Schemes: Economic MPC
Note that:

So far we have tacitly assumed that the running cost ℓ
is a positive semidefinite function penalizing the
distance to a reference trajectory (xref(t), uref(t)).

⇝ The optimal behavior in terms of a reference
point/trajectory needs to be known.

Questions:
How to phrase “maximize the revenue of a plant” in
this setting?

Is the closed loop solution converging to an optimal
reference point or optimal reference trajectory, even if
the optimal point or the optimal trajectory is not known
in advance?

⇝ Economic MPC investigates the performance of MPC
with non-classical positive semidefinite running costs

Note that:
The MPC Algorithm can be applied independently of
the definition of the running cost ℓ, as long as an
optimal solution of the OCP can be obtained in every
iteration. However, the methods to analyze control
schemes with non positive semidefinite running costs
are significantly different.

Example: Consider

x(k + 1) = 2x(k) + u(k), ℓ(x, u) = u2 − x

OCP:

min
u(·)

N−1∑
i=0

(
u(i)2 − x(i)

)
subject to 0 = x(0)− x0

0 = x(i+ 1)− 2x(i)− u(i) ∀i

(Maximize revenue x and minimize operational cost u2.)

Note that:
The OCP is only well defined for N < ∞.

How to compare solution to the infinite horizon OCP?

⇝ Average cost: V̄∞(x0) = lim supK→∞
1
K
VK(x0)

Even if V∞(x0) = ∞, V̄∞(x0) ∈ R may hold.

However, not the case here since the running cost is
not bounded from below.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 31 / 38

Model Predictive Control Schemes: Economic MPC
Note that:

So far we have tacitly assumed that the running cost ℓ
is a positive semidefinite function penalizing the
distance to a reference trajectory (xref(t), uref(t)).

⇝ The optimal behavior in terms of a reference
point/trajectory needs to be known.

Questions:
How to phrase “maximize the revenue of a plant” in
this setting?

Is the closed loop solution converging to an optimal
reference point or optimal reference trajectory, even if
the optimal point or the optimal trajectory is not known
in advance?

⇝ Economic MPC investigates the performance of MPC
with non-classical positive semidefinite running costs

Note that:
The MPC Algorithm can be applied independently of
the definition of the running cost ℓ, as long as an
optimal solution of the OCP can be obtained in every
iteration. However, the methods to analyze control
schemes with non positive semidefinite running costs
are significantly different.

Example: Consider

x(k + 1) = 2x(k) + u(k), ℓ(x, u) = u2 − x

OCP:

min
u(·)

N−1∑
i=0

(
u(i)2 − x(i)

)
subject to 0 = x(0)− x0

0 = x(i+ 1)− 2x(i)− u(i) ∀i

(Maximize revenue x and minimize operational cost u2.)

Note that:
The OCP is only well defined for N < ∞.

How to compare solution to the infinite horizon OCP?

⇝ Average cost: V̄∞(x0) = lim supK→∞
1
K
VK(x0)

Even if V∞(x0) = ∞, V̄∞(x0) ∈ R may hold.

However, not the case here since the running cost is
not bounded from below.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 31 / 38

Model Predictive Control Schemes: Economic MPC
Note that:

So far we have tacitly assumed that the running cost ℓ
is a positive semidefinite function penalizing the
distance to a reference trajectory (xref(t), uref(t)).

⇝ The optimal behavior in terms of a reference
point/trajectory needs to be known.

Questions:
How to phrase “maximize the revenue of a plant” in
this setting?

Is the closed loop solution converging to an optimal
reference point or optimal reference trajectory, even if
the optimal point or the optimal trajectory is not known
in advance?

⇝ Economic MPC investigates the performance of MPC
with non-classical positive semidefinite running costs

Note that:
The MPC Algorithm can be applied independently of
the definition of the running cost ℓ, as long as an
optimal solution of the OCP can be obtained in every
iteration. However, the methods to analyze control
schemes with non positive semidefinite running costs
are significantly different.

Example: Consider

x(k + 1) = 2x(k) + u(k), ℓ(x, u) = u2 − x

OCP:

min
u(·)

N−1∑
i=0

(
u(i)2 − x(i)

)
subject to 0 = x(0)− x0

0 = x(i+ 1)− 2x(i)− u(i) ∀i

(Maximize revenue x and minimize operational cost u2.)

Note that:
The OCP is only well defined for N < ∞.

