Introduction to Nonlinear Control

Stability, control design, and estimation

Christopher M. Kellett & Philipp Braun School of Engineering, Australian National University, Canberra, Australia

Part III:

Chapter 16: Classical Observer Design 16.1 Luenberger Observer 16.2 Minimum Energy Estimator (Continuous Time Setting) 16.3 The Discrete Time Kalman Filter

[Luenberger Observers](#page-7-0)

² [Minimum Energy Estimator \(Continuous time setting\)](#page-20-0)

³ [The discrete time Kalman filter](#page-36-0)

- [Least squares & minimum variance solution](#page-44-0)
- [A prediction-correction formulation](#page-54-0)
- [The steady-state Kalman filter](#page-60-0)

So far:

- The concepts so far rely on the knowledge of the state $x \in \mathbb{R}^n$.
- \bullet The full state x is in general not known and only the output $y \in \mathbb{R}^p$ is available.
- \rightarrow A controller design can not, in general, rely on the full state x .
- \rightarrow An estimate \hat{r} of the state needs to be derived (observability, detectibility)
- If $\hat{x}(t) \rightarrow x(t)$ for $t \rightarrow \infty$, can \hat{x} be used for the definition of a feedback controller $u(\hat{x})$?

So far:

- The concepts so far rely on the knowledge of the state $x \in \mathbb{R}^n$.
- \bullet The full state x is in general not known and only the output $y \in \mathbb{R}^p$ is available.
- \rightarrow A controller design can not, in general, rely on the full state x .
- \rightarrow An estimate \hat{r} of the state needs to be derived (observability, detectibility)
- If $\hat{x}(t) \rightarrow x(t)$ for $t \rightarrow \infty$, can \hat{x} be used for the definition of a feedback controller $u(\hat{x})$?

So far:

- The concepts so far rely on the knowledge of the state $x \in \mathbb{R}^n$.
- \bullet The full state x is in general not known and only the output $y \in \mathbb{R}^p$ is available.
- \rightarrow A controller design can not, in general, rely on the full state x .
- \rightarrow An estimate \hat{r} of the state needs to be derived (observability, detectibility)
- If $\hat{x}(t) \rightarrow x(t)$ for $t \rightarrow \infty$, can \hat{x} be used for the definition of a feedback controller $u(\hat{x})$?

Consider Linear systems:

 $\dot{x} = Ax + Bu, \quad x(0) \in \mathbb{R}^n,$ $y = Cx + Du$

- We assume that $y \in \mathbb{R}^p$ and $u \in \mathbb{R}^m$ are known, while the internal state $x \in \mathbb{R}^n$ and the initial condition $x(0)$ are unknown.
- **Assume that the matrix A is Hurwitz.**

So far:

- The concepts so far rely on the knowledge of the state $x \in \mathbb{R}^n$.
- \bullet The full state x is in general not known and only the output $y \in \mathbb{R}^p$ is available.
- \rightarrow A controller design can not, in general, rely on the full state x .
- \rightarrow An estimate \hat{r} of the state needs to be derived (observability, detectibility)
- If $\hat{x}(t) \rightarrow x(t)$ for $t \rightarrow \infty$, can \hat{x} be used for the definition of a feedback controller $u(\hat{x})$?

Consider Linear systems:

$$
\dot{x} = Ax + Bu, \qquad x(0) \in \mathbb{R}^n,
$$

$$
y = Cx + Du
$$

- We assume that $y \in \mathbb{R}^p$ and $u \in \mathbb{R}^m$ are known, while the internal state $x \in \mathbb{R}^n$ and the initial condition $x(0)$ are unknown.
- **Assume that the matrix A is Hurwitz.**

Introduce observer dynamics as a copy of the system

 $\dot{\hat{x}} = A\hat{x} + Bu, \quad \hat{x}(0) \in \mathbb{R}^n$

- \blacktriangleright $\hat{x} \in \mathbb{R}^n$ estimate of the state $x \in \mathbb{R}^n$
- **► Estimation error** $e = x \hat{x}$
- **•** Error dynamics:

$$
\begin{aligned}\dot{e} &= \dot{x} - \dot{\hat{x}} = Ax + Bu - A\hat{x} - Bu = A(x - \hat{x}) = Ae\\ \hat{x}(t) &\rightarrow x(t) \quad \Leftrightarrow \quad e(t) \rightarrow 0 \quad \Leftrightarrow A \text{ Hurwitz}\end{aligned}
$$

Section 1

[Luenberger Observers](#page-7-0)

 $\dot{x} = Ax + Bu, \qquad x(0) \in \mathbb{R}^n, \qquad (\text{or } x^+ = Ax + Bu)$ $y = Cx + Du$

Define observer dynamics:

$$
\dot{\hat{x}} = A\hat{x} + Bu - L(y - \hat{y}),
$$

$$
\hat{y} = C\hat{x} + Du.
$$

o output injection term $L \in \mathbb{R}^{n \times p}$

 $\dot{x} = Ax + Bu, \qquad x(0) \in \mathbb{R}^n, \qquad (\text{or } x^+ = Ax + Bu)$ $y = Cx + Du$

Define observer dynamics:

$$
\dot{\hat{x}} = A\hat{x} + Bu - L(y - \hat{y}),
$$

$$
\hat{y} = C\hat{x} + Du.
$$

o output injection term $L \in \mathbb{R}^{n \times p}$

- **e** Estimation error: $e = x \hat{x}$
- **•** Error dynamics:

$$
\begin{aligned}\n\dot{e} &= \dot{x} - \dot{\hat{x}} \\
&= Ax + Bu - A\hat{x} - Bu + L(Cx + Du - C\hat{x} - Du) \\
&= Ae + LCe = (A + LC)e\n\end{aligned}
$$

 \rightarrow The error dynamics are independent of u

 $\dot{x} = Ax + Bu, \qquad x(0) \in \mathbb{R}^n, \qquad (\text{or } x^+ = Ax + Bu)$ $y = Cx + Du$

Define observer dynamics:

$$
\dot{\hat{x}} = A\hat{x} + Bu - L(y - \hat{y}),
$$

$$
\hat{y} = C\hat{x} + Du.
$$

o output injection term $L \in \mathbb{R}^{n \times p}$

Error dynamics:

$$
\begin{aligned}\n\dot{e} &= \dot{x} - \dot{\hat{x}} \\
&= Ax + Bu - A\hat{x} - Bu + L(Cx + Du - C\hat{x} - Du) \\
&= Ae + LCe = (A + LC)e\n\end{aligned}
$$

- \rightarrow The error dynamics are independent of u
- \bullet $A + LC$ has the same eigenvalues as $(A + LC)^{T} = A^{T} + C^{T}L^{T}$
- \rightsquigarrow If (A, C) is observable, the poles of $A + LC$ can be placed arbitrarily, i.e., L can be defined such that $A + LC$ is Hurwitz.
- \rightsquigarrow If (A, C) is detectable, then there exists L such that $A + LC$ is Hurwitz.

