Introduction to Nonlinear Control

Stability, control design, and estimation

Christopher M. Kellett & Philipp Braun School of Engineering, Australian National University, Canberra, Australia

Part III:

Chapter 16: Classical Observer Design 16.1 Luenberger Observer 16.2 Minimum Energy Estimator (Continuous Time Setting) 16.3 The Discrete Time Kalman Filter

Luenberger Observers

Minimum Energy Estimator (Continuous time setting)

3 The discrete time Kalman filter

- Least squares & minimum variance solution
- A prediction-correction formulation
- The steady-state Kalman filter

So far:

- The concepts so far rely on the knowledge of the state $x \in \mathbb{R}^n$.
- The full state x is in general not known and only the output $y \in \mathbb{R}^p$ is available.
- \rightsquigarrow A controller design can not, in general, rely on the full state *x*.
- \rightsquigarrow An estimate \hat{x} of the state needs to be derived (observability, detectibility)
- If $\hat{x}(t) \rightarrow x(t)$ for $t \rightarrow \infty$, can \hat{x} be used for the definition of a feedback controller $u(\hat{x})$?

So far:

- The concepts so far rely on the knowledge of the state $x \in \mathbb{R}^n$.
- The full state x is in general not known and only the output $y \in \mathbb{R}^p$ is available.
- \rightsquigarrow A controller design can not, in general, rely on the full state x.
- \rightsquigarrow An estimate \hat{x} of the state needs to be derived (observability, detectibility)
- If $\hat{x}(t) \rightarrow x(t)$ for $t \rightarrow \infty$, can \hat{x} be used for the definition of a feedback controller $u(\hat{x})$?

So far:

- The concepts so far rely on the knowledge of the state $x \in \mathbb{R}^n$.
- The full state x is in general not known and only the output $y \in \mathbb{R}^p$ is available.
- \rightsquigarrow A controller design can not, in general, rely on the full state x.
- \rightsquigarrow An estimate \hat{x} of the state needs to be derived (observability, detectibility)
- If $\hat{x}(t) \rightarrow x(t)$ for $t \rightarrow \infty$, can \hat{x} be used for the definition of a feedback controller $u(\hat{x})$?

Consider Linear systems:

$$\dot{x} = Ax + Bu, \qquad x(0) \in \mathbb{R}^n$$

 $y = Cx + Du$

- We assume that $y \in \mathbb{R}^p$ and $u \in \mathbb{R}^m$ are known, while the internal state $x \in \mathbb{R}^n$ and the initial condition x(0) are unknown.
- Assume that the matrix A is Hurwitz.

So far:

- The concepts so far rely on the knowledge of the state $x \in \mathbb{R}^n$.
- The full state x is in general not known and only the output $y \in \mathbb{R}^p$ is available.
- \rightsquigarrow A controller design can not, in general, rely on the full state *x*.
- \rightsquigarrow An estimate \hat{x} of the state needs to be derived (observability, detectibility)
- If $\hat{x}(t) \rightarrow x(t)$ for $t \rightarrow \infty$, can \hat{x} be used for the definition of a feedback controller $u(\hat{x})$?

Consider Linear systems:

$$\dot{x} = Ax + Bu, \qquad x(0) \in \mathbb{R}^n,$$

 $y = Cx + Du$

- We assume that $y \in \mathbb{R}^p$ and $u \in \mathbb{R}^m$ are known, while the internal state $x \in \mathbb{R}^n$ and the initial condition x(0) are unknown.
- Assume that the matrix A is Hurwitz.

• Introduce observer dynamics as a copy of the system

 $\dot{\hat{x}} = A\hat{x} + Bu, \qquad \hat{x}(0) \in \mathbb{R}^n$

- $\hat{x} \in \mathbb{R}^n$ estimate of the state $x \in \mathbb{R}^n$
- Estimation error $e = x \hat{x}$
- Error dynamics:

$$\begin{split} \dot{e} &= \dot{x} - \dot{\hat{x}} = Ax + Bu - A\hat{x} - Bu = A(x - \hat{x}) = Ae \\ \hat{x}(t) \rightarrow x(t) \quad \Leftrightarrow \quad e(t) \rightarrow 0 \quad \Leftrightarrow A \text{ Hurwitz} \end{split}$$

Section 1

Luenberger Observers

$$\dot{x} = Ax + Bu,$$
 $x(0) \in \mathbb{R}^n,$ (or $x^+ = Ax + Bu$)
 $y = Cx + Du$

Define observer dynamics:

$$\dot{\hat{x}} = A\hat{x} + Bu - \boldsymbol{L}(y - \hat{y}),$$

$$\hat{y} = C\hat{x} + Du.$$

• output injection term $L \in \mathbb{R}^{n \times p}$

 $\dot{x} = Ax + Bu,$ $x(0) \in \mathbb{R}^n,$ (or $x^+ = Ax + Bu$) y = Cx + Du

Define observer dynamics:

- $\dot{\hat{x}} = A\hat{x} + Bu \mathbf{L}(y \hat{y}),$ $\hat{y} = C\hat{x} + Du.$
- output injection term $L \in \mathbb{R}^{n \times p}$

- Estimation error: $e = x \hat{x}$
- Error dynamics:

$$\dot{e} = \dot{x} - \dot{\hat{x}}$$

= $Ax + Bu - A\hat{x} - Bu + L(Cx + Du - C\hat{x} - Du)$
= $Ae + LCe = (A + LC)e$

 $\rightsquigarrow~$ The error dynamics are independent of u

 $\dot{x} = Ax + Bu,$ $x(0) \in \mathbb{R}^n,$ (or $x^+ = Ax + Bu$) y = Cx + Du

Define observer dynamics:

$$\dot{\hat{x}} = A\hat{x} + Bu - \boldsymbol{L}(y - \hat{y}),$$

$$\hat{y} = C\hat{x} + Du.$$

• output injection term $L \in \mathbb{R}^{n \times p}$

• Error dynamics:

$$\dot{e} = \dot{x} - \dot{\hat{x}}$$

= $Ax + Bu - A\hat{x} - Bu + L(Cx + Du - C\hat{x} - Du)$
= $Ae + LCe = (A + LC)e$

- $\rightsquigarrow~$ The error dynamics are independent of u
- A + LC has the same eigenvalues as $(A + LC)^T = A^T + C^T L^T$
- $\stackrel{\rightsquigarrow}{\to} \mbox{ If } (A,C) \mbox{ is observable, the poles of } A+LC \mbox{ can be} \mbox{ placed arbitrarily, i.e., } L \mbox{ can be defined such that } A+LC \mbox{ is Hurwitz.}$
- $\stackrel{\rightsquigarrow}{\to} \mbox{ If } (A,C) \mbox{ is detectable, then there exists } L \mbox{ such that } A+LC \mbox{ is Hurwitz.}$

 $\dot{x} = Ax + Bu,$ $x(0) \in \mathbb{R}^n,$ (or $x^+ = Ax + Bu$) y = Cx + Du

Define observer dynamics:

$$\dot{\hat{x}} = A\hat{x} + Bu - \boldsymbol{L}(y - \hat{y}),$$

$$\hat{y} = C\hat{x} + Du.$$

• output injection term $L \in \mathbb{R}^{n \times p}$

- Estimation error: $e = x \hat{x}$
- Error dynamics:

$$\dot{e} = \dot{x} - \dot{\hat{x}}$$

= $Ax + Bu - A\hat{x} - Bu + L(Cx + Du - C\hat{x} - Du)$
= $Ae + LCe = (A + LC)e$

- $\rightsquigarrow~$ The error dynamics are independent of u
- A + LC has the same eigenvalues as $(A + LC)^T = A^T + C^T L^T$
- → If (A, C) is observable, the poles of A + LC can be placed arbitrarily, i.e., L can be defined such that A + LC is Hurwitz.
- $\stackrel{\rightsquigarrow}{\to} \mbox{ If } (A,C) \mbox{ is detectable, then there exists } L \mbox{ such that } A+LC \mbox{ is Hurwitz.}$
- See pole placement
- x can be approximated through \hat{x}

 $\dot{x} = Ax + Bu,$ $x(0) \in \mathbb{R}^n,$ (or $x^+ = Ax + Bu$) y = Cx + Du

Define observer dynamics:

$$\dot{\hat{x}} = A\hat{x} + Bu - \boldsymbol{L}(y - \hat{y}),$$

$$\hat{y} = C\hat{x} + Du.$$

• output injection term $L \in \mathbb{R}^{n \times p}$

- Estimation error: $e = x \hat{x}$
- Error dynamics:

$$\dot{e} = \dot{x} - \dot{\hat{x}}$$

= $Ax + Bu - A\hat{x} - Bu + L(Cx + Du - C\hat{x} - Du)$
= $Ae + LCe = (A + LC)e$

- $\rightsquigarrow~$ The error dynamics are independent of u
- A + LC has the same eigenvalues as $(A + LC)^T = A^T + C^T L^T$
- → If (A, C) is observable, the poles of A + LC can be placed arbitrarily, i.e., L can be defined such that A + LC is Hurwitz.
- \leadsto If (A,C) is detectable, then there exists L such that A+LC is Hurwitz.
- See pole placement
- x can be approximated through \hat{x}
- Controller design $u = K\hat{x}$?

Luenberger Observers & Controller design

Consider

$$\dot{x} = Ax + Bu, \qquad x(0) \in \mathbb{R}^n \\ y = Cx + Du$$

Define observer dynamics:

$$\dot{\hat{x}} = A\hat{x} + Bu - \mathbf{L}(y - \hat{y}),$$

$$\hat{y} = C\hat{x} + Du.$$

Error dynamics:

$$\dot{e} = (A + LC)e$$

Controller design:

 $u(\hat{x}) = K\hat{x}, \qquad K \in \mathbb{R}^{m \times n}$

Luenberger Observers & Controller design

Consider

$$\dot{x} = Ax + Bu, \qquad x(0) \in \mathbb{R}^n$$

 $y = Cx + Du$

Define observer dynamics:

$$\dot{\hat{x}} = A\hat{x} + Bu - \mathbf{L}(y - \hat{y}),$$

$$\hat{y} = C\hat{x} + Du.$$

Error dynamics:

$$\dot{e} = (A + LC)e$$

Controller design:

$$u(\hat{x}) = K\hat{x}, \qquad K \in \mathbb{R}^{m \times n}$$

We can rewrite the plant dynamics:

$$\dot{x} = Ax + Bu(\hat{x}) = Ax + BK\hat{x}$$
$$= Ax + BK(x + e)$$
$$= (A + BK)x + BKe.$$

$$\dot{x} = Ax + Bu, \qquad x(0) \in \mathbb{R}^n$$

 $y = Cx + Du$

Define observer dynamics:

$$\dot{\hat{x}} = A\hat{x} + Bu - \boldsymbol{L}(y - \hat{y}),$$

$$\hat{y} = C\hat{x} + Du.$$

Error dynamics:

$$\dot{e} = (A + LC)e$$

Controller design:

$$u(\hat{x}) = K\hat{x}, \qquad K \in \mathbb{R}^{m \times n}$$

We can rewrite the plant dynamics:

$$\begin{split} \dot{x} &= Ax + Bu(\hat{x}) = Ax + BK\hat{x} \\ &= Ax + BK(x+e) \\ &= (A+BK)x + BKe. \end{split}$$