How to compare solution to the infinite horizon OCP?

⇝ Average cost: V̄∞(x0) = lim supK→∞
1
K
VK(x0)

Even if V∞(x0) = ∞, V̄∞(x0) ∈ R may hold.

However, not the case here since the running cost is
not bounded from below.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 31 / 38

Model Predictive Control Schemes: Economic MPC

Example: Consider

x(k + 1) = 2x(k) + u(k), ℓ(x, u) = u2 − x

OCP:

min
u(·)

N−1∑
i=0

(
u(i)2 − x(i)

)
subject to 0 = x(0)− x0

0 = x(i+ 1)− 2x(i)− u(i) ∀i

(Maximize revenue x and minimize operational cost u2.)
Note that:

The OCP is only well defined for N < ∞.

How to compare solution to the infinite horizon OCP?

⇝ Average cost: V̄∞(x0) = lim supK→∞
1
K
VK(x0)

Even if V∞(x0) = ∞, V̄∞(x0) ∈ R may hold.

However, not the case here since the running cost is
not bounded from below.

Consider additional constraints

x ∈ X = [−2, 2] and u ∈ U = [−3, 3]

The optimal average cost satisfies

V̄∞(x0) ≤ lim supK→∞
1
K

∑K−1
k=0 32 + 2 = 11

V̄∞(x0) ≥ lim supK→∞
1
K

∑K−1
k=0 02 − 2 = −2.

Open-loop solutions for different N

0 10 20 30

-2

-1

0

1

2

0 10 20 30

-1

0

1

2

3

Turnpike property
an approaching arc, converging to ≈ 0.5;

a stable segment, staying at ≈ 0.5;

a leaving arc, diverging from ≈ 0.5.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 32 / 38

Model Predictive Control Schemes: Economic MPC

Example: Consider

x(k + 1) = 2x(k) + u(k), ℓ(x, u) = u2 − x

OCP:

min
u(·)

N−1∑
i=0

(
u(i)2 − x(i)

)
subject to 0 = x(0)− x0

0 = x(i+ 1)− 2x(i)− u(i) ∀i

(Maximize revenue x and minimize operational cost u2.)
Note that:

The OCP is only well defined for N < ∞.

How to compare solution to the infinite horizon OCP?

⇝ Average cost: V̄∞(x0) = lim supK→∞
1
K
VK(x0)

Even if V∞(x0) = ∞, V̄∞(x0) ∈ R may hold.

However, not the case here since the running cost is
not bounded from below.

Consider additional constraints

x ∈ X = [−2, 2] and u ∈ U = [−3, 3]

The optimal average cost satisfies

V̄∞(x0) ≤ lim supK→∞
1
K

∑K−1
k=0 32 + 2 = 11

V̄∞(x0) ≥ lim supK→∞
1
K

∑K−1
k=0 02 − 2 = −2.

Open-loop solutions for different N

0 10 20 30

-2

-1

0

1

2

0 10 20 30

-1

0

1

2

3

Turnpike property
an approaching arc, converging to ≈ 0.5;

a stable segment, staying at ≈ 0.5;

a leaving arc, diverging from ≈ 0.5.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 32 / 38

Model Predictive Control Schemes: Economic MPC

Example: Consider

x(k + 1) = 2x(k) + u(k), ℓ(x, u) = u2 − x

OCP:

min
u(·)

N−1∑
i=0

(
u(i)2 − x(i)

)
subject to 0 = x(0)− x0

0 = x(i+ 1)− 2x(i)− u(i) ∀i

(Maximize revenue x and minimize operational cost u2.)
Note that:

The OCP is only well defined for N < ∞.

How to compare solution to the infinite horizon OCP?

⇝ Average cost: V̄∞(x0) = lim supK→∞
1
K
VK(x0)

Even if V∞(x0) = ∞, V̄∞(x0) ∈ R may hold.

However, not the case here since the running cost is
not bounded from below.

Consider additional constraints

x ∈ X = [−2, 2] and u ∈ U = [−3, 3]

The optimal average cost satisfies

V̄∞(x0) ≤ lim supK→∞
1
K

∑K−1
k=0 32 + 2 = 11

V̄∞(x0) ≥ lim supK→∞
1
K

∑K−1
k=0 02 − 2 = −2.