 $\dot{x} = Ax + Bu, \qquad x(0) \in \mathbb{R}^n, \qquad (\text{or } x^+ = Ax + Bu)$ $y = Cx + Du$

Define observer dynamics:

$$
\dot{\hat{x}} = A\hat{x} + Bu - L(y - \hat{y}),
$$

$$
\hat{y} = C\hat{x} + Du.
$$

o output injection term $L \in \mathbb{R}^{n \times p}$

- **e** Estimation error: $e = x \hat{x}$
- **Error dynamics:**

$$
\begin{aligned}\n\dot{e} &= \dot{x} - \dot{\hat{x}} \\
&= Ax + Bu - A\hat{x} - Bu + L(Cx + Du - C\hat{x} - Du) \\
&= Ae + LCe = (A + LC)e\n\end{aligned}
$$

- \rightsquigarrow The error dynamics are independent of u
- \bullet $A + LC$ has the same eigenvalues as $(A + LC)^{T} = A^{T} + C^{T}L^{T}$
- \rightsquigarrow If (A, C) is observable, the poles of $A + LC$ can be placed arbitrarily, i.e., L can be defined such that $A + LC$ is Hurwitz.
- \rightsquigarrow If (A, C) is detectable, then there exists L such that $A + LC$ is Hurwitz.
- See pole placement
- x can be approximated through \hat{x}

 $\dot{x} = Ax + Bu, \qquad x(0) \in \mathbb{R}^n, \qquad (\text{or } x^+ = Ax + Bu)$ $y = Cx + Du$

Define observer dynamics:

$$
\dot{\hat{x}} = A\hat{x} + Bu - L(y - \hat{y}),
$$

$$
\hat{y} = C\hat{x} + Du.
$$

o output injection term $L \in \mathbb{R}^{n \times p}$

- **e** Estimation error: $e = x \hat{x}$
- **Error dynamics:**

$$
\begin{aligned}\n\dot{e} &= \dot{x} - \dot{\hat{x}} \\
&= Ax + Bu - A\hat{x} - Bu + L(Cx + Du - C\hat{x} - Du) \\
&= Ae + LCe = (A + LC)e\n\end{aligned}
$$

- \rightsquigarrow The error dynamics are independent of u
- \bullet $A + LC$ has the same eigenvalues as $(A + LC)^{T} = A^{T} + C^{T}L^{T}$
- \rightsquigarrow If (A, C) is observable, the poles of $A + LC$ can be placed arbitrarily, i.e., L can be defined such that $A + LC$ is Hurwitz.
- \rightsquigarrow If (A, C) is detectable, then there exists L such that $A + LC$ is Hurwitz.
- See pole placement
- x can be approximated through \hat{x}
- Controller design $u = K\hat{x}$?

Luenberger Observers & Controller design

Consider

$$
\begin{aligned}\n\dot{x} &= Ax + Bu, & x(0) & \in \mathbb{R}^n \\
y &= Cx + Du\n\end{aligned}
$$

Define observer dynamics:

$$
\dot{\hat{x}} = A\hat{x} + Bu - L(y - \hat{y}),
$$

$$
\hat{y} = C\hat{x} + Du.
$$

Error dynamics:

$$
\dot{e} = (A + LC)e
$$

Controller design:

$$
u(\hat{x}) = K\hat{x}, \qquad K \in \mathbb{R}^{m \times n}
$$

Luenberger Observers & Controller design

Consider

$$
\begin{aligned}\n\dot{x} &= Ax + Bu, & x(0) & \in \mathbb{R}^n \\
y &= Cx + Du\n\end{aligned}
$$

Define observer dynamics:

$$
\dot{\hat{x}} = A\hat{x} + Bu - L(y - \hat{y}),
$$

$$
\hat{y} = C\hat{x} + Du.
$$

Error dynamics:

$$
\dot{e} = (A + LC)e
$$

Controller design:

$$
u(\hat{x}) = K\hat{x}, \qquad K \in \mathbb{R}^{m \times n}
$$

We can rewrite the plant dynamics:

$$
\begin{aligned} \dot{x} &= Ax + Bu(\hat{x}) = Ax + BK\hat{x} \\ &= Ax + BK(x + e) \\ &= (A + BK)x + BK e. \end{aligned}
$$

$$
\begin{aligned}\n\dot{x} &= Ax + Bu, & x(0) & \in \mathbb{R}^n \\
y &= Cx + Du\n\end{aligned}
$$

Define observer dynamics:

$$
\dot{\hat{x}} = A\hat{x} + Bu - L(y - \hat{y}),
$$

$$
\hat{y} = C\hat{x} + Du.
$$

Error dynamics:

$$
\dot{e} = (A + LC)e
$$

Controller design:

$$
u(\hat{x}) = K\hat{x}, \qquad K \in \mathbb{R}^{m \times n}
$$

We can rewrite the plant dynamics:

$$
\begin{aligned} \dot{x} &= Ax + Bu(\hat{x}) = Ax + BK\hat{x} \\ &= Ax + BK(x + e) \\ &= (A + BK)x + BKe. \end{aligned}
$$

Overall closed loop system

- If (A, B) is controllable and (A, C) is observable, we can place the poles of the closed-loop system arbitrarily by choosing K and L .
- The convergence $|x(t)| \to 0$ and $|e(t)| \to 0$ for $t \to \infty$ can be guaranteed by designing L and K individually. ⇝ *separation principle*
- (The separation principle is only true for the asymptotic behavior)

$$
\begin{aligned}\n\dot{x} &= Ax + Bu, & x(0) & \in \mathbb{R}^n \\
y &= Cx + Du\n\end{aligned}
$$

Define observer dynamics:

$$
\dot{\hat{x}} = A\hat{x} + Bu - L(y - \hat{y}),
$$

$$
\hat{y} = C\hat{x} + Du.
$$

Error dynamics:

$$
\dot{e} = (A + LC)e
$$

Controller design:

$$
u(\hat{x}) = K\hat{x}, \qquad K \in \mathbb{R}^{m \times n}
$$

We can rewrite the plant dynamics:

$$
\begin{aligned} \dot{x} &= Ax + Bu(\hat{x}) = Ax + BK\hat{x} \\ &= Ax + BK(x + e) \\ &= (A + BK)x + BKe. \end{aligned}
$$

Overall closed loop system

- If (A, B) is controllable and (A, C) is observable, we can place the poles of the closed-loop system arbitrarily by choosing K and L .
- The convergence $|x(t)| \to 0$ and $|e(t)| \to 0$ for $t \to \infty$ can be guaranteed by designing L and K individually. ⇝ *separation principle*
- (The separation principle is only true for the asymptotic behavior)

Alternative representation in terms of x and \hat{x} :

$$
\left[\begin{array}{c} \dot{x} \\ \dot{\hat{x}} \end{array} \right] = \left[\begin{array}{cc} A & BK \\ -LC & A+BK+LC \end{array} \right] \left[\begin{array}{c} x \\ \hat{x} \end{array} \right]
$$

 \rightsquigarrow While the separation principle is not visible the dynamics capture the same information.