Overall closed loop system

$\begin{bmatrix} \dot{x} \end{bmatrix}$	Γ	A + BK	BK	٦ [x
ė	= [0	A + LC		e

- If (A, B) is controllable and (A, C) is observable, we can place the poles of the closed-loop system arbitrarily by choosing K and L.
- The convergence $|x(t)| \to 0$ and $|e(t)| \to 0$ for $t \to \infty$ can be guaranteed by designing L and K individually. \rightsquigarrow *separation principle*
- (The separation principle is only true for the asymptotic behavior)

$$\dot{x} = Ax + Bu, \qquad x(0) \in \mathbb{R}^n$$

 $y = Cx + Du$

Define observer dynamics:

$$\dot{\hat{x}} = A\hat{x} + Bu - \boldsymbol{L}(y - \hat{y}),$$

$$\hat{y} = C\hat{x} + Du.$$

Error dynamics:

$$\dot{e} = (A + LC)e$$

Controller design:

$$u(\hat{x}) = K\hat{x}, \qquad K \in \mathbb{R}^{m \times n}$$

We can rewrite the plant dynamics:

$$\begin{split} \dot{x} &= Ax + Bu(\hat{x}) = Ax + BK\hat{x} \\ &= Ax + BK(x+e) \\ &= (A+BK)x + BKe. \end{split}$$

Overall closed loop system

$\begin{bmatrix} \dot{x} \end{bmatrix}$	ſ	A + BK	BK]	$\begin{bmatrix} x \end{bmatrix}$	1
ė	= [0	A + LC		e	

- If (A, B) is controllable and (A, C) is observable, we can place the poles of the closed-loop system arbitrarily by choosing K and L.
- The convergence $|x(t)| \to 0$ and $|e(t)| \to 0$ for $t \to \infty$ can be guaranteed by designing L and K individually. \rightsquigarrow *separation principle*
- (The separation principle is only true for the asymptotic behavior)

Alternative representation in terms of x and \hat{x} :

$$\left[\begin{array}{c} \dot{x} \\ \dot{\hat{x}} \end{array} \right] = \left[\begin{array}{c} A & BK \\ -LC & A+BK+LC \end{array} \right] \left[\begin{array}{c} x \\ \hat{x} \end{array} \right]$$

 \leadsto While the separation principle is not visible the dynamics capture the same information.

Luenberger Observers & Controller design (Linearization pendulum; upright position)

Example

• Linearization of the pendulum on a cart in the upright position

$$A = \begin{bmatrix} 0 & 0 & 1.00 & 0 \\ 0 & 0 & 0 & 1.00 \\ 0 & 3.27 & -0.07 & -0.03 \\ 0 & 6.54 & -0.03 & -0.07 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ 0.67 \\ 0.33 \end{bmatrix}$$

with output

$$C = \left[\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right];$$

i.e., only the position of the cart and the angle of the pendulum are available as measurements.

Feedback gain

$$K = \begin{bmatrix} 7.34 & -140.84 & 15.47 & -60.54 \end{bmatrix}$$

ensures that the closed loop matrix A + BK is Hurwitz and has the eigenvalues $\{-4, -3, -2, -1\}$.

Initial conditions:

$$x_0 = [1, 1, 1, 1]^T, \qquad \hat{x} = [1, 1, 0, 0]^T$$

The observer gain

$$L = \begin{bmatrix} -2.90 & -1.07 \\ -3.75 & -6.49 \\ -2.58 & -6.96 \\ -8.53 & -16.64 \end{bmatrix}$$

ensures that A + LC has the same eigenvalues as A + BK.

Luenberger Observers & Controller design (Linearization pendulum; upright position)

Example

• Linearization of the pendulum on a cart in the upright position

$$A = \begin{bmatrix} 0 & 0 & 1.00 & 0 \\ 0 & 0 & 0 & 1.00 \\ 0 & 3.27 & -0.07 & -0.03 \\ 0 & 6.54 & -0.03 & -0.07 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ 0.67 \\ 0.33 \end{bmatrix}$$

with output

$$C = \left[\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right];$$

i.e., only the position of the cart and the angle of the pendulum are available as measurements.

Feedback gain

 $K = \begin{bmatrix} 7.34 & -140.84 & 15.47 & -60.54 \end{bmatrix}$

ensures that the closed loop matrix A + BK is Hurwitz and has the eigenvalues $\{-4, -3, -2, -1\}$.

Initial conditions:

$$x_0 = [1, 1, 1, 1]^T, \qquad \hat{x} = [1, 1, 0, 0]^T$$

The observer gain

$$L = \begin{bmatrix} -2.90 & -1.07 \\ -3.75 & -6.49 \\ -2.58 & -6.96 \\ -8.53 & -16.64 \end{bmatrix}$$

ensures that A + LC has the same eigenvalues as A + BK.

Luenberger Observers & Controller design (Linearization pendulum; upright position)

Example

• Linearization of the pendulum on a cart in the upright position

$$A = \begin{bmatrix} 0 & 0 & 1.00 & 0 \\ 0 & 0 & 0 & 1.00 \\ 0 & 3.27 & -0.07 & -0.03 \\ 0 & 6.54 & -0.03 & -0.07 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ 0.67 \\ 0.33 \end{bmatrix}$$

with output

$$C = \left[\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right];$$

i.e., only the position of the cart and the angle of the pendulum are available as measurements.

Feedback gain

 $K = \begin{bmatrix} 7.34 & -140.84 & 15.47 & -60.54 \end{bmatrix}$

ensures that the closed loop matrix A + BK is Hurwitz and has the eigenvalues $\{-4, -3, -2, -1\}$.

Initial conditions:

$$x_0 = [1, 1, 1, 1]^T, \qquad \hat{x} = [1, 1, 0, 0]^T$$

The observer gain

$$L = \begin{bmatrix} -2.90 & -1.07 \\ -3.75 & -6.49 \\ -2.58 & -6.96 \\ -8.53 & -16.64 \end{bmatrix}$$

ensures that A + LC has the same eigenvalues as A + BK.

Note that:

• The convergence is independent of the initial condition x_0 , \hat{x}_0 since for linear systems local results are also global and the stability properties of the linear system solely depend on the properties of the closed loop matrix.

Section 2

Minimum Energy Estimator (Continuous time setting)

Recall

- We have discussed optimal control for linear systems
- Can we derive an optimal estimator (in terms of minimal energy)?

Recall

- We have discussed optimal control for linear systems
- Can we derive an optimal estimator (in terms of minimal energy)?
- Consider a perturbed linear system:

$$\dot{x} = Ax + Bu + \bar{B}v$$
$$y = Cx + Du + w$$

- *disturbance*: $v(\cdot) : \mathbb{R} \to \mathbb{R}^q$ (model uncertainty)
- measurement noise: $w(\cdot) : \mathbb{R} \to \mathbb{R}^p$ (depending on the sensors)

Recall

- We have discussed optimal control for linear systems
- Can we derive an optimal estimator (in terms of minimal energy)?
- Consider a perturbed linear system:

$$\dot{x} = Ax + Bu + \bar{B}v$$
$$y = Cx + Du + w$$

- *disturbance*: $v(\cdot) : \mathbb{R} \to \mathbb{R}^q$ (model uncertainty)
- measurement noise: $w(\cdot) : \mathbb{R} \to \mathbb{R}^p$ (depending on the sensors)

The *minimum energy estimation* problem:

• For given $u(\cdot)$, $y(\cdot)$, find $\bar{x}: \mathbb{R}_{\leq t_0} \to \mathbb{R}^n$ for $t_0 \geq 0$, which satisfies the dynamics

$$\dot{\bar{x}} = A\bar{x} + Bu + \bar{B}v$$
$$y = C\bar{x} + Du + w$$

an which minimizes the cost function

$$J_{\text{MEE}}(\bar{x}(t_0), v(\cdot)) = \int_{-\infty}^{t_0} (\tau)^T Q w(\tau) + v(\tau)^T R v(\tau) d\tau$$

Recall

- We have discussed optimal control for linear systems
- Can we derive an optimal estimator (in terms of minimal energy)?
- Consider a perturbed linear system:

$$\dot{x} = Ax + Bu + \bar{B}v$$
$$y = Cx + Du + w$$

- disturbance: $v(\cdot) : \mathbb{R} \to \mathbb{R}^q$ (model uncertainty)
- measurement noise: $w(\cdot) : \mathbb{R} \to \mathbb{R}^p$ (depending on the sensors)

The minimum energy estimation problem:

• For given $u(\cdot)$, $y(\cdot)$, find $\bar{x}: \mathbb{R}_{\leq t_0} \to \mathbb{R}^n$ for $t_0 \geq 0$, which satisfies the dynamics

 $\dot{\bar{x}} = A\bar{x} + Bu + \bar{B}v$ $y = C\bar{x} + Du + w$

an which minimizes the cost function

$$J_{\text{MEE}}(\bar{x}(t_0), v(\cdot)) = \int_{-\infty}^{t_0} (\tau)^T Q w(\tau) + v(\tau)^T R v(\tau) d\tau$$

Note that:

- Design parameters: $Q \in \mathcal{S}_{>0}^p$, $R \in \mathcal{S}_{>0}^q$
- $J_{\text{MEE}}(\bar{x}(t_0), v(\cdot))$ is a function of $v(\cdot)$ but not $w(\cdot)$:

$$J_{\text{MEE}}(\bar{x}(t_0), v(\cdot)) = \int_{-\infty}^{t_0} v^T R v$$
$$+ (C\bar{x} + Du - y)^T Q (C\bar{x} + Du - y) d\tau$$

Given past $u(\cdot)$ and $y(\cdot)$, the optimization problem aims to find the disturbance $v(\cdot)$ with minimum energy and an estimated state $\bar{x}(t_0)$ that explains the observed inputs and outputs.

Recall

- We have discussed optimal control for linear systems
- Can we derive an optimal estimator (in terms of minimal energy)?
- Consider a perturbed linear system:

$$\begin{split} \dot{x} &= Ax + Bu + \bar{B}v \\ y &= Cx + Du + w \end{split}$$

- disturbance: $v(\cdot) : \mathbb{R} \to \mathbb{R}^q$ (model uncertainty)
- measurement noise: $w(\cdot) : \mathbb{R} \to \mathbb{R}^p$ (depending on the sensors)

The *minimum energy estimation* problem:

• For given $u(\cdot)$, $y(\cdot)$, find $\bar{x}: \mathbb{R}_{\leq t_0} \to \mathbb{R}^n$ for $t_0 \geq 0$, which satisfies the dynamics

$$\dot{\bar{x}} = A\bar{x} + Bu + \bar{B}v$$
$$y = C\bar{x} + Du + w$$

an which minimizes the cost function

$$J_{\text{MEE}}(\bar{x}(t_0), v(\cdot)) = \int_{-\infty}^{t_0} (\tau)^T Q w(\tau) + v(\tau)^T R v(\tau) d\tau$$

Note that:

- Design parameters: $Q \in \mathcal{S}_{>0}^p$, $R \in \mathcal{S}_{>0}^q$
- $J_{\text{MEE}}(\bar{x}(t_0), v(\cdot))$ is a function of $v(\cdot)$ but not $w(\cdot)$:

$$J_{\text{MEE}}(\bar{x}(t_0), v(\cdot)) = \int_{-\infty}^{t_0} v^T R v$$
$$+ (C\bar{x} + Du - y)^T Q (C\bar{x} + Du - y) d\tau$$

- \rightsquigarrow Given past $u(\cdot)$ and $y(\cdot)$, the optimization problem aims to find the disturbance $v(\cdot)$ with minimum energy and an estimated state $\bar{x}(t_0)$ that explains the observed inputs and outputs.
- To ensure that the problem is well-defined we assume