Open-loop solutions for different N

0 10 20 30

-2

-1

0

1

2

0 10 20 30

-1

0

1

2

3

Turnpike property
an approaching arc, converging to ≈ 0.5;

a stable segment, staying at ≈ 0.5;

a leaving arc, diverging from ≈ 0.5.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 32 / 38

Model Predictive Control Schemes: Economic MPC

Open-loop and closed-loop solutions with respect to N ∈ {3, 5, 10, 20}

0 10 20 30

-2

0

2

0 10 20 30

-1

0

1

2

3

0 10 20 30

-2

0

2

0 10 20 30

-1

0

1

2

3

0 10 20 30

-2

0

2

0 10 20 30

-1

0

1

2

3

0 10 20 30

-2

0

2

0 10 20 30

-1

0

1

2

3

Optimal steady-state (xe, ue):
Can be calculated through

min u2 − x

s.t. x = x+ = 2x+ u

(but it is not necessary)

Alternatively, the running costs

ℓ̃(x, u) = c1|x− xe|2 + c2|u− ue|2

asymptotically lead to the same closed-
loop solution

However, the transient behavior is
different

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 33 / 38

Model Predictive Control Schemes: Economic MPC

Open-loop and closed-loop solutions with respect to N ∈ {3, 5, 10, 20}

0 10 20 30

-2

0

2

0 10 20 30

-1

0

1

2

3

0 10 20 30

-2

0

2

0 10 20 30

-1

0

1

2

3

0 10 20 30

-2

0

2

0 10 20 30

-1

0

1

2

3

0 10 20 30

-2

0

2

0 10 20 30

-1

0

1

2

3

Optimal steady-state (xe, ue):
Can be calculated through

min u2 − x

s.t. x = x+ = 2x+ u

(but it is not necessary)

Alternatively, the running costs

ℓ̃(x, u) = c1|x− xe|2 + c2|u− ue|2

asymptotically lead to the same closed-
loop solution

However, the transient behavior is
different

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 33 / 38

Model Predictive Control Schemes: Economic MPC

Example (Mobile Robot)
Continuous and discrete time dynamics (∆ > 0):

ṗx
ṗy
ϕ̇
v̇
ẇ

 =


v cos(ϕ)
v sin(ϕ)

w
a
q

 and


p+x
p+y
ϕ+

v+

w+

 =


px +∆v cos(ϕ)
py +∆v sin(ϕ)

ϕ+∆w
v +∆a
w +∆q


Goal: Finish the “race track” as quick as possible

0 2 4 6 8 10 12 14 16 18

-2

-1

0

1

2

3

The track is defined through the set

P = {[px, py]T ∈ R2|py ≥ 2 sin(px), py ≤ 2 sin(px) + 1}

Additional constraints: px(t1) ≤ px(t2) for all t1 ≤ t2.
v ∈ [0, 4], w ∈ [−2, 2], a ∈ [−4, 4] and q ∈ [−6, 6].

Maximize the distance traveled in px-direction:

max

∫ Tend

0
v(t) cos(ϕ(t))dt = −min

∫ Tend

0
−v(t) cos(ϕ(t))dt

max∆

Kend∑
i=0

v(i) cos(ϕ(i)) = −min∆

Kend∑
i=0

−v(i) cos(ϕ(i))

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 34 / 38

Model Predictive Control Schemes: Economic MPC

Example (Mobile Robot)
Continuous and discrete time dynamics (∆ > 0):

ṗx
ṗy
ϕ̇
v̇
ẇ

 =


v cos(ϕ)
v sin(ϕ)

w
a
q

 and


p+x
p+y
ϕ+

v+

w+

 =


px +∆v cos(ϕ)
py +∆v sin(ϕ)

ϕ+∆w
v +∆a
w +∆q


Goal: Finish the “race track” as quick as possible

0 2 4 6 8 10 12 14 16 18

-2

-1

0

1

2

3

The track is defined through the set

P = {[px, py]T ∈ R2|py ≥ 2 sin(px), py ≤ 2 sin(px) + 1}

Additional constraints: px(t1) ≤ px(t2) for all t1 ≤ t2.
v ∈ [0, 4], w ∈ [−2, 2], a ∈ [−4, 4] and q ∈ [−6, 6].