Luenberger Observers & Controller design (Linearization pendulum; upright position)

Example

• Linearization of the pendulum on a cart in the upright position

$$
A = \left[\begin{array}{cccc} 0 & 0 & 1.00 & 0 \\ 0 & 0 & 0 & 1.00 \\ 0 & 3.27 & -0.07 & -0.03 \\ 0 & 6.54 & -0.03 & -0.07 \end{array}\right], \quad B = \left[\begin{array}{c} 0 \\ 0 \\ 0.67 \\ 0.33 \end{array}\right]
$$

with output

$$
C = \left[\begin{array}{rrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right];
$$

i.e., only the position of the cart and the angle of the pendulum are available as measurements.

• Feedback gain

$$
K = \begin{bmatrix} 7.34 & -140.84 & 15.47 & -60.54 \end{bmatrix}
$$

ensures that the closed loop matrix $A + BK$ is Hurwitz and has the eigenvalues $\{-4, -3, -2, -1\}$.

• Initial conditions:

$$
x_0 = [1, 1, 1, 1]^T, \qquad \hat{x} = [1, 1, 0, 0]^T
$$

The observer gain

$$
L = \begin{bmatrix} -2.90 & -1.07 \\ -3.75 & -6.49 \\ -2.58 & -6.96 \\ -8.53 & -16.64 \end{bmatrix}
$$

ensures that $A+LC$ has the same eigenvalues as $A+BK$.

Luenberger Observers & Controller design (Linearization pendulum; upright position)

Example

• Linearization of the pendulum on a cart in the upright position

$$
A = \left[\begin{array}{cccc} 0 & 0 & 1.00 & 0 \\ 0 & 0 & 0 & 1.00 \\ 0 & 3.27 & -0.07 & -0.03 \\ 0 & 6.54 & -0.03 & -0.07 \end{array}\right], \quad B = \left[\begin{array}{c} 0 \\ 0 \\ 0.67 \\ 0.33 \end{array}\right]
$$

with output

$$
C = \left[\begin{array}{rrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right];
$$

i.e., only the position of the cart and the angle of the pendulum are available as measurements.

• Feedback gain

$$
K = [7.34 \quad -140.84 \quad 15.47 \quad -60.54]
$$

ensures that the closed loop matrix $A + BK$ is Hurwitz and has the eigenvalues $\{-4, -3, -2, -1\}$.

• Initial conditions:

$$
x_0 = [1, 1, 1, 1]^T, \qquad \hat{x} = [1, 1, 0, 0]^T
$$

The observer gain

$$
L = \begin{bmatrix} -2.90 & -1.07 \\ -3.75 & -6.49 \\ -2.58 & -6.96 \\ -8.53 & -16.64 \end{bmatrix}
$$

ensures that $A+LC$ has the same eigenvalues as $A+BK$.

Luenberger Observers & Controller design (Linearization pendulum; upright position)

Example

• Linearization of the pendulum on a cart in the upright position

$$
A = \left[\begin{array}{cccc} 0 & 0 & 1.00 & 0 \\ 0 & 0 & 0 & 1.00 \\ 0 & 3.27 & -0.07 & -0.03 \\ 0 & 6.54 & -0.03 & -0.07 \end{array}\right], \quad B = \left[\begin{array}{c} 0 \\ 0 \\ 0.67 \\ 0.33 \end{array}\right]
$$

with output

$$
C = \left[\begin{array}{rrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right];
$$

i.e., only the position of the cart and the angle of the pendulum are available as measurements.

• Feedback gain

 $K = [7.34 \quad -140.84 \quad 15.47 \quad -60.54]$

ensures that the closed loop matrix $A + BK$ is Hurwitz and has the eigenvalues $\{-4, -3, -2, -1\}$.

• Initial conditions:

$$
x_0 = [1, 1, 1, 1]^T, \qquad \hat{x} = [1, 1, 0, 0]^T
$$

The observer gain

$$
L = \begin{bmatrix} -2.90 & -1.07 \\ -3.75 & -6.49 \\ -2.58 & -6.96 \\ -8.53 & -16.64 \end{bmatrix}
$$

ensures that $A+LC$ has the same eigenvalues as $A+BK$.

Note that:

• The convergence is independent of the initial condition x_0 , \hat{x}_0 since for linear systems local results are also global and the stability properties of the linear system solely depend on the properties of the closed loop matrix.

Section 2

[Minimum Energy Estimator \(Continuous time setting\)](#page-20-0)

Recall

- We have discussed optimal control for linear systems
- Can we derive an optimal estimator (in terms of minimal energy)?

Recall

- We have discussed optimal control for linear systems
- Can we derive an optimal estimator (in terms of minimal energy)?
- Consider a perturbed linear system:

$$
\begin{aligned}\n\dot{x} &= Ax + Bu + \bar{B}v \\
y &= Cx + Du + w\n\end{aligned}
$$

- *disturbance*: $v(\cdot) : \mathbb{R} \to \mathbb{R}^q$ (model uncertainty)
- \bullet *measurement noise*: $w(\cdot): \mathbb{R} \to \mathbb{R}^p$ (depending on the sensors)

Recall

- We have discussed optimal control for linear systems
- Can we derive an optimal estimator (in terms of minimal energy)?
- Consider a perturbed linear system:

$$
\begin{aligned}\n\dot{x} &= Ax + Bu + \bar{B}v \\
y &= Cx + Du + w\n\end{aligned}
$$

- *disturbance*: $v(\cdot) : \mathbb{R} \to \mathbb{R}^q$ (model uncertainty)
- \bullet *measurement noise*: $w(\cdot): \mathbb{R} \to \mathbb{R}^p$ (depending on the sensors)

The *minimum energy estimation* problem:

• For given $u(\cdot)$, $y(\cdot)$, find $\bar{x}:\mathbb{R}_{\leq t_0}\to\mathbb{R}^n$ for $t_0\geq 0$, which satisfies the dynamics

$$
\dot{\bar{x}} = A\bar{x} + Bu + \bar{B}v
$$

$$
y = C\bar{x} + Du + w
$$

an which minimizes the cost function

$$
J_{\text{MEE}}(\bar{x}(t_0), v(\cdot)) = \int_{-\infty}^{t_0} w(\tau)^T Q w(\tau) + v(\tau)^T R v(\tau) d\tau
$$

Recall

- We have discussed optimal control for linear systems
- Can we derive an optimal estimator (in terms of minimal energy)?
- Consider a perturbed linear system:

$$
\begin{aligned}\n\dot{x} &= Ax + Bu + \bar{B}v \\
y &= Cx + Du + w\n\end{aligned}
$$

- *disturbance*: $v(\cdot) : \mathbb{R} \to \mathbb{R}^q$ (model uncertainty)
- **•** measurement noise: $w(\cdot): \mathbb{R} \to \mathbb{R}^p$ (depending on the sensors)

The *minimum energy estimation* problem:

• For given $u(\cdot)$, $y(\cdot)$, find $\bar{x} : \mathbb{R}_{\leq t_0} \to \mathbb{R}^n$ for $t_0 \geq 0$, which satisfies the dynamics

$$
\dot{\bar{x}} = A\bar{x} + Bu + \bar{B}v
$$

$$
y = C\bar{x} + Du + w
$$

an which minimizes the cost function

$$
J_{\text{MEE}}(\bar{x}(t_0), v(\cdot)) = \int_{-\infty}^{t_0} w(\tau)^T Q w(\tau) + v(\tau)^T R v(\tau) d\tau
$$

Note that:

- Design parameters: $Q \in \mathcal{S}_{>0}^p$, $R \in \mathcal{S}_{>0}^q$
- \bullet $J_{\text{MEE}}(\bar{x}(t_0), v(\cdot))$ is a function of $v(\cdot)$ but not $w(\cdot)$:

$$
J_{\text{MEE}}(\bar{x}(t_0), v(\cdot)) = \int_{-\infty}^{t_0} v^T R v
$$

$$
+ (C\bar{x} + Du - y)^T Q (C\bar{x} + Du - y) d\tau
$$

 \rightarrow Given past $u(\cdot)$ and $y(\cdot)$, the optimization problem aims to find the disturbance $v(\cdot)$ with minimum energy and an estimated state $\bar{x}(t_0)$ that explains the observed inputs and outputs.

Recall

- We have discussed optimal control for linear systems
- Can we derive an optimal estimator (in terms of minimal energy)?
- Consider a perturbed linear system:

$$
\begin{aligned}\n\dot{x} &= Ax + Bu + \bar{B}v \\
y &= Cx + Du + w\n\end{aligned}
$$

- *disturbance*: $v(\cdot) : \mathbb{R} \to \mathbb{R}^q$ (model uncertainty)
- \bullet *measurement noise*: $w(\cdot): \mathbb{R} \to \mathbb{R}^p$ (depending on the sensors)

The *minimum energy estimation* problem:

• For given $u(\cdot)$, $y(\cdot)$, find $\bar{x} : \mathbb{R}_{\leq t_0} \to \mathbb{R}^n$ for $t_0 \geq 0$, which satisfies the dynamics

$$
\dot{\bar{x}} = A\bar{x} + Bu + \bar{B}v
$$

$$
y = C\bar{x} + Du + w
$$

an which minimizes the cost function

$$
J_{\text{MEE}}(\bar{x}(t_0), v(\cdot)) = \int_{-\infty}^{t_0} w(\tau)^T Q w(\tau) + v(\tau)^T R v(\tau) d\tau
$$

Note that:

- Design parameters: $Q \in \mathcal{S}_{>0}^p$, $R \in \mathcal{S}_{>0}^q$
- \bullet $J_{\text{MEE}}(\bar{x}(t_0), v(\cdot))$ is a function of $v(\cdot)$ but not $w(\cdot)$:

$$
J_{\text{MEE}}(\bar{x}(t_0), v(\cdot)) = \int_{-\infty}^{t_0} v^T R v
$$

$$
+ (C\bar{x} + Du - y)^T Q (C\bar{x} + Du - y) d\tau
$$

- \rightarrow Given past $u(\cdot)$ and $y(\cdot)$, the optimization problem aims to find the disturbance $v(\cdot)$ with minimum energy and an estimated state $\bar{x}(t_0)$ that explains the observed inputs and outputs.
- \bullet To ensure that the problem is well-defined we assume

 $\bar{x}(t) \to 0$, $u(t) \to 0$, $w(t) \to 0$, $u(t) \to 0$ for $t \to -\infty$

- \bullet Q large: penalize noise $w(\cdot)$; neglect disturbance
- R large: penalize disturbance $v(\cdot)$; neglect noise

Optimization problem

$$
V_{\text{MEE}}(\bar{x}_0) = \min_{v(\cdot): \mathbb{R} \to \mathbb{R}^q} J_{\text{MEE}}(\bar{x}_0, v(\cdot))
$$

subject to $\dot{x} = Ax + Bu + \bar{B}v$

Additionally define

 $\bar{\mathcal{X}} = \{x : \mathbb{R}_{\leq t_0} \to \mathbb{R}^n\}$ and $\mathcal{V} = \{v : \mathbb{R}_{\leq t_0} \to \mathbb{R}^q\}.$

Optimization problem

$$
V_{\text{MEE}}(\bar{x}_0) = \min_{v(\cdot): \mathbb{R} \to \mathbb{R}^q} J_{\text{MEE}}(\bar{x}_0, v(\cdot))
$$

subject to $\dot{x} = Ax + Bu + Bv$

Additionally define

 $\bar{\mathcal{X}} = \{x : \mathbb{R}_{\leq t_0} \to \mathbb{R}^n\}$ and $\mathcal{V} = \{v : \mathbb{R}_{\leq t_0} \to \mathbb{R}^q\}.$

Definition (Feedback invariant)

Consider the system

 $\dot{\bar{x}} = A\bar{x} + Bu + \bar{B}v$ $y = C\bar{x} + Du + w$, $t_0 \in \mathbb{R}_{\geq 0}$ and fixed $u(\cdot) : \mathbb{R}_{\leq t_0} \to \mathbb{R}^m$, $y(\cdot) : \mathbb{R}_{\leq t_0} \to \mathbb{R}^p$. A functional $H : \overline{X} \times \mathcal{V} \to \mathbb{R}$ is called feedback invariant if for all solution pairs $(\bar{x}_1(\cdot), v_1(\cdot)), (\bar{x}_2(\cdot), v_2(\cdot)) \in \bar{\mathcal{X}} \times \mathcal{V}$ with $\bar{x}_1(t_0) = \bar{x}_2(t_0)$ the equation

$$
H(\bar{x}_1(\cdot), v_1(\cdot)) = H(\bar{x}_2(\cdot), v_2(\cdot))
$$

holds.

Optimization problem

$$
V_{\text{MEE}}(\bar{x}_0) = \min_{v(\cdot): \mathbb{R} \to \mathbb{R}^q} J_{\text{MEE}}(\bar{x}_0, v(\cdot))
$$

subject to $\dot{x} = Ax + Bu + Bv$

Additionally define

 $\bar{\mathcal{X}} = \{x : \mathbb{R}_{\leq t_0} \to \mathbb{R}^n\}$ and $\mathcal{V} = \{v : \mathbb{R}_{\leq t_0} \to \mathbb{R}^q\}.$

Definition (Feedback invariant)

Consider the system

 $\dot{\bar{x}} = A\bar{x} + Bu + \bar{B}v$ $y = C\bar{x} + Du + w$, $t_0 \in \mathbb{R}_{\geq 0}$ and fixed $u(\cdot) : \mathbb{R}_{\leq t_0} \to \mathbb{R}^m$, $y(\cdot) : \mathbb{R}_{\leq t_0} \to \mathbb{R}^p$. A functional $H : \overline{X} \times \mathcal{V} \to \mathbb{R}$ is called feedback invariant if for all solution pairs $(\bar{x}_1(\cdot), v_1(\cdot)), (\bar{x}_2(\cdot), v_2(\cdot)) \in \bar{\mathcal{X}} \times \mathcal{V}$ with $\bar{x}_1(t_0) = \bar{x}_2(t_0)$ the equation

$$
H(\bar{x}_1(\cdot),v_1(\cdot))=H(\bar{x}_2(\cdot),v_2(\cdot))
$$

holds.