 $ar{x}(t)
ightarrow 0, \; u(t)
ightarrow 0, \; w(t)
ightarrow 0, \; y(t)
ightarrow 0 \; {
m for} \; t
ightarrow -\infty$

- Q large: penalize noise $w(\cdot)$; neglect disturbance
- R large: penalize disturbance $v(\cdot)$; neglect noise

Optimization problem

$$V_{\text{MEE}}(\bar{x}_0) = \min_{v(\cdot):\mathbb{R}\to\mathbb{R}^q} J_{\text{MEE}}(\bar{x}_0, v(\cdot))$$

subject to $\dot{x} = Ax + Bu + \bar{B}v$

Additionally define

 $\bar{\mathcal{X}} = \{ x : \mathbb{R}_{\leq t_0} \to \mathbb{R}^n \} \quad \text{and} \quad \mathcal{V} = \{ v : \mathbb{R}_{\leq t_0} \to \mathbb{R}^q \}.$

Optimization problem

$$V_{\text{MEE}}(\bar{x}_0) = \min_{v(\cdot):\mathbb{R} \to \mathbb{R}^q} J_{\text{MEE}}(\bar{x}_0, v(\cdot))$$

subject to $\dot{x} = Ax + Bu + \bar{B}u$

Additionally define

I

 $\bar{\mathcal{X}} = \{ x : \mathbb{R}_{\leq t_0} \to \mathbb{R}^n \}$ and $\mathcal{V} = \{ v : \mathbb{R}_{\leq t_0} \to \mathbb{R}^q \}.$

Definition (Feedback invariant)

Consider the system

$$\begin{split} \dot{\bar{x}} &= A\bar{x} + Bu + \bar{B}v \\ y &= C\bar{x} + Du + w, \end{split}$$
 $t_0 \in \mathbb{R}_{\geq 0} \text{ and fixed } u(\cdot) : \mathbb{R}_{< t_0} \to \mathbb{R}^m, \, y(\cdot) : \mathbb{R}_{< t_0} \to \mathbb{R}^p. \end{split}$ A functional $H : \bar{\mathcal{X}} \times \mathcal{V} \to \mathbb{R}$ is called feedback invariant if for all solution pairs $(\bar{x}_1(\cdot), v_1(\cdot)), (\bar{x}_2(\cdot), v_2(\cdot)) \in \bar{\mathcal{X}} \times \mathcal{V}$ with $\bar{x}_1(t_0) = \bar{x}_2(t_0)$ the equation

$$H(\bar{x}_1(\cdot), v_1(\cdot)) = H(\bar{x}_2(\cdot), v_2(\cdot))$$

holds.

Optimization problem

$$V_{\text{MEE}}(\bar{x}_0) = \min_{v(\cdot):\mathbb{R} \to \mathbb{R}^q} J_{\text{MEE}}(\bar{x}_0, v(\cdot))$$

subject to $\dot{x} = Ax + Bu + \bar{B}v$

Additionally define

 $\bar{\mathcal{X}} = \{ x : \mathbb{R}_{\leq t_0} \to \mathbb{R}^n \}$ and $\mathcal{V} = \{ v : \mathbb{R}_{\leq t_0} \to \mathbb{R}^q \}.$

Definition (Feedback invariant)

Consider the system

$$\begin{split} \dot{\bar{x}} &= A\bar{x} + Bu + \bar{B}v \\ y &= C\bar{x} + Du + w, \end{split}$$
 $t_0 \in \mathbb{R}_{\geq 0} \text{ and fixed } u(\cdot) : \mathbb{R}_{< t_0} \to \mathbb{R}^m, y(\cdot) : \mathbb{R}_{< t_0} \to \mathbb{R}^p. \end{split}$ A functional $H : \bar{\mathcal{X}} \times \mathcal{V} \to \mathbb{R}$ is called feedback invariant if for all solution pairs $(\bar{x}_1(\cdot), v_1(\cdot)), (\bar{x}_2(\cdot), v_2(\cdot)) \in \bar{\mathcal{X}} \times \mathcal{V}$ with $\bar{x}_1(t_0) = \bar{x}_2(t_0)$ the equation

$$H(\bar{x}_1(\cdot), v_1(\cdot)) = H(\bar{x}_2(\cdot), v_2(\cdot))$$

Theorem (Feedback invariant)

Consider the linear system for a $y(\cdot) : \mathbb{R}_{\leq t_0} \to \mathbb{R}^p$ and $u(\cdot) : \mathbb{R}_{\leq t_0} \to \mathbb{R}^m$ for $t_0 > 0$. Then, for every symmetric matrix $P \in S^n$, differentiable signal $\beta(\cdot) : \mathbb{R}_{\leq t_0} \to \mathbb{R}^n$, and a scalar $H_0 \in \mathbb{R}^n$ (which does not depend on $\bar{x}(\cdot)$ and $v(\cdot)$), the functional

$$H(\bar{x}(\cdot), v(\cdot)) = H_0$$

+ $\int_{-\infty}^{t_0} \left(A\bar{x} + Bu + \bar{B}v - \dot{\beta}\right)^T P(\bar{x} - \beta)$
+ $(\bar{x} - \beta)^T P\left(A\bar{x} + Bu + \bar{B}v - \dot{\beta}\right) d\tau$
- $(\bar{x}(t_0) - \beta(t_0))^T P(\bar{x}(t_0) - \beta(t_0))$

is a feedback invariant as long as $\lim_{t \to -\infty} (\bar{x}(t) - \beta(t)) = 0.$

holds.

• Perturbed linear system:

$$\dot{x} = Ax + Bu + \bar{B}v$$
$$y = Cx + Du + w$$

Optimization problem

$$V_{\text{MEE}}(\bar{x}_0) = \min_{v(\cdot):\mathbb{R}\to\mathbb{R}^q} J_{\text{MEE}}(\bar{x}_0, v(\cdot))$$

subject to $\dot{x} = Ax + Bu + \bar{B}v$

- \rightsquigarrow 'Optimal disturbance' $v(\cdot) : \mathbb{R} \to \mathbb{R}^q$:
- 'Optimal disturbance' defines 'optimal estimated dynamics':

$$\begin{split} \dot{\bar{x}} &= A\bar{x} + Bu + \bar{B}v \\ y &= C\bar{x} + Du + w \end{split}$$

• Perturbed linear system:

$$\dot{x} = Ax + Bu + \bar{B}v$$
$$y = Cx + Du + w$$

Optimization problem

$$V_{\text{MEE}}(\bar{x}_0) = \min_{v(\cdot):\mathbb{R} \to \mathbb{R}^q} J_{\text{MEE}}(\bar{x}_0, v(\cdot))$$

subject to $\dot{x} = Ax + Bu + \bar{B}v$

- \rightsquigarrow 'Optimal disturbance' $v(\cdot) : \mathbb{R} \to \mathbb{R}^q$:
- 'Optimal disturbance' defines 'optimal estimated dynamics':

$$\begin{split} \dot{\bar{x}} &= A\bar{x} + Bu + \bar{B}v \\ y &= C\bar{x} + Du + w \end{split}$$

Theorem (The minimum energy estimator)

- Consider the perturbed linear system and assume that (A, \bar{B}) is controllable and (A, C) is detectable.
- Consider the optimization problem where the cost function is defined through positive definite matrices Q ∈ S^p_{≥0} and R ∈ S^q_{≥0}.
- Then there exists $S \in S_{>0}^n$ to the dual algebraic Riccati equation

 $AS + SA^T + \bar{B}R^{-1}\bar{B}^T - SC^TQCS = 0$

such that A - LC is Hurwitz, where $L = SC^TQ$.

• The minimum energy estimator is given by

 $\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x} - Du)$

and the initial condition $\hat{x}(t_0) = \bar{x}_0$, $t_0 \in \mathbb{R}_{\geq 0}$.

Example (Pendulum)

The linearization at the stable equilibrium $[x_1^e, x_2^e]^T = [\theta^e, \dot{\theta}^e]^T = [\pi, 0]^T;$ $\dot{x} = Ax + Bu + \bar{B}v$ y = Cx + w $A = \begin{bmatrix} 0 & 1\\ -\frac{mg\ell}{1+\sigma^{\ell^2}} & -\frac{\gamma}{1+\sigma^{\ell^2}} \end{bmatrix}, B = \begin{bmatrix} 0\\ \frac{\ell}{1+\sigma^{\ell^2}} \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}$ $\bar{B} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, Q = 1, R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Constants: $m = \ell = 1, J = 0, q = 9.81$, and $\gamma = 0.1$. Observer gain: $L = \begin{bmatrix} 0.9548\\ -0.0441 \end{bmatrix}$

Eigenvalues of A - LC: $\lambda_{1,2} = -0.5274 \pm 3.0957j$ Initialization: $x_0 = [1, 1]^T$ and $\hat{x}_0 = [0, 0]^T$

Example (Pendulum)

The linearization at the stable equilibrium $[x_1^e, x_2^e]^T = [\theta^e, \dot{\theta}^e]^T = [\pi, 0]^T;$ $\dot{x} = Ax + Bu + \bar{B}v$ y = Cx + w $A = \begin{bmatrix} 0 & 1\\ -\frac{mg\ell}{1+m\ell^2} & -\frac{\gamma}{1+m\ell^2} \end{bmatrix}, B = \begin{bmatrix} 0\\ \frac{\ell}{1+m\ell^2} \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}$ $\bar{B} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ Q = 1, \ R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Constants: $m = \ell = 1, J = 0, q = 9.81$, and $\gamma = 0.1$. Observer gain: $L = \begin{bmatrix} 0.9548\\ -0.0441 \end{bmatrix}$ Eigenvalues of A - LC: $\lambda_{1,2} = -0.5274 \pm 3.0957j$ Initialization: $x_0 = [1, 1]^T$ and $\hat{x}_0 = [0, 0]^T$

Concluding remarks:

- Here, we have derived the *minimum energy estimator* using a *deterministic setting*
- In the *stochastic setting* the minimum energy estimator is known as (cont. time) Kalman filter.
- Under certain assumptions on disturbances v(t), w(t) in the system dynamics

 $\dot{x} = Ax + Bu + \bar{B}v$ y = Cx + Du + w

equivalences between the minimum energy estimator and the Kalman filter can be derived.

Concluding remarks:

- Here, we have derived the *minimum energy estimator* using a *deterministic setting*
- In the *stochastic setting* the minimum energy estimator is known as (cont. time) Kalman filter.
- Under certain assumptions on disturbances v(t), w(t) in the system dynamics

 $\dot{x} = Ax + Bu + \bar{B}v$ y = Cx + Du + w

equivalences between the minimum energy estimator and the Kalman filter can be derived.

• In particular, assume $v(\cdot)$ and $w(\cdot)$ represent functions of zero-mean Gaussian white noise with covariance matrices satisfying

$$\begin{split} \mathbf{E}[v(t)v(\tau)^T] &= \delta(t-\tau)R^{-1},\\ \mathbf{E}[w(t)w(\tau)^T] &= \delta(t-\tau)Q^{-1}, \end{split}$$

for all $t, \tau \in \mathbb{R}$ and $Q \in \mathcal{S}_{>0}^p$, $R \in \mathcal{S}_{>0}^q$.