Maximize the distance traveled in px-direction:

max

∫ Tend

0
v(t) cos(ϕ(t))dt = −min

∫ Tend

0
−v(t) cos(ϕ(t))dt

max∆

Kend∑
i=0

v(i) cos(ϕ(i)) = −min∆

Kend∑
i=0

−v(i) cos(ϕ(i))

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 34 / 38

Model Predictive Control Schemes: Economic MPC

Example (Mobile Robot)
Continuous and discrete time dynamics (∆ > 0):

ṗx
ṗy
ϕ̇
v̇
ẇ

 =


v cos(ϕ)
v sin(ϕ)

w
a
q

 and


p+x
p+y
ϕ+

v+

w+

 =


px +∆v cos(ϕ)
py +∆v sin(ϕ)

ϕ+∆w
v +∆a
w +∆q


Goal: Finish the “race track” as quick as possible

0 2 4 6 8 10 12 14 16 18

-2

-1

0

1

2

3

The track is defined through the set

P = {[px, py]T ∈ R2|py ≥ 2 sin(px), py ≤ 2 sin(px) + 1}

Additional constraints: px(t1) ≤ px(t2) for all t1 ≤ t2.
v ∈ [0, 4], w ∈ [−2, 2], a ∈ [−4, 4] and q ∈ [−6, 6].

Maximize the distance traveled in px-direction:

max

∫ Tend

0
v(t) cos(ϕ(t))dt = −min

∫ Tend

0
−v(t) cos(ϕ(t))dt

max∆

Kend∑
i=0

v(i) cos(ϕ(i)) = −min∆

Kend∑
i=0

−v(i) cos(ϕ(i))

0 1 2 3 4 5 6

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 34 / 38

Model Predictive Control Schemes: Economic MPC

Example (Mobile Robot)
Continuous and discrete time dynamics (∆ > 0):

ṗx
ṗy
ϕ̇
v̇
ẇ

 =


v cos(ϕ)
v sin(ϕ)

w
a
q

 and


p+x
p+y
ϕ+

v+

w+

 =


px +∆v cos(ϕ)
py +∆v sin(ϕ)

ϕ+∆w
v +∆a
w +∆q


Goal: Finish the “race track” as quick as possible

0 2 4 6 8 10 12 14 16 18

-2

-1

0

1

2

3

The track is defined through the set

P = {[px, py]T ∈ R2|py ≥ 2 sin(px), py ≤ 2 sin(px) + 1}

Additional constraints: px(t1) ≤ px(t2) for all t1 ≤ t2.
v ∈ [0, 4], w ∈ [−2, 2], a ∈ [−4, 4] and q ∈ [−6, 6].

Maximize the distance traveled in px-direction:

max

∫ Tend

0
v(t) cos(ϕ(t))dt = −min

∫ Tend

0
−v(t) cos(ϕ(t))dt

max∆

Kend∑
i=0

v(i) cos(ϕ(i)) = −min∆

Kend∑
i=0

−v(i) cos(ϕ(i))

0 2 4 6 8 10 12 14 16 18

-2

-1

0

1

2

3

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 34 / 38

Model Predictive Control Schemes: Economic MPC

Example (Mobile Robot)
Continuous and discrete time dynamics (∆ > 0):

ṗx
ṗy
ϕ̇
v̇
ẇ

 =


v cos(ϕ)
v sin(ϕ)

w
a
q

 and


p+x
p+y
ϕ+

v+

w+

 =


px +∆v cos(ϕ)
py +∆v sin(ϕ)

ϕ+∆w
v +∆a
w +∆q


Goal: Finish the “race track” as quick as possible

0 2 4 6 8 10 12 14 16 18

-2

-1

0

1

2

3

The track is defined through the set

P = {[px, py]T ∈ R2|py ≥ 2 sin(px), py ≤ 2 sin(px) + 1}

Additional constraints: px(t1) ≤ px(t2) for all t1 ≤ t2.
v ∈ [0, 4], w ∈ [−2, 2], a ∈ [−4, 4] and q ∈ [−6, 6].