Theorem (Feedback invariant)

Consider the linear system for a $y(\cdot)$: $\mathbb{R}_{\leq t_0} \to \mathbb{R}^p$ and $u(\cdot): \mathbb{R}_{\leq t_0} \to \mathbb{R}^m$ for $t_0 > 0$. Then, for every symmetric *matrix* $\overline{P} \in S^n$, differentiable signal $\beta(\cdot) : \mathbb{R}_{\leq t_0} \to \mathbb{R}^n$, and *a scalar* $H_0 \in \mathbb{R}^n$ *(which does not depend on* $\overline{x}(\cdot)$ *and* v(·)*), the functional*

$$
H(\bar{x}(\cdot), v(\cdot)) = H_0
$$

+ $\int_{-\infty}^{t_0} \left(A\bar{x} + Bu + \bar{B}v - \dot{\beta} \right)^T P(\bar{x} - \beta)$
+ $(\bar{x} - \beta)^T P \left(A\bar{x} + Bu + \bar{B}v - \dot{\beta} \right) d\tau$
- $(\bar{x}(t_0) - \beta(t_0))^T P (\bar{x}(t_0) - \beta(t_0))$

is a feedback invariant as long as $\lim_{t\to-\infty} (\bar{x}(t) - \beta(t)) = 0.$

Perturbed linear system:

$$
\dot{x} = Ax + Bu + \bar{B}v
$$

$$
y = Cx + Du + w
$$

• Optimization problem

$$
V_{\text{MEE}}(\bar{x}_0) = \min_{v(\cdot): \mathbb{R} \to \mathbb{R}^q} J_{\text{MEE}}(\bar{x}_0, v(\cdot))
$$

subject to $\dot{x} = Ax + Bu + \bar{B}v$

- \rightsquigarrow 'Optimal disturbance' $v(\cdot): \mathbb{R} \to \mathbb{R}^q$:
- 'Optimal disturbance' defines 'optimal estimated dynamics':

$$
\dot{\bar{x}} = A\bar{x} + Bu + \bar{B}v
$$

$$
y = C\bar{x} + Du + w
$$

Perturbed linear system:

$$
\begin{aligned}\n\dot{x} &= Ax + Bu + \bar{B}v \\
y &= Cx + Du + w\n\end{aligned}
$$

• Optimization problem

$$
V_{\text{MEE}}(\bar{x}_0) = \min_{v(\cdot): \mathbb{R} \to \mathbb{R}^q} J_{\text{MEE}}(\bar{x}_0, v(\cdot))
$$

subject to $\dot{x} = Ax + Bu + \bar{B}v$

- \rightsquigarrow 'Optimal disturbance' $v(\cdot): \mathbb{R} \to \mathbb{R}^q$:
- 'Optimal disturbance' defines 'optimal estimated dynamics':

$$
\dot{\bar{x}} = A\bar{x} + Bu + \bar{B}v
$$

$$
y = C\bar{x} + Du + w
$$

Theorem (The minimum energy estimator)

- *Consider the perturbed linear system and assume that* (A, \overline{B}) *is controllable and* (A, C) *is detectable.*
- *Consider the optimization problem where the cost function is defined through positive definite matrices* $Q \in \mathcal{S}_{>0}^p$ and $R \in \mathcal{S}_{>0}^q$.
- *Then there exists* $S \in S^n_{>0}$ to the *dual algebraic Riccati equation*

 $AS + SA^T + \bar{B}R^{-1}\bar{B}^T - SC^TOCS = 0$

such that $A - LC$ *is Hurwitz, where* $L = SC^TQ$ *.*

The minimum energy estimator is given by \bullet

 $\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x} - Du)$

and the initial condition $\hat{x}(t_0) = \bar{x}_0, t_0 \in \mathbb{R}_{\geq 0}$.

Example (Pendulum)

The linearization at the stable equilibrium $[x_1^e, x_2^e]^T = [\theta^e, \dot{\theta}^e]^T = [\pi, 0]^T;$ $\dot{r} = Ar + Bu + \bar{B}v$ $y = Cx + w$ $A = \left[\begin{array}{cc} 0 & 1 \\ mg\ell & \end{array} \right]$ $-\frac{mg\ell}{J+m\ell^2}$ $-\frac{\gamma}{J+m\ell^2}$ $\Bigg\}$, $B = \left[\frac{\ell}{J+m\ell^2}\right]$ $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $\bar{B} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], Q = 1, R = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$ Constants: $m = \ell = 1, J = 0, q = 9.81,$ and $\gamma = 0.1$. Observer gain: $L = \left[\begin{array}{c} 0.9548 \\ -0.0441 \end{array} \right]$

Eigenvalues of $A - LC$: $\lambda_{1,2} = -0.5274 \pm 3.0957j$ Initialization: $x_0 = [1, 1]^T$ and $\hat{x}_0 = [0, 0]^T$

Example (Pendulum)

The linearization at the stable equilibrium $[x_1^e, x_2^e]^T = [\theta^e, \dot{\theta}^e]^T = [\pi, 0]^T;$ $\dot{r} = Ar + Bu + \bar{B}v$ $y = Cx + w$ $A = \left[\begin{array}{cc} 0 & 1 \\ mg\ell & \end{array} \right]$ $-\frac{mg\ell}{J+m\ell^2}$ $-\frac{\gamma}{J+m\ell^2}$ $\Bigg\}$, $B = \left[\frac{\ell}{J+m\ell^2}\right]$ $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $\bar{B} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], Q = 1, R = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$ Constants: $m = \ell = 1, J = 0, q = 9.81,$ and $\gamma = 0.1$. Observer gain: $L = \left[\begin{array}{c} 0.9548 \\ -0.0441 \end{array} \right]$ Eigenvalues of $A - LC$: $\lambda_{1,2} = -0.5274 \pm 3.0957j$ Initialization: $x_0 = [1, 1]^T$ and $\hat{x}_0 = [0, 0]^T$

Concluding remarks:

- Here, we have derived the *minimum energy estimator* using a *deterministic setting*
- **In the** *stochastic setting* the minimum energy estimator is known as (cont. time) Kalman filter.
- \bullet Under certain assumptions on disturbances $v(t)$, $w(t)$ in the system dynamics

 $\dot{x} = Ax + Bu + \bar{B}v$ $y = Cx + Du + w$

equivalences between the minimum energy estimator and the Kalman filter can be derived.