- *expected value*: E[·]:
- Dirac delta function: $\delta : \mathbb{R} \to \mathbb{R} \cup \{\infty\}$

$$\delta(t) = \left\{ \begin{array}{cc} \infty, & t=0 \\ 0, & t\neq 0 \end{array} \right. \qquad \text{and} \qquad \int_{-\infty}^\infty \delta(t) dt = 1.$$

Concluding remarks:

- Here, we have derived the *minimum energy estimator* using a *deterministic setting*
- In the *stochastic setting* the minimum energy estimator is known as (cont. time) Kalman filter.
- Under certain assumptions on disturbances v(t), w(t) in the system dynamics

$$\begin{split} \dot{x} &= Ax + Bu + \bar{B}v \\ y &= Cx + Du + w \end{split}$$

equivalences between the minimum energy estimator and the Kalman filter can be derived.

• In particular, assume $v(\cdot)$ and $w(\cdot)$ represent functions of zero-mean Gaussian white noise with covariance matrices satisfying

$$E[v(t)v(\tau)^{T}] = \delta(t-\tau)R^{-1},$$

$$E[w(t)w(\tau)^{T}] = \delta(t-\tau)Q^{-1},$$

for all $t, \tau \in \mathbb{R}$ and $Q \in \mathcal{S}_{>0}^p$, $R \in \mathcal{S}_{>0}^q$.

 $\label{eq:constraint} \bullet \mbox{ Additionally, } {\rm E}[v(t)w(\tau)^T] = 0 \qquad \forall \ t,\tau \in \mathbb{R}.$ Here:

- *expected value*: E[·]:
- Dirac delta function: $\delta : \mathbb{R} \to \mathbb{R} \cup \{\infty\}$

$$\delta(t) = \left\{ \begin{array}{cc} \infty, & t=0 \\ 0, & t\neq 0 \end{array} \right. \qquad \text{and} \qquad \int_{-\infty}^\infty \delta(t) dt = 1.$$

Under these conditions

• \hat{x} obtained through the minimum energy estimator minimizes the expected value

$$\lim_{t \to \infty} \mathbf{E}\left[|x(t) - \hat{x}(t)|^2\right] \tag{1}$$

 \rightsquigarrow The Kalman filter is derived based on (1)

Section 3

The discrete time Kalman filter

Consider

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) + \bar{B}v(k),\\ y(k) &= Cx(k) + w(k). \end{aligned}$$

• $(v(k))_{k\in\mathbb{N}}\subset\mathbb{R}^q$, $(w(k))_{k\in\mathbb{N}}\subset\mathbb{R}^p$: unknown disturbances and measurement noise.

Goal: For a finite set of measurements $y(0),\ldots,y(k),$ define a state observer

$$\begin{split} \hat{x}(k+1) &= A\hat{x}(k) + Bu(k) + \bar{B}\hat{v}(k), \quad \hat{x}(0) = \hat{x}_0 \\ y(k) &= C\hat{x}(k) + \hat{w}(k) \end{split}$$

and sequences $\hat{v}(\cdot)$, $\hat{w}(\cdot)$, to be determined.

v̂(k), ŵ(k) will be defined such that x̂(k) is optimal w.r.t. assumptions on v(·) and w(·), and w.r.t. the measured output y(0), ..., y(k).

Consider

$$\begin{split} x(k+1) &= Ax(k) + Bu(k) + \bar{B}v(k),\\ y(k) &= Cx(k) + w(k). \end{split}$$

• $(v(k))_{k\in\mathbb{N}}\subset\mathbb{R}^q, (w(k))_{k\in\mathbb{N}}\subset\mathbb{R}^p$: unknown disturbances and measurement noise.

Goal: For a finite set of measurements $y(0),\ldots,y(k),$ define a state observer

$$\begin{aligned} \hat{x}(k+1) &= A\hat{x}(k) + Bu(k) + \bar{B}\hat{v}(k), \quad \hat{x}(0) = \hat{x}_0 \\ y(k) &= C\hat{x}(k) + \hat{w}(k) \end{aligned}$$

and sequences $\hat{v}(\cdot)$, $\hat{w}(\cdot)$, to be determined.

- v̂(k), ŵ(k) will be defined such that x̂(k) is optimal w.r.t. assumptions on v(·) and w(·), and w.r.t. the measured output y(0), ..., y(k).
- Variance: $Var(\cdot)$
- Expected value: E[·]

Assumption

$$\begin{split} & v:\mathbb{N}\to\mathbb{R}^q,\,w:\mathbb{N}\to\mathbb{R}^p \text{ sequences of zero-mean}\\ & \text{Gaussian white noise such that } \operatorname{Var}(v(k))=Q^{-1}\in\mathcal{S}^q_{>0}\\ & \text{and }\operatorname{Var}(w(k))=R^{-1}\in\mathcal{S}^p_{>0} \text{ and }\operatorname{E}\left[v(k)w(j)^T\right]=0 \text{ for all } k,j\in\mathbb{N}_0.\\ & \text{Additionally, the initial state is assumed to be independent}\\ & \text{of }v(k) \text{ and }w(k) \text{ in the sense that }\operatorname{E}\left[x_0v(k)^T\right]=0 \text{ and}\\ & \operatorname{E}\left[x_0w(k)^T\right]=0 \text{ for all } k\in\mathbb{N}_0. \end{split}$$

Consider

$$\begin{split} x(k+1) &= Ax(k) + Bu(k) + \bar{B}v(k),\\ y(k) &= Cx(k) + w(k). \end{split}$$

• $(v(k))_{k\in\mathbb{N}}\subset\mathbb{R}^q, (w(k))_{k\in\mathbb{N}}\subset\mathbb{R}^p$: unknown disturbances and measurement noise.

Goal: For a finite set of measurements $y(0), \ldots, y(k)$, define a state observer

$$\begin{aligned} \hat{x}(k+1) &= A\hat{x}(k) + Bu(k) + \bar{B}\hat{v}(k), \quad \hat{x}(0) = \hat{x}_0 \\ y(k) &= C\hat{x}(k) + \hat{w}(k) \end{aligned}$$

and sequences $\hat{v}(\cdot)$, $\hat{w}(\cdot)$, to be determined.

- v̂(k), ŵ(k) will be defined such that x̂(k) is optimal w.r.t. assumptions on v(·) and w(·), and w.r.t. the measured output y(0), ..., y(k).
- Variance: $Var(\cdot)$
- Expected value: E[·]

Assumption

$$\begin{split} & v:\mathbb{N}\to\mathbb{R}^q,\,w:\mathbb{N}\to\mathbb{R}^p \text{ sequences of zero-mean}\\ & \text{Gaussian white noise such that } \operatorname{Var}(v(k))=Q^{-1}\in\mathcal{S}^q_{>0}\\ & \text{and } \operatorname{Var}(w(k))=R^{-1}\in\mathcal{S}^p_{>0} \text{ and } \operatorname{E}\left[v(k)w(j)^T\right]=0 \text{ for all } k,j\in\mathbb{N}_0.\\ & \text{Additionally, the initial state is assumed to be independent}\\ & \text{of }v(k) \text{ and }w(k) \text{ in the sense that } \operatorname{E}\left[x_0v(k)^T\right]=0 \text{ and}\\ & \operatorname{E}\left[x_0w(k)^T\right]=0 \text{ for all } k\in\mathbb{N}_0. \end{split}$$

Additionally, assume that

- (A, B, C) is controllable and observable
- A is nonsingular (if not, define $u = Kx + \tilde{u}$ with A + BK nonsingular)

Consider

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) + \bar{B}v(k), \\ y(k) &= Cx(k) + w(k). \end{aligned}$$

- $(v(k))_{k\in\mathbb{N}}\subset\mathbb{R}^q$, $(w(k))_{k\in\mathbb{N}}\subset\mathbb{R}^p$: unknown disturbances and measurement noise.
- Goal: For a finite set of measurements $y(0), \ldots, y(k)$, define a state observer

$$\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + \bar{B}\hat{v}(k), \quad \hat{x}(0) = \hat{x}_0$$
$$y(k) = C\hat{x}(k) + \hat{w}(k)$$

and sequences $\hat{v}(\cdot)$, $\hat{w}(\cdot)$, to be determined.

- v̂(k), ŵ(k) will be defined such that x̂(k) is optimal w.r.t. assumptions on v(·) and w(·), and w.r.t. the measured output y(0), ..., y(k).
- Variance: $Var(\cdot)$
- expectation: E[·]

Split the estimated state x̂ = x̂_d + x̂_s (deterministic and stochastic component)
 x̂_d(k + 1) = Ax̂_d(k) + Bu(k), x̂_{d,0} = x̂₀

 $\hat{y}_d(k) = C\hat{x}_d(k)$

and

$$\begin{split} \hat{x}_{s}(k+1) &= A \hat{x}_{s}(k) + \bar{B} \hat{v}(k) \qquad \hat{x}_{s,0} = 0 \\ \hat{y}_{s}(k) &= C \hat{x}_{s}(k) + \hat{w}(k), \end{split}$$

Consider

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) + \bar{B}v(k), \\ y(k) &= Cx(k) + w(k). \end{aligned}$$

- $(v(k))_{k\in\mathbb{N}}\subset\mathbb{R}^q$, $(w(k))_{k\in\mathbb{N}}\subset\mathbb{R}^p$: unknown disturbances and measurement noise.
- Goal: For a finite set of measurements $y(0), \ldots, y(k)$, define a state observer

$$\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + \bar{B}\hat{v}(k), \quad \hat{x}(0) = \hat{x}_0$$
$$y(k) = C\hat{x}(k) + \hat{w}(k)$$

and sequences $\hat{v}(\cdot)$, $\hat{w}(\cdot)$, to be determined.

- v̂(k), ŵ(k) will be defined such that x̂(k) is optimal w.r.t. assumptions on v(·) and w(·), and w.r.t. the measured output y(0), ..., y(k).
- Variance: $Var(\cdot)$
- expectation: E[·]

Split the estimated state x̂ = x̂_d + x̂_s (deterministic and stochastic component)
 x̂_d(k + 1) = Ax̂_d(k) + Bu(k), x̂_{d,0} = x̂₀

 $\hat{y}_d(k) = C\hat{x}_d(k)$

and

$$\begin{split} \hat{x}_{s}(k+1) &= A \hat{x}_{s}(k) + \bar{B} \hat{v}(k) \qquad \hat{x}_{s,0} = 0 \\ \hat{y}_{s}(k) &= C \hat{x}_{s}(k) + \hat{w}(k), \end{split}$$

Consider

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) + \bar{B}v(k),\\ y(k) &= Cx(k) + w(k). \end{aligned}$$

- $(v(k))_{k\in\mathbb{N}}\subset\mathbb{R}^q$, $(w(k))_{k\in\mathbb{N}}\subset\mathbb{R}^p$: unknown disturbances and measurement noise.
- Goal: For a finite set of measurements $y(0), \ldots, y(k)$, define a state observer

$$\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + \bar{B}\hat{v}(k), \quad \hat{x}(0) = \hat{x}_0$$

 $y(k) = C\hat{x}(k) + \hat{w}(k)$

and sequences $\hat{v}(\cdot)$, $\hat{w}(\cdot)$, to be determined.