Maximize the distance traveled in px-direction:

max

∫ Tend

0
v(t) cos(ϕ(t))dt = −min

∫ Tend

0
−v(t) cos(ϕ(t))dt

max∆

Kend∑
i=0

v(i) cos(ϕ(i)) = −min∆

Kend∑
i=0

−v(i) cos(ϕ(i))

0 1 2 3 4 5 6 7 8 9

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 34 / 38

Model Predictive Control Schemes: Economic MPC

Example (Mobile Robot)
Continuous and discrete time dynamics (∆ > 0):

ṗx
ṗy
ϕ̇
v̇
ẇ

 =


v cos(ϕ)
v sin(ϕ)

w
a
q

 and


p+x
p+y
ϕ+

v+

w+

 =


px +∆v cos(ϕ)
py +∆v sin(ϕ)

ϕ+∆w
v +∆a
w +∆q


Goal: Finish the “race track” as quick as possible

0 2 4 6 8 10 12 14 16 18

-2

-1

0

1

2

3

The track is defined through the set

P = {[px, py]T ∈ R2|py ≥ 2 sin(px), py ≤ 2 sin(px) + 1}

Additional constraints: px(t1) ≤ px(t2) for all t1 ≤ t2.
v ∈ [0, 4], w ∈ [−2, 2], a ∈ [−4, 4] and q ∈ [−6, 6].

Maximize the distance traveled in px-direction:

max

∫ Tend

0
v(t) cos(ϕ(t))dt = −min

∫ Tend

0
−v(t) cos(ϕ(t))dt

max∆

Kend∑
i=0

v(i) cos(ϕ(i)) = −min∆

Kend∑
i=0

−v(i) cos(ϕ(i))

0 2 4 6 8 10 12

-2

0

2

4

6

8

10

0 2 4 6 8 10 12
-6

-4

-2

0

2

4

6

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 34 / 38

Section 3

Implementational Aspects of MPC

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 35 / 38

Implementational Aspects of MPC

So far, we have implicitly assumed that the OCP can be solved instantaneously
⇝ Introduce δ > 0 as an upper bound for the time to solve the OCP, or
⇝ use multiple elements of the open-loop optimal solution to define the feedback law

Past Future

x(k + δ)

k k +N

Feedback µ

Predicted state trajectory

Reference
trajectory

Predicted
input trajectory

Closed-loop trajectory xµ

Prediction horizon N

.︸︷︷︸
δ

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 36 / 38

Warm-Start

Optimal open loop input and state trajectories at time k ∈ N with respect to the initial state x0:

u⋆(·; k, x0) =

 u⋆
N (0; k, x0)

...
u⋆
N (N − 1; k, x0)

 , x⋆(·; k, x0) =

 x⋆
N (0; k, x0)

...
x⋆
N (N − 1; k, x0)



If the prediction horizon N is large, it is not unreasonable to assume that

u⋆(i+ 1; k, x0) ≈ u⋆(i; k + 1, x⋆(1; k, x0)), x⋆(i+ 1; k, x0) ≈ x⋆(i; k + 1, x⋆(1; k, x0))

is satisfied for i = 0, . . . , N − 2.

The initialization

u0(·; k + 1, x⋆(1; k, x0)) =


u⋆
N (1; k, x0)

...
u⋆
N (N − 1; k, x0)

0

 x0(·; k + 1, x⋆(1; k, x0)) =


x⋆
N (1; k, x0)

...
x⋆
N (N − 1; k, x0)

f(x⋆
N (N − 1; k, x0), 0)


CAN reduce the numerical complexity at the next time step k + 1 significantly.

Remark
If the OCP is non-convex and has multiple local minima, warm-start may be counterproductive in finding a global minimum.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 37 / 38

Warm-Start

Optimal open loop input and state trajectories at time k ∈ N with respect to the initial state x0:

u⋆(·; k, x0) =

 u⋆
N (0; k, x0)

...
u⋆
N (N − 1; k, x0)

 , x⋆(·; k, x0) =

 x⋆
N (0; k, x0)

...
x⋆
N (N − 1; k, x0)


If the prediction horizon N is large, it is not unreasonable to assume that

u⋆(i+ 1; k, x0) ≈ u⋆(i; k + 1, x⋆(1; k, x0)), x⋆(i+ 1; k, x0) ≈ x⋆(i; k + 1, x⋆(1; k, x0))

is satisfied for i = 0, . . . , N − 2.

The initialization

u0(·; k + 1, x⋆(1; k, x0)) =


u⋆
N (1; k, x0)

...
u⋆
N (N − 1; k, x0)

0

 x0(·; k + 1, x⋆(1; k, x0)) =


x⋆
N (1; k, x0)

...
x⋆
N (N − 1; k, x0)

f(x⋆
N (N − 1; k, x0), 0)


CAN reduce the numerical complexity at the next time step k + 1 significantly.