Concluding remarks:

- Here, we have derived the *minimum energy estimator* using a *deterministic setting*
- **In the** *stochastic setting* the minimum energy estimator is known as (cont. time) Kalman filter.
- \bullet Under certain assumptions on disturbances $v(t)$, $w(t)$ in the system dynamics

 $\dot{r} = Ar + Bu + \bar{B}v$ $y = Cx + Du + w$

equivalences between the minimum energy estimator and the Kalman filter can be derived.

 \bullet In particular, assume $v(\cdot)$ and $w(\cdot)$ represent functions of zero-mean Gaussian white noise with covariance matrices satisfying

$$
E[v(t)v(\tau)^{T}] = \delta(t - \tau)R^{-1},
$$

\n
$$
E[w(t)w(\tau)^{T}] = \delta(t - \tau)Q^{-1},
$$

for all $t, \tau \in \mathbb{R}$ and $Q \in S^p_{>0}$, $R \in S^q_{>0}$.

Additionally, $E[v(t)w(\tau)^T] = 0 \quad \forall t, \tau \in \mathbb{R}$. Here:

- *expected value*: E[·]:
- *Dirac delta function*: δ : $\mathbb{R} \to \mathbb{R} \cup \{\infty\}$

$$
\delta(t)=\left\{\begin{array}{ll} \infty, & t=0 \\ 0, & t\neq 0 \end{array}\right.\qquad \text{and}\qquad \int_{-\infty}^{\infty}\delta(t)dt=1.
$$

Concluding remarks:

- Here, we have derived the *minimum energy estimator* using a *deterministic setting*
- **In the** *stochastic setting* the minimum energy estimator is known as (cont. time) Kalman filter.
- \bullet Under certain assumptions on disturbances $v(t)$, $w(t)$ in the system dynamics

 $\dot{r} = Ar + Bu + \bar{B}v$ $y = Cx + Du + w$

equivalences between the minimum energy estimator and the Kalman filter can be derived.

 \bullet In particular, assume $v(\cdot)$ and $w(\cdot)$ represent functions of zero-mean Gaussian white noise with covariance matrices satisfying

$$
E[v(t)v(\tau)^{T}] = \delta(t - \tau)R^{-1},
$$

\n
$$
E[w(t)w(\tau)^{T}] = \delta(t - \tau)Q^{-1},
$$

for all $t, \tau \in \mathbb{R}$ and $Q \in S^p_{>0}$, $R \in S^q_{>0}$.

Additionally, $E[v(t)w(\tau)^T] = 0 \quad \forall t, \tau \in \mathbb{R}$. Here:

- *expected value*: E[·]:
- *Dirac delta function*: δ : $\mathbb{R} \to \mathbb{R} \cup \{\infty\}$

$$
\delta(t)=\left\{\begin{array}{ll} \infty, & t=0 \\ 0, & t\neq 0 \end{array}\right.\qquad \text{and}\qquad \int_{-\infty}^{\infty}\delta(t)dt=1.
$$

Under these conditions

 \bullet \hat{x} obtained through the minimum energy estimator minimizes the expected value

$$
\lim_{t \to \infty} \mathbf{E}\left[|x(t) - \hat{x}(t)|^2\right] \tag{1}
$$

 \rightarrow The Kalman filter is derived based on [\(1\)](#page-33-0)

Section 3

[The discrete time Kalman filter](#page-36-0)

Consider

$$
x(k+1) = Ax(k) + Bu(k) + \overline{B}v(k),
$$

$$
y(k) = Cx(k) + w(k).
$$

 $(v(k))_{k \in \mathbb{N}} \subset \mathbb{R}^q$, $(w(k))_{k \in \mathbb{N}} \subset \mathbb{R}^p$: unknown disturbances and measurement noise.

Goal: For a finite set of measurements $y(0), \ldots, y(k)$, define a state observer

$$
\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + \bar{B}\hat{v}(k), \quad \hat{x}(0) = \hat{x}_0
$$

$$
y(k) = C\hat{x}(k) + \hat{w}(k)
$$

and sequences $\hat{v}(\cdot)$, $\hat{w}(\cdot)$, to be determined.

• $\hat{v}(k)$, $\hat{w}(k)$ will be defined such that $\hat{x}(k)$ is optimal w.r.t. assumptions on $v(\cdot)$ and $w(\cdot)$, and w.r.t. the measured output $y(0), \ldots, y(k)$.

Consider

 $x(k+1) = Ax(k) + Bu(k) + \bar{B}v(k),$ $y(k) = Cx(k) + w(k).$

 $(v(k))_{k \in \mathbb{N}} \subset \mathbb{R}^q$, $(w(k))_{k \in \mathbb{N}} \subset \mathbb{R}^p$: unknown disturbances and measurement noise.

Goal: For a finite set of measurements $y(0), \ldots, y(k)$, define a state observer

$$
\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + \bar{B}\hat{v}(k), \quad \hat{x}(0) = \hat{x}_0
$$

$$
y(k) = C\hat{x}(k) + \hat{w}(k)
$$

and sequences $\hat{v}(\cdot)$, $\hat{w}(\cdot)$, to be determined.

- $\hat{v}(k)$, $\hat{w}(k)$ will be defined such that $\hat{x}(k)$ is optimal w.r.t. assumptions on $v(\cdot)$ and $w(\cdot)$, and w.r.t. the measured output $y(0), \ldots, y(k)$.
- *Variance*: Var(·)
- *Expected value*: E[·]

Assumption

 $v:\mathbb{N}\to\mathbb{R}^q$, $w:\mathbb{N}\to\mathbb{R}^p$ sequences of zero-mean Gaussian white noise such that $\text{Var}(v(k)) = Q^{-1} \in \mathcal{S}^q_{>0}$ and $\text{Var}(w(k)) = R^{-1} \in \mathcal{S}_{>0}^p$ and $\text{E}\left[v(k)w(j)^T\right] = 0$ for all $k, j \in \mathbb{N}_0$. Additionally, the initial state is assumed to be independent of $v(k)$ and $w(k)$ in the sense that $\text{E}\left[x_0v(k)^T\right]=0$ and $\mathbf{E}\left[x_0w(k)^T\right] = 0$ for all $k \in \mathbb{N}_0$.

Consider

 $x(k + 1) = Ax(k) + Bu(k) + \bar{B}v(k),$ $y(k) = Cx(k) + w(k).$

 $(v(k))_{k \in \mathbb{N}} \subset \mathbb{R}^q$, $(w(k))_{k \in \mathbb{N}} \subset \mathbb{R}^p$: unknown disturbances and measurement noise.

Goal: For a finite set of measurements $y(0), \ldots, y(k)$, define a state observer

$$
\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + \bar{B}\hat{v}(k), \quad \hat{x}(0) = \hat{x}_0
$$

$$
y(k) = C\hat{x}(k) + \hat{w}(k)
$$

and sequences $\hat{v}(\cdot)$, $\hat{w}(\cdot)$, to be determined.