- $\hat{v}(k)$, $\hat{w}(k)$ will be defined such that $\hat{x}(k)$ is optimal w.r.t. assumptions on $v(\cdot)$ and $w(\cdot)$, and w.r.t. the measured output $y(0), \ldots, y(k)$.
- Variance: $Var(\cdot)$
- expectation: E[·]

• Split the estimated state $\hat{x} = \hat{x}_d + \hat{x}_s$ (deterministic and stochastic component)

$$\begin{split} \hat{x}_d(k+1) &= A \hat{x}_d(k) + B u(k), \qquad \hat{x}_{d,0} = \hat{x}_0 \\ \hat{y}_d(k) &= C \hat{x}_d(k) \end{split}$$

and

$$\begin{split} \hat{x}_{s}(k+1) &= A\hat{x}_{s}(k) + \bar{B}\hat{v}(k) \qquad \hat{x}_{s,0} = 0 \\ \hat{y}_{s}(k) &= C\hat{x}_{s}(k) + \hat{w}(k), \end{split}$$

• For given $\hat{x}_d(0) = \hat{x}_{d,0}$ and $(u(k))_{k \in \mathbb{N}}$ it holds that

$$\hat{x}_d(k) = A^k \hat{x}_{d,0} + \sum_{i=1}^k A^{k-i} Bu(i-1) \quad k \in \mathbb{N}$$

• \hat{x}_s cannot be computed because it depends on $\hat{v}(\cdot)$ and $\hat{w}(\cdot).$

Consider

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) + \bar{B}v(k),\\ y(k) &= Cx(k) + w(k). \end{aligned}$$

- $(v(k))_{k\in\mathbb{N}}\subset\mathbb{R}^q$, $(w(k))_{k\in\mathbb{N}}\subset\mathbb{R}^p$: unknown disturbances and measurement noise.
- Goal: For a finite set of measurements $y(0), \ldots, y(k)$, define a state observer

$$\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + \bar{B}\hat{v}(k), \quad \hat{x}(0) = \hat{x}_0$$

 $y(k) = C\hat{x}(k) + \hat{w}(k)$

and sequences $\hat{v}(\cdot)$, $\hat{w}(\cdot)$, to be determined.

- $\hat{v}(k)$, $\hat{w}(k)$ will be defined such that $\hat{x}(k)$ is optimal w.r.t. assumptions on $v(\cdot)$ and $w(\cdot)$, and w.r.t. the measured output $y(0), \ldots, y(k)$.
- Variance: $Var(\cdot)$
- expectation: E[·]

Split the estimated state x̂ = x̂_d + x̂_s (deterministic and stochastic component)
 x̂_d(k + 1) = Ax̂_d(k) + Bu(k), x̂_{d,0} = x̂₀

 $\hat{y}_d(k) = C\hat{x}_d(k)$

$$\begin{split} \hat{x}_{s}(k+1) &= A\hat{x}_{s}(k) + \bar{B}\hat{v}(k) \qquad \hat{x}_{s,0} = 0 \\ \hat{y}_{s}(k) &= C\hat{x}_{s}(k) + \hat{w}(k), \end{split}$$

• For given $\hat{x}_d(0) = \hat{x}_{d,0}$ and $(u(k))_{k \in \mathbb{N}}$ it holds that

$$\hat{x}_d(k) = A^k \hat{x}_{d,0} + \sum_{i=1}^k A^{k-i} Bu(i-1) \quad k \in \mathbb{N}$$

- \hat{x}_s cannot be computed because it depends on $\hat{v}(\cdot)$ and $\hat{w}(\cdot).$
- $\rightsquigarrow~$ We look for $\hat{v}(\cdot),\,\hat{w}(\cdot)$ which describe the mismatch

 $\hat{y}_s(k) = y(k) - \hat{y}_d(k)$

between the measured output y(k) and the deterministic output $\hat{y}_d(k)$ in an optimal way.

It holds that (for all $0 \le j \le k \in \mathbb{N}$): $\hat{x}_s(k) = A\hat{x}_s(k-1) + \bar{B}\hat{v}(k-1)$ $= A^{k-j}\hat{x}_s(j) + \sum_{i=j+1}^k A^{k-i}\bar{B}\hat{v}(i-1)$

or equivalently

$$\hat{x}_s(j) = A^{j-k} \hat{x}_s(k) - \sum_{i=j+1}^k A^{j-i} \bar{B} \hat{v}(i-1).$$

Moreover: $(j \in \{0, ..., k\})$ $\hat{y}_s(j) = C\hat{x}_s(j) + \hat{w}(j)$ $= CA^{j-k}\hat{x}_s(k) + \hat{w}(j) - \sum_{i=j+1}^k CA^{j-i}\bar{B}\hat{v}(i-1)$

It holds that (for all $0 \le j \le k \in \mathbb{N}$): $\hat{x}_s(k) = A\hat{x}_s(k-1) + \bar{B}\hat{v}(k-1)$ $= A^{k-j}\hat{x}_s(j) + \sum_{i=j+1}^k A^{k-i}\bar{B}\hat{v}(i-1)$

or equivalently

$$\hat{x}_s(j) = A^{j-k} \hat{x}_s(k) - \sum_{i=j+1}^k A^{j-i} \bar{B} \hat{v}(i-1).$$

Moreover: $(j \in \{0, ..., k\})$ $\hat{y}_s(j) = C\hat{x}_s(j) + \hat{w}(j)$ $= CA^{j-k}\hat{x}_s(k) + \hat{w}(j) - \sum_{i=j+1}^k CA^{j-i}\bar{B}\hat{v}(i-1)$

In vector form: ($j \in \{0, \dots, k\}$)

$$\Lambda^j_k = \Phi^j_k \hat{x}^j_s(k) + \Gamma^j_k$$

Where

$$\begin{split} \Lambda_{k}^{j} &= \begin{bmatrix} \hat{y}_{s}(0) \\ \hat{y}_{s}(1) \\ \vdots \\ \hat{y}_{s}(j) \end{bmatrix}, \quad \Phi_{k}^{j} &= \begin{bmatrix} CA^{-k} \\ CA^{1-k} \\ \vdots \\ CA^{j-k} \end{bmatrix}, \\ \Gamma_{k}^{j} &= \begin{bmatrix} \hat{w}(0) - \sum_{i=1}^{k} CA^{1-i} \bar{B} \hat{v}(i-1) \\ \hat{w}(1) - \sum_{i=2}^{k} CA^{2-i} \bar{B} \hat{v}(i-1) \\ \vdots \\ \hat{w}(j) - \sum_{i=j+1}^{k} CA^{k-i} \bar{B} \hat{v}(i-1) \end{bmatrix} \end{split}$$

It holds that (for all $0 \le j \le k \in \mathbb{N}$): $\hat{x}_s(k) = A\hat{x}_s(k-1) + \bar{B}\hat{v}(k-1)$ $= A^{k-j}\hat{x}_s(j) + \sum_{i=j+1}^k A^{k-i}\bar{B}\hat{v}(i-1)$

or equivalently

$$\hat{x}_s(j) = A^{j-k} \hat{x}_s(k) - \sum_{i=j+1}^k A^{j-i} \bar{B} \hat{v}(i-1).$$

Moreover: $(j \in \{0, \ldots, k\})$

 $\hat{y}_s(j) = C\hat{x}_s(j) + \hat{w}(j)$

$$= CA^{j-k}\hat{x}_s(k) + \hat{w}(j) - \sum_{i=j+1}^k CA^{j-i}\bar{B}\hat{v}(i-1)$$

In vector form: ($j \in \{0, \dots, k\}$)

$$\Lambda^j_k = \Phi^j_k \hat{x}^j_s(k) + \Gamma^j_k$$

Where $\Lambda_{k}^{j} = \begin{bmatrix} \hat{y}_{s}(0) \\ \hat{y}_{s}(1) \\ \vdots \\ \hat{y}_{s}(j) \end{bmatrix}, \quad \Phi_{k}^{j} = \begin{bmatrix} CA^{-k} \\ CA^{1-k} \\ \vdots \\ CA^{j-k} \end{bmatrix},$ $\Gamma_{k}^{j} = \begin{bmatrix} \hat{w}(0) - \sum_{i=1}^{k} CA^{1-i}\bar{B}\hat{v}(i-1) \\ \hat{w}(1) - \sum_{i=2}^{k} CA^{2-i}\bar{B}\hat{v}(i-1) \\ \vdots \\ \hat{w}(j) - \sum_{i=j+1}^{k} CA^{k-i}\bar{B}\hat{v}(i-1) \end{bmatrix}$

Note that:

• $j \in \{0, ..., k\}$ indicates that y(0) to y(j) are taken into account to calculate the stochastic part $\hat{x}_s^j(k)$

•
$$\Lambda_k^{\mathbf{k}} = \Phi_k^{\mathbf{k}} \hat{x}_s^{\mathbf{k}}(k) + \Gamma_k^{\mathbf{k}}$$

- Λ^j_k contains mismatch between $y(\cdot)$ and $\hat{y}_d(\cdot)$
- \rightsquigarrow Find $\hat{x}_s^j(k)$ which fits the data in an optimal way \rightsquigarrow estimate of x(k) through $\hat{x}(k) = \hat{x}_d(k) + \hat{x}_s^j(k)$
- $\bullet \ \Lambda^j_k$ and Φ^j_k are known; Γ^j_k is not known

Note that:

- Λ_k^j , Φ_k^j are known; Γ_k^j is not known; $(\Lambda_k^k = \Phi_k^k \hat{x}_s^k(k) + \Gamma_k^k)$
- $(v(k))_{k\in\mathbb{N}}$ and $(w(k))_{k\in\mathbb{N}}$ sequences of Gaussian white noise with zero mean
- Find $\hat{x}_s^j(k)$ that minimizes the expected value

$$F(\hat{x}_s^j(k), W_k^j) = \mathbf{E}\left[\left|\Lambda_k^j - \Phi_k^j \hat{x}_s^j(k)\right|_{W_k^j}\right]$$
 for $W_k^j \in \mathcal{S}_{>0}^{p(j+1)}$.

Note that:

- Λ_k^j , Φ_k^j are known; Γ_k^j is not known; $(\Lambda_k^k = \Phi_k^k \hat{x}_s^k(k) + \Gamma_k^k)$
- $(v(k))_{k\in\mathbb{N}}$ and $(w(k))_{k\in\mathbb{N}}$ sequences of Gaussian white noise with zero mean
- Find $\hat{x}_{s}^{j}(k)$ that minimizes the expected value

$$F(\hat{x}_s^j(k), W_k^j) = \mathbf{E}\left[|\Lambda_k^j - \Phi_k^j \hat{x}_s^j(k)|_{W_k^j} \right]$$

for $W_k^j \in \mathcal{S}_{>0}^{p(j+1)}$.