Remark
If the OCP is non-convex and has multiple local minima, warm-start may be counterproductive in finding a global minimum.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 37 / 38

Warm-Start

Optimal open loop input and state trajectories at time k ∈ N with respect to the initial state x0:

u⋆(·; k, x0) =

 u⋆
N (0; k, x0)

...
u⋆
N (N − 1; k, x0)

 , x⋆(·; k, x0) =

 x⋆
N (0; k, x0)

...
x⋆
N (N − 1; k, x0)


If the prediction horizon N is large, it is not unreasonable to assume that

u⋆(i+ 1; k, x0) ≈ u⋆(i; k + 1, x⋆(1; k, x0)), x⋆(i+ 1; k, x0) ≈ x⋆(i; k + 1, x⋆(1; k, x0))

is satisfied for i = 0, . . . , N − 2.

The initialization

u0(·; k + 1, x⋆(1; k, x0)) =


u⋆
N (1; k, x0)

...
u⋆
N (N − 1; k, x0)

0

 x0(·; k + 1, x⋆(1; k, x0)) =


x⋆
N (1; k, x0)

...
x⋆
N (N − 1; k, x0)

f(x⋆
N (N − 1; k, x0), 0)


CAN reduce the numerical complexity at the next time step k + 1 significantly.

Remark
If the OCP is non-convex and has multiple local minima, warm-start may be counterproductive in finding a global minimum.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 37 / 38

Warm-Start

Optimal open loop input and state trajectories at time k ∈ N with respect to the initial state x0:

u⋆(·; k, x0) =

 u⋆
N (0; k, x0)

...
u⋆
N (N − 1; k, x0)

 , x⋆(·; k, x0) =

 x⋆
N (0; k, x0)

...
x⋆
N (N − 1; k, x0)


If the prediction horizon N is large, it is not unreasonable to assume that

u⋆(i+ 1; k, x0) ≈ u⋆(i; k + 1, x⋆(1; k, x0)), x⋆(i+ 1; k, x0) ≈ x⋆(i; k + 1, x⋆(1; k, x0))

is satisfied for i = 0, . . . , N − 2.

The initialization

u0(·; k + 1, x⋆(1; k, x0)) =


u⋆
N (1; k, x0)

...
u⋆
N (N − 1; k, x0)

0

 x0(·; k + 1, x⋆(1; k, x0)) =


x⋆
N (1; k, x0)

...
x⋆
N (N − 1; k, x0)

f(x⋆
N (N − 1; k, x0), 0)


CAN reduce the numerical complexity at the next time step k + 1 significantly.

Remark
If the OCP is non-convex and has multiple local minima, warm-start may be counterproductive in finding a global minimum.

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 37 / 38

Formulation of the Optimization Problem

Standard formulation of an optimization problem:

y⋆ = arg min
y∈Rα1

F (y)

s.t. Gi(y) ≤ 0, i = 1, . . . , α2

Hj(y) = 0, j = 1, . . . , α3

Different possibilities to define the unknown y:
Option 1: (Full discretization)

y =
[

x(0)T u(0)T · · · x(N − 1)T u(N − 1)T x(N)T
]T

.

More unknowns, larger number of constraints, but sparsity patterns
Option 2: (Recursive elimination)

y =
[

u(0)T · · · u(N − 1)T
]T

,

Smaller number of unknowns, smaller number of constraints, but dense representations
Also see:

Single shooting & multiple shooting
(Depending on the optimization algorithm, different representations have advantages/disadvantages)

P. Braun & C.M. Kellett (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 38 / 38

Introduction to Nonlinear Control
Stability, control design, and estimation

Philipp Braun & Christopher M. Kellett
School of Engineering,

Australian National University, Canberra, Australia

Part II:
Chapter 15: Model Predictive Control

15.1 The Basic MPC Formulation
15.2 MPC Closed-Loop Analysis
15.3 Model Predictive Schemes
15.4 Implementational Aspects of MPC

	MPC Closed-Loop Analysis
	Performance Estimates
	Closed Loop Stability Properties
	Viability & Recursive Feasibility
	Hard and Soft Constraints

	Model Predictive Control Schemes
	Time-Varying Systems & Reference Tracking
	Linear MPC Versus Nonlinar MPC
	MPC Without Terminal Costs & Constraints
	Explicit MPC
	Economic MPC

	Implementational Aspects of MPC
	Warm-Start & Suboptimal MPC
	Formulation of the Optimization Problem

	Appendix