- $\hat{v}(k)$, $\hat{w}(k)$ will be defined such that $\hat{x}(k)$ is optimal w.r.t. assumptions on $v(\cdot)$ and $w(\cdot)$, and w.r.t. the measured output $y(0), \ldots, y(k)$.
- *Variance*: Var(·)
- *Expected value*: E[·]

Assumption

 $v:\mathbb{N}\to\mathbb{R}^q$, $w:\mathbb{N}\to\mathbb{R}^p$ sequences of zero-mean Gaussian white noise such that $\text{Var}(v(k)) = Q^{-1} \in \mathcal{S}^q_{>0}$ and $\text{Var}(w(k)) = R^{-1} \in \mathcal{S}_{>0}^p$ and $\text{E}\left[v(k)w(j)^T\right] = 0$ for all $k, j \in \mathbb{N}_0$. Additionally, the initial state is assumed to be independent of $v(k)$ and $w(k)$ in the sense that $\text{E}\left[x_0v(k)^T\right]=0$ and $\mathbf{E}\left[x_0w(k)^T\right] = 0$ for all $k \in \mathbb{N}_0$.

Additionally, assume that

- \bullet (A, B, C) is controllable and observable
- A is nonsingular (if not, define $u = Kx + \tilde{u}$ with $A + BK$ nonsingular)

Consider

$$
x(k+1) = Ax(k) + Bu(k) + \overline{B}v(k),
$$

$$
y(k) = Cx(k) + w(k).
$$

- $(v(k))_{k \in \mathbb{N}} \subset \mathbb{R}^q$, $(w(k))_{k \in \mathbb{N}} \subset \mathbb{R}^p$: unknown disturbances and measurement noise.
- Goal: For a finite set of measurements $y(0), \ldots, y(k)$, define a state observer

$$
\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + \bar{B}\hat{v}(k), \quad \hat{x}(0) = \hat{x}_0
$$

$$
y(k) = C\hat{x}(k) + \hat{w}(k)
$$

and sequences $\hat{v}(\cdot)$, $\hat{w}(\cdot)$, to be determined.

- \bullet $\hat{v}(k)$, $\hat{w}(k)$ will be defined such that $\hat{x}(k)$ is optimal w.r.t. assumptions on $v(\cdot)$ and $w(\cdot)$, and w.r.t. the measured output $y(0), \ldots, y(k)$.
- *Variance*: Var(·)
- *expectation*: E[·]

• Split the estimated state $\hat{x} = \hat{x}_d + \hat{x}_s$ (deterministic and stochastic component)

$$
\hat{x}_d(k+1) = A\hat{x}_d(k) + Bu(k), \qquad \hat{x}_{d,0} = \hat{x}_0
$$

$$
\hat{y}_d(k) = C\hat{x}_d(k)
$$

and

$$
\hat{x}_s(k+1) = A\hat{x}_s(k) + \bar{B}\hat{v}(k) \qquad \hat{x}_{s,0} = 0
$$

$$
\hat{y}_s(k) = C\hat{x}_s(k) + \hat{w}(k),
$$

Consider

$$
x(k+1) = Ax(k) + Bu(k) + \overline{B}v(k),
$$

$$
y(k) = Cx(k) + w(k).
$$

- $(v(k))_{k \in \mathbb{N}} \subset \mathbb{R}^q$, $(w(k))_{k \in \mathbb{N}} \subset \mathbb{R}^p$: unknown disturbances and measurement noise.
- Goal: For a finite set of measurements $y(0), \ldots, y(k)$, define a state observer

$$
\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + \bar{B}\hat{v}(k), \quad \hat{x}(0) = \hat{x}_0
$$

$$
y(k) = C\hat{x}(k) + \hat{w}(k)
$$

and sequences $\hat{v}(\cdot)$, $\hat{w}(\cdot)$, to be determined.

- \bullet $\hat{v}(k)$, $\hat{w}(k)$ will be defined such that $\hat{x}(k)$ is optimal w.r.t. assumptions on $v(\cdot)$ and $w(\cdot)$, and w.r.t. the measured output $y(0), \ldots, y(k)$.
- *Variance*: Var(·)
- *expectation*: E[·]

• Split the estimated state $\hat{x} = \hat{x}_d + \hat{x}_s$ (deterministic and stochastic component)

$$
\hat{x}_d(k+1) = A\hat{x}_d(k) + Bu(k), \qquad \hat{x}_{d,0} = \hat{x}_0
$$

$$
\hat{y}_d(k) = C\hat{x}_d(k)
$$

and

$$
\hat{x}_s(k+1) = A\hat{x}_s(k) + \bar{B}\hat{v}(k) \qquad \hat{x}_{s,0} = 0
$$

$$
\hat{y}_s(k) = C\hat{x}_s(k) + \hat{w}(k),
$$

Consider

$$
x(k+1) = Ax(k) + Bu(k) + \overline{B}v(k),
$$

$$
y(k) = Cx(k) + w(k).
$$

- $(v(k))_{k \in \mathbb{N}} \subset \mathbb{R}^q$, $(w(k))_{k \in \mathbb{N}} \subset \mathbb{R}^p$: unknown disturbances and measurement noise.
- Goal: For a finite set of measurements $y(0), \ldots, y(k)$, define a state observer

$$
\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + \bar{B}\hat{v}(k), \quad \hat{x}(0) = \hat{x}_0
$$

$$
y(k) = C\hat{x}(k) + \hat{w}(k)
$$

and sequences $\hat{v}(\cdot)$, $\hat{w}(\cdot)$, to be determined.

- \bullet $\hat{v}(k)$, $\hat{w}(k)$ will be defined such that $\hat{x}(k)$ is optimal w.r.t. assumptions on $v(\cdot)$ and $w(\cdot)$, and w.r.t. the measured output $y(0), \ldots, y(k)$.
- *Variance*: Var(·)
- *expectation*: E[·]

• Split the estimated state $\hat{x} = \hat{x}_d + \hat{x}_s$ (deterministic and stochastic component)

$$
\hat{x}_d(k+1) = A\hat{x}_d(k) + Bu(k), \qquad \hat{x}_{d,0} = \hat{x}_0
$$

$$
\hat{y}_d(k) = C\hat{x}_d(k)
$$

and

$$
\hat{x}_s(k+1) = A\hat{x}_s(k) + \bar{B}\hat{v}(k) \qquad \hat{x}_{s,0} = 0
$$

$$
\hat{y}_s(k) = C\hat{x}_s(k) + \hat{w}(k),
$$

• For given $\hat{x}_d(0) = \hat{x}_{d,0}$ and $(u(k))_{k \in \mathbb{N}}$ it holds that

$$
\hat{x}_d(k) = A^k \hat{x}_{d,0} + \sum_{i=1}^k A^{k-i} B u(i-1) \quad k \in \mathbb{N}
$$

 \bullet \hat{x}_s cannot be computed because it depends on $\hat{v}(\cdot)$ and $\hat{w}(\cdot)$.