For $(\Phi_k^j)^T W_k^j \Phi_k^j$ nonsingular, it holds that:

$$\begin{split} F(\hat{x}_{s}^{j}(k),W_{k}^{j}) &= \mathbf{E}\left[(\Lambda_{k}^{j}-\Phi_{k}^{j}\hat{x}_{s}^{j}(k))^{T}W_{k}^{j}(\Lambda_{k}^{j}-\Phi_{k}^{j}\hat{x}_{s}^{j}(k))\right] \\ &= \mathbf{E}\left[[(\Phi_{k}^{j})^{T}W_{k}\Phi_{k}^{j})\hat{x}_{s}^{j}(k) - (\Phi_{k}^{j})^{T}W_{k}^{j}\Lambda_{k}^{j}]^{T}((\Phi_{k}^{j})^{T}W_{k}^{j}\Phi_{k}^{j})^{-1} \\ &\cdot \left[(\Phi_{k}^{j})^{T}W_{k}^{j}\Phi_{k}^{j})\hat{x}_{s}^{j}(k) - (\Phi_{k}^{j})^{T}W_{k}^{j}\Lambda_{k}^{j}\right]\right] \\ &+ \mathbf{E}\left[(\Lambda_{k}^{j})^{T}(I-W_{k}^{j}\Phi_{k}^{j})((\Phi_{k}^{j})^{T}W_{k}^{j}\Phi_{k}^{j})^{-1}(\Phi_{k}^{j})^{T})W_{k}^{j}\Lambda_{k}^{j}\right] \end{split}$$

Since second term is independent of $\hat{x}_s^j(k)$ $\rightsquigarrow \hat{x}_s^j(k) = \hat{x}_s^j(k; W_k^j) = ((\Phi_k^j)^T W_k^j \Phi_k^j)^{-1} (\Phi_k^j)^T W_k^j \Lambda_k^j$

Note that:

- $\Lambda_{h}^{j}, \Phi_{h}^{j}$ are known; Γ_{h}^{j} is not known; $(\Lambda_{h}^{k} = \Phi_{h}^{k} \hat{x}_{s}^{k}(k) + \Gamma_{h}^{k})$
- $(v(k))_{k \in \mathbb{N}}$ and $(w(k))_{k \in \mathbb{N}}$ sequences of Gaussian white noise with zero mean
- Find $\hat{x}_{s}^{j}(k)$ that minimizes the expected value

$$F(\hat{x}_s^j(k), W_k^j) = \mathbf{E}\left[|\Lambda_k^j - \Phi_k^j \hat{x}_s^j(k)|_{W_k^j} \right]$$

for $W_{L}^{j} \in \mathcal{S}_{\geq 0}^{p(j+1)}$.

For $(\Phi_{k}^{j})^{T} W_{k}^{j} \Phi_{k}^{j}$ nonsingular, it holds that:

$$\begin{split} F(\hat{x}_{s}^{j}(k),W_{k}^{j}) &= \mathrm{E}\left[(\Lambda_{k}^{j}-\Phi_{k}^{j}\hat{x}_{s}^{j}(k))^{T}W_{k}^{j}(\Lambda_{k}^{j}-\Phi_{k}^{j}\hat{x}_{s}^{j}(k))\right] \\ &= \mathrm{E}\left[[(\Phi_{k}^{j})^{T}W_{k}\Phi_{k}^{j})\hat{x}_{s}^{j}(k) - (\Phi_{k}^{j})^{T}W_{k}^{j}\Lambda_{k}^{j}]^{T}((\Phi_{k}^{j})^{T}W_{k}^{j}\Phi_{k}^{j})^{-1} \\ &\cdot \left[(\Phi_{k}^{j})^{T}W_{k}^{j}\Phi_{k}^{j})\hat{x}_{s}^{j}(k) - (\Phi_{k}^{j})^{T}W_{k}^{j}\Lambda_{k}^{j}\right]\right] \\ &+ \mathrm{E}\left[(\Lambda_{k}^{j})^{T}(I-W_{k}^{j}\Phi_{k}^{j})((\Phi_{k}^{j})^{T}W_{k}^{j}\Phi_{k}^{j})^{-1}(\Phi_{k}^{j})^{T})W_{k}^{j}\Lambda_{k}^{j}\right] \end{split}$$

Since second term is independent of $\hat{x}_s^j(k)$ $\sim \hat{x}_{s}^{j}(k) = \hat{x}_{s}^{j}(k; W_{t}^{j}) = ((\Phi_{t}^{j})^{T} W_{t}^{j} \Phi_{t}^{j})^{-1} (\Phi_{t}^{j})^{T} W_{t}^{j} \Lambda_{t}^{j}$

C.M. Kellett & P. Braun (ANU)

Question:

- How to define W_{L}^{j} in an optimal way?
- Minimize the variance ~~~

 $\operatorname{Var}(x(k) - \hat{x}^{j}(k)) = \operatorname{Var}(x(k) - \hat{x}_{d}(k) - \hat{x}_{e}^{j}(k))$

Note that:

- Λ^j_k, Φ^j_k are known; Γ^j_k is not known; $(\Lambda^k_k = \Phi^k_k \hat{x}^k_s(k) + \Gamma^k_k)$
- $(v(k))_{k\in\mathbb{N}}$ and $(w(k))_{k\in\mathbb{N}}$ sequences of Gaussian white noise with zero mean
- Find $\hat{x}_s^j(k)$ that minimizes the expected value

$$F(\hat{x}_s^j(k), W_k^j) = \mathbf{E}\left[\left|\Lambda_k^j - \Phi_k^j \hat{x}_s^j(k)\right|_{W_k^j}\right]$$

for $W_k^j \in \mathcal{S}_{>0}^{p(j+1)}$.

For $(\Phi^j_k)^T W^j_k \Phi^j_k$ nonsingular, it holds that:

$$\begin{split} F(\hat{x}_{s}^{j}(k),W_{k}^{j}) &= \mathbf{E}\left[(\Lambda_{k}^{j}-\Phi_{k}^{j}\hat{x}_{s}^{j}(k))^{T}W_{k}^{j}(\Lambda_{k}^{j}-\Phi_{k}^{j}\hat{x}_{s}^{j}(k))\right] \\ &= \mathbf{E}\left[[(\Phi_{k}^{j})^{T}W_{k}\Phi_{k}^{j})\hat{x}_{s}^{j}(k) - (\Phi_{k}^{j})^{T}W_{k}^{j}\Lambda_{k}^{j}]^{T}((\Phi_{k}^{j})^{T}W_{k}^{j}\Phi_{k}^{j})^{-1} \\ &\cdot \left[(\Phi_{k}^{j})^{T}W_{k}^{j}\Phi_{k}^{j})\hat{x}_{s}^{j}(k) - (\Phi_{k}^{j})^{T}W_{k}^{j}\Lambda_{k}^{j}\right]\right] \\ &+ \mathbf{E}\left[(\Lambda_{k}^{j})^{T}(I-W_{k}^{j}\Phi_{k}^{j})((\Phi_{k}^{j})^{T}W_{k}^{j}\Phi_{k}^{j})^{-1}(\Phi_{k}^{j})^{T})W_{k}^{j}\Lambda_{k}^{j}\right] \end{split}$$

Since second term is independent of $\hat{x}_s^j(k)$ $\rightsquigarrow \hat{x}_s^j(k) = \hat{x}_s^j(k; W_k^j) = ((\Phi_k^j)^T W_k^j \Phi_k^j)^{-1} (\Phi_k^j)^T W_k^j \Lambda_k^j$

Question: $\downarrow \Gamma^k$

- How to define W_k^j in an optimal way?
- → Minimize the variance

 $\operatorname{Var}(x(k) - \hat{x}^{j}(k)) = \operatorname{Var}(x(k) - \hat{x}_{d}(k) - \hat{x}_{s}^{j}(k))$

The variance satisfies

$$\begin{aligned} &\operatorname{Var}(\boldsymbol{x}(k) - \hat{\boldsymbol{x}}_d(k) - \hat{\boldsymbol{x}}_s^j(k)) = [(\Phi_k^j)^T W_k^j \Phi_k^j]^{-1} \\ &\cdot (\Phi_k^j)^T W_k^j \operatorname{E}[\Gamma_k^j (\Gamma_k^j)^T] W_k^j \Phi_k^j [(\Phi_k^j)^T W_k^j \Phi_k^j]^{-1} \end{aligned}$$

Note that:

- Λ^j_k, Φ^j_k are known; Γ^j_k is not known; $(\Lambda^k_k = \Phi^k_k \hat{x}^k_s(k) + \Gamma^k_k)$
- $(v(k))_{k\in\mathbb{N}}$ and $(w(k))_{k\in\mathbb{N}}$ sequences of Gaussian white noise with zero mean
- Find $\hat{x}_s^j(k)$ that minimizes the expected value

$$F(\hat{x}_s^j(k), W_k^j) = \mathbf{E}\left[|\Lambda_k^j - \Phi_k^j \hat{x}_s^j(k)|_{W_k^j} \right]$$

for $W_k^j \in \mathcal{S}_{>0}^{p(j+1)}$.

For $(\Phi_k^j)^T W_k^j \Phi_k^j$ nonsingular, it holds that:

$$\begin{split} F(\hat{x}_{s}^{j}(k),W_{k}^{j}) &= \mathrm{E}\left[(\Lambda_{k}^{j}-\Phi_{k}^{j}\hat{x}_{s}^{j}(k))^{T}W_{k}^{j}(\Lambda_{k}^{j}-\Phi_{k}^{j}\hat{x}_{s}^{j}(k))\right] \\ &= \mathrm{E}\left[[(\Phi_{k}^{j})^{T}W_{k}\Phi_{k}^{j})\hat{x}_{s}^{j}(k) - (\Phi_{k}^{j})^{T}W_{k}^{j}\Lambda_{k}^{j}]^{T}((\Phi_{k}^{j})^{T}W_{k}^{j}\Phi_{k}^{j})^{-1} \\ & \cdot \left[(\Phi_{k}^{j})^{T}W_{k}^{j}\Phi_{k}^{j})\hat{x}_{s}^{j}(k) - (\Phi_{k}^{j})^{T}W_{k}^{j}\Lambda_{k}^{j}\right]\right] \\ &+ \mathrm{E}\left[(\Lambda_{k}^{j})^{T}(I-W_{k}^{j}\Phi_{k}^{j})(\Phi_{k}^{j})^{T}W_{k}^{j}\Phi_{k}^{j})^{-1}(\Phi_{k}^{j})^{T})W_{k}^{j}\Lambda_{k}^{j}\right] \end{split}$$

Since second term is independent of $\hat{x}_s^j(k)$ $\rightsquigarrow \hat{x}_s^j(k) = \hat{x}_s^j(k; W_k^j) = ((\Phi_k^j)^T W_k^j \Phi_k^j)^{-1} (\Phi_k^j)^T W_k^j \Lambda_k^j$

Question:

- How to define W_k^j in an optimal way?
- $\rightsquigarrow~$ Minimize the variance

 $\operatorname{Var}(x(k) - \hat{x}^{j}(k)) = \operatorname{Var}(x(k) - \hat{x}_{d}(k) - \hat{x}_{s}^{j}(k))$

The variance satisfies

$$\begin{aligned} &\operatorname{Var}(x(k) - \hat{x}_{d}(k) - \hat{x}_{s}^{j}(k)) = [(\Phi_{k}^{j})^{T} W_{k}^{j} \Phi_{k}^{j}]^{-1} \\ &\cdot (\Phi_{k}^{j})^{T} W_{k}^{j} \operatorname{E}[\Gamma_{k}^{j} (\Gamma_{k}^{j})^{T}] W_{k}^{j} \Phi_{k}^{j} [(\Phi_{k}^{j})^{T} W_{k}^{j} \Phi_{k}^{j}]^{-1} \end{aligned}$$

for

$$W_k^j = (\Xi_k^j)^{-1} = \mathrm{E}\left[\Gamma_k^j (\Gamma_k^j)^T\right]^{-1} \in \mathcal{S}_{>0}^{p(j+1)}$$

the variance reduces to

$$\operatorname{Var}(x(k) - \hat{x}_d(k) - \hat{x}_s^j(k)) = [(\Phi_k^j)^T (\Xi_k^j)^{-1} \Phi_k^j]^{-1}$$

Note that:

- Λ^j_k, Φ^j_k are known; Γ^j_k is not known; $(\Lambda^k_k = \Phi^k_k \hat{x}^k_s(k) + \Gamma^k_k)$
- $(v(k))_{k\in\mathbb{N}}$ and $(w(k))_{k\in\mathbb{N}}$ sequences of Gaussian white noise with zero mean
- Find $\hat{x}_s^j(k)$ that minimizes the expected value

$$F(\hat{x}_s^j(k), W_k^j) = \mathbf{E}\left[\left|\Lambda_k^j - \Phi_k^j \hat{x}_s^j(k)\right|_{W_k^j}\right]$$

for $W_k^j \in \mathcal{S}_{>0}^{p(j+1)}$.

For $(\Phi^j_k)^T W^j_k \Phi^j_k$ nonsingular, it holds that:

$$\begin{split} F(\hat{x}_{s}^{j}(k),W_{k}^{j}) &= \mathrm{E}\left[(\Lambda_{k}^{j}-\Phi_{k}^{j}\hat{x}_{s}^{j}(k))^{T}W_{k}^{j}(\Lambda_{k}^{j}-\Phi_{k}^{j}\hat{x}_{s}^{j}(k))\right] \\ &= \mathrm{E}\left[[(\Phi_{k}^{j})^{T}W_{k}\Phi_{k}^{j})\hat{x}_{s}^{j}(k) - (\Phi_{k}^{j})^{T}W_{k}^{j}\Lambda_{k}^{j}]^{T}((\Phi_{k}^{j})^{T}W_{k}^{j}\Phi_{k}^{j})^{-1} \\ & \cdot \left[(\Phi_{k}^{j})^{T}W_{k}^{j}\Phi_{k}^{j})\hat{x}_{s}^{j}(k) - (\Phi_{k}^{j})^{T}W_{k}^{j}\Lambda_{k}^{j}\right]\right] \\ &+ \mathrm{E}\left[(\Lambda_{k}^{j})^{T}(I-W_{k}^{j}\Phi_{k}^{j})((\Phi_{k}^{j})^{T}W_{k}^{j}\Phi_{k}^{j})^{-1}(\Phi_{k}^{j})^{T})W_{k}^{j}\Lambda_{k}^{j}\right] \end{split}$$

Since second term is independent of $\hat{x}_s^j(k)$ $\rightsquigarrow \hat{x}_s^j(k) = \hat{x}_s^j(k; W_k^j) = ((\Phi_k^j)^T W_k^j \Phi_k^j)^{-1} (\Phi_k^j)^T W_k^j \Lambda_k^j$

Question:

- How to define W_k^j in an optimal way?
- $\rightsquigarrow~$ Minimize the variance

 $\operatorname{Var}(x(k) - \hat{x}^{j}(k)) = \operatorname{Var}(x(k) - \hat{x}_{d}(k) - \hat{x}_{s}^{j}(k))$

The variance satisfies

$$\begin{aligned} \operatorname{Var}(\boldsymbol{x}(k) - \hat{\boldsymbol{x}}_d(k) - \hat{\boldsymbol{x}}_s^j(k)) &= [(\Phi_k^j)^T W_k^j \Phi_k^j]^{-1} \\ \cdot (\Phi_k^j)^T W_k^j \operatorname{E}[\Gamma_k^j (\Gamma_k^j)^T] W_k^j \Phi_k^j [(\Phi_k^j)^T W_k^j \Phi_k^j]^{-1} \end{aligned}$$

for

$$W_k^j = (\Xi_k^j)^{-1} = \mathbf{E} \left[\Gamma_k^j (\Gamma_k^j)^T \right]^{-1} \in \mathcal{S}_{>0}^{p(j+1)}$$

the variance reduces to

 $\operatorname{Var}(x(k) - \hat{x}_d(k) - \hat{x}_s^j(k)) = [(\Phi_k^j)^T (\Xi_k^j)^{-1} \Phi_k^j]^{-1}$

Optimal estimate of $x(k) - \hat{x}_d(k)$ based on y(0) to y(j):

$$\hat{x}_{s}^{j}(k) = [(\Phi_{k}^{j})^{T} (\Xi_{k}^{j})^{-1} \Phi_{k}^{j}]^{-1} (\Phi_{k}^{j})^{T} (\Xi_{k}^{j})^{-1} \Lambda_{k}^{j}$$

For j = k, the index is omitted: $\hat{x}_s(k) = \hat{x}_s^k(k)$.

Note that:

- Λ^j_k, Φ^j_k are known; Γ^j_k is not known; $(\Lambda^k_k = \Phi^k_k \hat{x}^k_s(k) + \Gamma^k_k)$
- $(v(k))_{k\in\mathbb{N}}$ and $(w(k))_{k\in\mathbb{N}}$ sequences of Gaussian white noise with zero mean
- Find $\hat{x}_{s}^{j}(k)$ that minimizes the expected value

$$F(\hat{x}_s^j(k), W_k^j) = \mathbf{E}\left[\left|\Lambda_k^j - \Phi_k^j \hat{x}_s^j(k)\right|_{W_k^j}\right]$$

for $W_k^j \in \mathcal{S}_{>0}^{p(j+1)}$.

For $(\Phi^j_k)^T W^j_k \Phi^j_k$ nonsingular, it holds that:

$$\begin{split} F(\hat{x}_{s}^{j}(k),W_{k}^{j}) &= \mathrm{E}\left[(\Lambda_{k}^{j}-\Phi_{k}^{j}\hat{x}_{s}^{j}(k))^{T}W_{k}^{j}(\Lambda_{k}^{j}-\Phi_{k}^{j}\hat{x}_{s}^{j}(k))\right] \\ &= \mathrm{E}\left[[(\Phi_{k}^{j})^{T}W_{k}\Phi_{k}^{j})\hat{x}_{s}^{j}(k) - (\Phi_{k}^{j})^{T}W_{k}^{j}\Lambda_{k}^{j}]^{T}((\Phi_{k}^{j})^{T}W_{k}^{j}\Phi_{k}^{j})^{-1} \\ & \cdot \left[(\Phi_{k}^{j})^{T}W_{k}^{j}\Phi_{k}^{j})\hat{x}_{s}^{j}(k) - (\Phi_{k}^{j})^{T}W_{k}^{j}\Lambda_{k}^{j}\right]\right] \\ &+ \mathrm{E}\left[(\Lambda_{k}^{j})^{T}(I-W_{k}^{j}\Phi_{k}^{j})((\Phi_{k}^{j})^{T}W_{k}^{j}\Phi_{k}^{j})^{-1}(\Phi_{k}^{j})^{T})W_{k}^{j}\Lambda_{k}^{j}\right] \end{split}$$

Since second term is independent of $\hat{x}_s^j(k)$ $\rightsquigarrow \hat{x}_s^j(k) = \hat{x}_s^j(k; W_k^j) = ((\Phi_k^j)^T W_k^j \Phi_k^j)^{-1} (\Phi_k^j)^T W_k^j \Lambda_k^j$

Question:

- How to define W_k^j in an optimal way?
- → Minimize the variance

 $\operatorname{Var}(x(k) - \hat{x}^{j}(k)) = \operatorname{Var}(x(k) - \hat{x}_{d}(k) - \hat{x}_{s}^{j}(k))$

The variance satisfies

$$\begin{aligned} \operatorname{Var}(\boldsymbol{x}(k) - \hat{\boldsymbol{x}}_d(k) - \hat{\boldsymbol{x}}_s^j(k)) &= [(\Phi_k^j)^T W_k^j \Phi_k^j]^{-1} \\ \cdot (\Phi_k^j)^T W_k^j \operatorname{E}[\Gamma_k^j (\Gamma_k^j)^T] W_k^j \Phi_k^j [(\Phi_k^j)^T W_k^j \Phi_k^j]^{-1} \end{aligned}$$

for

$$W_k^j = (\Xi_k^j)^{-1} = \mathbf{E} \left[\Gamma_k^j (\Gamma_k^j)^T \right]^{-1} \in \mathcal{S}_{>0}^{p(j+1)}$$

the variance reduces to

 $\operatorname{Var}(x(k) - \hat{x}_d(k) - \hat{x}_s^j(k)) = [(\Phi_k^j)^T (\Xi_k^j)^{-1} \Phi_k^j]^{-1}$

Optimal estimate of $x(k) - \hat{x}_d(k)$ based on y(0) to y(j):

$$\hat{x}_{s}^{j}(k) = [(\Phi_{k}^{j})^{T} (\Xi_{k}^{j})^{-1} \Phi_{k}^{j}]^{-1} (\Phi_{k}^{j})^{T} (\Xi_{k}^{j})^{-1} \Lambda_{k}^{j}$$

For j = k, the index is omitted: $\hat{x}_s(k) = \hat{x}_s^k(k)$.

 \rightsquigarrow Dim. of linear equation grows linearly with $k \in \mathbb{N}$

The discrete time Kalman filter (A prediction-correction formulation)

• Goal: Rewrite problem such that the complexity of the calculation of $\hat{x}(k)$ is independent of k.

The discrete time Kalman filter (A prediction-correction formulation)

• Goal: Rewrite problem such that the complexity of the calculation of $\hat{x}(k)$ is independent of k.

Derive a recursive formula to iteratively compute $\hat{x}(k)$:

- $\hat{\chi}(k) = A\hat{x}(k-1) + Bu(k-1)$ (prediction step) $\hat{x}(k) = \chi(k) + G_k(y(k) - C\hat{\chi}(k))$ (correction step)
- How to define the Kalman gain matrices $G_k \in \mathbb{R}^{n \times p}$, $k \in \mathbb{N}$?

• Goal: Rewrite problem such that the complexity of the calculation of $\hat{x}(k)$ is independent of k.

Derive a recursive formula to iteratively compute $\hat{x}(k)$:

- $\hat{\chi}(k) = A\hat{x}(k-1) + Bu(k-1)$ (prediction step) $\hat{x}(k) = \chi(k) + G_k(y(k) - C\hat{\chi}(k))$ (correction step)
- How to define the Kalman gain matrices $G_k \in \mathbb{R}^{n \times p}$, $k \in \mathbb{N}$?

It can be shown that:

$$G_k = P_k^{k-1} C^T [CP_k^{k-1} C^T + R^{-1}]^{-1}$$

where

$$P_{k}^{k-1} = AP_{k-1}A^{T} + \bar{B}Q^{-1}\bar{B}^{T}$$
$$P_{k} = [I - G_{k}C]P_{k}^{k-1}$$

and

$$P_0 = \mathbf{E}\left[(x_0 - \mathbf{E}[x_0])(x_0 - \mathbf{E}[x_0])^T\right] = \operatorname{Var}(x_0).$$

The discrete time Kalman filter (A prediction-correction formulation)

• Goal: Rewrite problem such that the complexity of the calculation of $\hat{x}(k)$ is independent of k.

Derive a recursive formula to iteratively compute $\hat{x}(k)$:

- $$\begin{split} \hat{\chi}(k) &= A\hat{x}(k-1) + Bu(k-1) & \text{(prediction step)} \\ \hat{x}(k) &= \chi(k) + G_k(y(k) C\hat{\chi}(k)) & \text{(correction step)} \end{split}$$
- How to define the Kalman gain matrices $G_k \in \mathbb{R}^{n \times p}$, $k \in \mathbb{N}$?

It can be shown that:

$$G_k = P_k^{k-1} C^T [C P_k^{k-1} C^T + R^{-1}]^{-1}$$

where

$$\begin{split} P_k^{k-1} &= A P_{k-1} A^T + \bar{B} Q^{-1} \bar{B}^T \\ P_k &= [I-G_k C] P_k^{k-1} \end{split}$$

and

$$P_0 = \mathbf{E}\left[(x_0 - \mathbf{E}[x_0])(x_0 - \mathbf{E}[x_0])^T\right] = \operatorname{Var}(x_0).$$

Input: $Q^{-1} = \operatorname{Var}(v(k)), R^{-1} = \operatorname{Var}(w(k)), \hat{x}(0) = \hat{x}_0, P_0 \in S^n_{>0}.$ Output: Estimates $\hat{\chi}(k), \hat{x}(k)$ of x(k) for $k \in \mathbb{N}$. Algorithm: For $k \in \mathbb{N}$:

- **()** Update the gain matrix G_k :
 - $$\begin{split} P_k^{k-1} &= A P_{k-1} A^T + \bar{B} Q^{-1} \bar{B}^T, \\ G_k &= P_k^{k-1} C^T [C P_k^{k-1} C^T + R^{-1}]^{-1}, \\ P_k &= [I G_k C] P_k^{k-1}. \end{split}$$
- **(3)** Measure the output: y(k) = Cx(k) + w(k)
- Update estimate (after y(k) is available):

 $\hat{x}(k) = \hat{\chi}(k) + G_k(y(k) - C\hat{\chi}(k)),$

set k = k + 1 and go to step 1.

The discrete time Kalman filter (Additional comments)

Input: $Q^{-1} = \operatorname{Var}(v(k)), R^{-1} = \operatorname{Var}(w(k)),$ $\hat{x}(0) = \hat{x}_0, P_0 \in S_{>0}^n.$ Output: Estimates $\hat{\chi}(k), \hat{x}(k)$ of x(k) for $k \in \mathbb{N}$. Algorithm: For $k \in \mathbb{N}$:

• Update the gain matrix G_k :

$$\begin{aligned} P_k^{k-1} &= A P_{k-1} A^T + \bar{B} Q^{-1} \bar{B}^T, \\ G_k &= P_k^{k-1} C^T [C P_k^{k-1} C^T + R^{-1}]^{-1}, \\ P_k &= [I - G_k C] P_k^{k-1}. \end{aligned}$$

2 Update estimate (before
$$y(k)$$
 is available):
 $\hat{\chi}(k) = A\hat{x}(k-1) + Bu(k-1).$

Solution Measure the output:
$$y(k) = Cx(k) + w(k)$$

• Update estimate (after y(k) is available):

 $\hat{x}(k) = \hat{\chi}(k) + G_k(y(k) - C\hat{\chi}(k)),$

set k = k + 1 and go to step 1.

The Kalman filter can be written as a discrete time system:

$$\begin{split} \hat{\chi}(k+1) &= A(\hat{\chi}(k) + Bu(k) + G_k(y(k) - C\hat{\chi}(k))) \\ &= (A - AG_k C)\hat{\chi}(k) + Bu(k) + AG_k y(k) \\ \hat{x}(k+1) &= A\hat{x}(k) + Bu(k) + G_{k+1}(y(k+1) - C(A\hat{x}(k) + Bu(k))) \\ &= (I - G_{k+1}C)(A\hat{x}(k) + Bu(k)) + G_{k+1}y(k+1) \end{split}$$

The Kalman filter can be applied to time varying systems (i.e., $A(k),\,B(k),\,\bar{B}(k),\,C(k))$

Example

Consider $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$ and $A = \begin{bmatrix} 1.000 & 0.050 \\ -0.491 & 0.995 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 0.05 \end{bmatrix}$, $\bar{B} = \begin{bmatrix} 0.05 & 0 \\ 0 & 0.05 \end{bmatrix}$ Additionally, let

$$R^{-1} = \frac{1}{2}$$
 and $Q^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$

(defined based on v(k) and w(k))

The discrete time Kalman filter (at steady-state)

Recall: Update the gain matrix G_k :

$$\begin{split} P_k^{k-1} &= A P_{k-1} A^T + \bar{B} Q^{-1} \bar{B}^T, \\ G_k &= P_k^{k-1} C^T [C P_k^{k-1} C^T + R^{-1}]^{-1}, \\ P_k &= [I - G_k C] P_k^{k-1}. \end{split}$$

Note that:

• Under certain conditions $G_k = G_{\infty}$, (i.e., $P_k = P_{\infty}$) converges to a steady-state

Recall: Update the gain matrix G_k :

$$P_k^{k-1} = AP_{k-1}A^T + \bar{B}Q^{-1}\bar{B}^T,$$

$$G_k = P_k^{k-1}C^T[CP_k^{k-1}C^T + R^{-1}]^{-1},$$

$$P_k = [I - G_k C]P_k^{k-1}.$$

Note that:

• Under certain conditions $G_k = G_\infty$, (i.e., $P_k = P_\infty$) converges to a steady-state

In particular, with $P_{\infty} = P_k = P_{k-1}$, $\Pi = P_k^{k-1}$:

$$\Pi = A\Pi A^{T} - A\Pi C^{T} (C\Pi C^{T} + R^{-1})^{-1} C\Pi A^{T} + \bar{B}Q^{-1}\bar{B}^{T}$$

~> discrete time algebraic Riccati equation

It holds that:

$$G_{\infty} = \Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1}$$

$$\tilde{G}_{\infty} = A \Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1}$$

$$P_{\infty} = (I - G_{\infty} C) \Pi = (I - (\Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1}) C) \Pi$$

Recall: Update the gain matrix G_k :

$$\begin{split} P_k^{k-1} &= A P_{k-1} A^T + \bar{B} Q^{-1} \bar{B}^T, \\ G_k &= P_k^{k-1} C^T [C P_k^{k-1} C^T + R^{-1}]^{-1}, \\ P_k &= [I - G_k C] P_k^{k-1}. \end{split}$$

Note that:

• Under certain conditions $G_k = G_\infty$, (i.e., $P_k = P_\infty$) converges to a steady-state

In particular, with $P_{\infty} = P_k = P_{k-1}$, $\Pi = P_k^{k-1}$:

$$\Pi = A\Pi A^{T} - A\Pi C^{T} (C\Pi C^{T} + R^{-1})^{-1} C\Pi A^{T} + \bar{B}Q^{-1}\bar{B}^{T}$$

~> discrete time algebraic Riccati equation

It holds that:

$$G_{\infty} = \Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1}$$

$$\tilde{G}_{\infty} = A \Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1}$$

$$P_{\infty} = (I - G_{\infty} C) \Pi = (I - (\Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1}) C) \Pi$$

Theorem

Consider the linear system

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) + \bar{B}v(k), \\ y(k) &= Cx(k) + w(k). \end{aligned}$$

and assume that (A, \overline{B}) is stabilizable and (A, C) is detectable. Additionally, let $R \in S_{\geq 0}^p$ and $Q \in S_{\geq 0}^q$. Then the Riccati equation has a unique positive definite solution $\Pi \in S_{\geq 0}^n$, and the matrix

$$A - \tilde{G}_{\infty}C = A - A\Pi C^T (C\Pi C^T + R^{-1})^{-1}C \quad (2)$$

is a Schur matrix.

Recall: Update the gain matrix G_k :

$$\begin{split} P_k^{k-1} &= A P_{k-1} A^T + \bar{B} Q^{-1} \bar{B}^T, \\ G_k &= P_k^{k-1} C^T [C P_k^{k-1} C^T + R^{-1}]^{-1}, \\ P_k &= [I - G_k C] P_k^{k-1}. \end{split}$$

Note that:

• Under certain conditions $G_k = G_\infty$, (i.e., $P_k = P_\infty$) converges to a steady-state

In particular, with $P_{\infty} = P_k = P_{k-1}$, $\Pi = P_k^{k-1}$:

$$\Pi = A \Pi A^{T} - A \Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1} C \Pi A^{T} + \bar{B} Q^{-1} \bar{B}^{T}$$

~> discrete time algebraic Riccati equation

It holds that:

$$G_{\infty} = \Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1}$$

$$\tilde{G}_{\infty} = A \Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1}$$

$$P_{\infty} = (I - G_{\infty} C) \Pi = (I - (\Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1}) C) \Pi$$

Theorem

Consider the linear system

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) + \bar{B}v(k), \\ y(k) &= Cx(k) + w(k). \end{aligned}$$

and assume that (A, \overline{B}) is stabilizable and (A, C) is detectable. Additionally, let $R \in S_{>0}^p$ and $Q \in S_{>0}^q$. Then the Riccati equation has a unique positive definite solution $\Pi \in S_{>0}^n$, and the matrix

$$A - \tilde{G}_{\infty}C = A - A\Pi C^T (C\Pi C^T + R^{-1})^{-1}C \quad (2)$$

is a Schur matrix.

The steady-state Kalman filter reduces to

$$\begin{split} \hat{\chi}(k+1) &= (A - \tilde{G}_{\infty}C)\hat{\chi}(k) + \tilde{G}_{\infty}y(k) + Bu(k) \\ \hat{x}(k+1) &= (I - G_{\infty}C)(A\hat{x}(k) + Bu(k)) + G_{\infty}y(k+1) \end{split}$$

∽→ The structure of the Luenberger observer or the minimum energy estimator is recovered

A hybrid Kalman filter

Input: Linear system

 $\dot{x}_c(t) = A_c x(t) + B_c u(t) + \bar{B}_c v_c(t),$ $y_c(t) = C_c x(t) + w_c(t).$

control input $u : \mathbb{R}_{\geq 0} \to \mathbb{R}^m$, positive definite matrices Q, R, initial estimates $\hat{x}(0) = \hat{x}_0$, $P_0 \in S_{>0}^n$, and a sequence of discrete time steps $(\tau_k)_{k \in \mathbb{N}} \subset \mathbb{R}_{\geq 0}$, $\tau_k < \tau_{k+1}$, for all $k \in \mathbb{N}_0$. **Output:** Continuous time and discrete time estimates $\hat{\chi}(t)$ and $\hat{x}(\tau_k)$ of the state x(t). **Algorithm:** For $k \in \mathbb{N}$:

Ocontinuous time update: For $t \in [\tau_{k-1}, \tau_k]$ solve

$$\dot{P}(t) = A_c P(t) + P(t) A_c^T + \bar{B}_c Q^{-1} \bar{B}_c^T, \qquad P(\tau_{k-1}) = P_{k-1}$$
$$\dot{\chi}(t) = A_c \hat{\chi}(t) + B_c u(t), \qquad \hat{\chi}(\tau_{k-1}) = \hat{x}(k-1).$$

2 Measure the output: $y_c(\tau_k) = Cx_c(\tau_k) + w(\tau_k)$.

Oiscrete time update:

$$G_{k} = P(\tau_{k})C_{c}^{T}(C_{c}P(\tau_{k})C_{c}^{T} + R^{-1})^{-1},$$

$$P_{k} = (I - G_{k}C_{c})P(\tau_{k}),$$

$$\hat{x}(k) = \hat{\chi}(\tau_{k}) + G_{k}(y_{c}(\tau_{k}) - C_{c}\hat{\chi}(\tau_{k})).$$

Set k = k + 1 and go to step 1.

Introduction to Nonlinear Control

Stability, control design, and estimation

Christopher M. Kellett & Philipp Braun School of Engineering, Australian National University, Canberra, Australia

Part III:

Chapter 16: Classical Observer Design 16.1 Luenberger Observer 16.2 Minimum Energy Estimator (Continuous Time Setting) 16.3 The Discrete Time Kalman Filter