Consider

$$
x(k+1) = Ax(k) + Bu(k) + \overline{B}v(k),
$$

$$
y(k) = Cx(k) + w(k).
$$

- $(v(k))_{k \in \mathbb{N}} \subset \mathbb{R}^q$, $(w(k))_{k \in \mathbb{N}} \subset \mathbb{R}^p$: unknown disturbances and measurement noise.
- Goal: For a finite set of measurements $y(0), \ldots, y(k)$, define a state observer

$$
\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + \bar{B}\hat{v}(k), \quad \hat{x}(0) = \hat{x}_0
$$

$$
y(k) = C\hat{x}(k) + \hat{w}(k)
$$

and sequences $\hat{v}(\cdot)$, $\hat{w}(\cdot)$, to be determined.

- \bullet $\hat{v}(k)$, $\hat{w}(k)$ will be defined such that $\hat{x}(k)$ is optimal w.r.t. assumptions on $v(\cdot)$ and $w(\cdot)$, and w.r.t. the measured output $y(0), \ldots, y(k)$.
- *Variance*: Var(·)
- *expectation*: E[·]

• Split the estimated state $\hat{x} = \hat{x}_d + \hat{x}_s$ (deterministic and stochastic component) \hat{x} (k + 1) = $A\hat{x}$, (k) \pm Bu(k), \hat{x} , \hat{y} = \hat{x}

$$
\begin{aligned} \dot{x}_d(k+1) &= Ax_d(k) + Bu(k), \qquad \dot{x}_{d,0} = \dot{x}_0\\ \hat{y}_d(k) &= C\hat{x}_d(k) \end{aligned}
$$

and

$$
\hat{x}_s(k+1) = A\hat{x}_s(k) + \bar{B}\hat{v}(k) \qquad \hat{x}_{s,0} = 0
$$

$$
\hat{y}_s(k) = C\hat{x}_s(k) + \hat{w}(k),
$$

• For given $\hat{x}_d(0) = \hat{x}_{d,0}$ and $(u(k))_{k \in \mathbb{N}}$ it holds that

$$
\hat{x}_d(k) = A^k \hat{x}_{d,0} + \sum_{i=1}^k A^{k-i} B u(i-1) \quad k \in \mathbb{N}
$$

- \bullet \hat{x}_s cannot be computed because it depends on $\hat{v}(\cdot)$ and $\hat{w}(\cdot)$.
- → We look for $\hat{v}(\cdot)$, $\hat{w}(\cdot)$ which describe the mismatch

 $\hat{y}_s(k) = y(k) - \hat{y}_d(k)$

between the measured output $y(k)$ and the deterministic output $\hat{y}_d(k)$ in an optimal way.

It holds that (for all
$$
0 \le j \le k \in \mathbb{N}
$$
):
\n
$$
\hat{x}_s(k) = A\hat{x}_s(k-1) + \bar{B}\hat{v}(k-1)
$$
\n
$$
= A^{k-j}\hat{x}_s(j) + \sum_{i=j+1}^k A^{k-i}\bar{B}\hat{v}(i-1)
$$

or equivalently

$$
\hat{x}_s(j) = A^{j-k}\hat{x}_s(k) - \sum_{i=j+1}^k A^{j-i} \bar{B} \hat{v}(i-1).
$$

Moreover: $(j \in \{0, \ldots, k\})$ $\hat{y}_s(i) = C\hat{x}_s(i) + \hat{w}(i)$ $= CA^{j-k}\hat{x}_s(k) + \hat{w}(j) - \sum_{k=0}^{k} CA^{j-i} \bar{B} \hat{v}(i-1)$ $i = i + 1$

It holds that (for all $0 \leq j \leq k \in \mathbb{N}$): $\hat{x}_{s}(k) = A\hat{x}_{s}(k-1) + \bar{B}\hat{v}(k-1)$ $= A^{k-j} \hat{x}_s(j) + \sum_{k=1}^{k} A^{k-i} \bar{B} \hat{v}(i-1)$ $i=i+1$

or equivalently

$$
\hat{x}_s(j) = A^{j-k}\hat{x}_s(k) - \sum_{i=j+1}^k A^{j-i} \bar{B} \hat{v}(i-1).
$$

Moreover: $(i \in \{0, \ldots, k\})$ $\hat{y}_s(i) = C\hat{x}_s(i) + \hat{w}(i)$ $= CA^{j-k}\hat{x}_s(k) + \hat{w}(j) - \sum_{k=0}^{k} CA^{j-i} \bar{B} \hat{v}(i-1)$ $i = i + 1$

In vector form: $(j \in \{0, \ldots, k\})$

$$
\Lambda^j_k = \Phi^j_k \hat{x}^j_s(k) + \Gamma^j_k
$$

Where
\n
$$
\Lambda_k^j = \begin{bmatrix} \hat{y}_s(0) \\ \hat{y}_s(1) \\ \vdots \\ \hat{y}_s(j) \end{bmatrix}, \qquad \Phi_k^j = \begin{bmatrix} CA^{-k} \\ CA^{1-k} \\ \vdots \\ CA^{j-k} \end{bmatrix},
$$
\n
$$
\Gamma_k^j = \begin{bmatrix} \hat{w}(0) - \sum_{i=1}^k CA^{1-i} \bar{B} \hat{v}(i-1) \\ \hat{w}(1) - \sum_{i=2}^k CA^{2-i} \bar{B} \hat{v}(i-1) \\ \vdots \\ \hat{w}(j) - \sum_{i=j+1}^k CA^{k-i} \bar{B} \hat{v}(i-1) \end{bmatrix}
$$

It holds that (for all
$$
0 \le j \le k \in \mathbb{N}
$$
):
\n
$$
\hat{x}_s(k) = A\hat{x}_s(k-1) + \bar{B}\hat{v}(k-1)
$$
\n
$$
= A^{k-j}\hat{x}_s(j) + \sum_{i=j+1}^k A^{k-i}\bar{B}\hat{v}(i-1)
$$

or equivalently

$$
\hat{x}_s(j) = A^{j-k}\hat{x}_s(k) - \sum_{i=j+1}^k A^{j-i} \bar{B} \hat{v}(i-1).
$$

Moreover: $(j \in \{0, \ldots, k\})$

$$
\hat{y}_s(j) = C\hat{x}_s(j) + \hat{w}(j)
$$

$$
= CA^{j-k}\hat{x}_s(k) + \hat{w}(j) - \sum_{i=j+1}^k CA^{j-i}\bar{B}\hat{v}(i-1)
$$

In vector form: $(j \in \{0, \ldots, k\})$

$$
\Lambda^j_k=\Phi^j_k\hat{x}^j_s(k)+\Gamma^j_k
$$

Note that:

- $j \in \{0, \ldots, k\}$ indicates that $y(0)$ to $y(j)$ are taken into account to calculate the stochastic part $\hat{x}_{s}^{j}(k)$
- $\Lambda_k^k = \Phi_k^k \hat{x}_s^k(k) + \Gamma_k^k$
- Λ_k^j contains mismatch between $y(\cdot)$ and $\hat{y}_d(\cdot)$
- \rightsquigarrow Find $\hat{x}_{s}^{j}(k)$ which fits the data in an optimal way \leadsto estimate of $x(k)$ through $\hat{x}(k) = \hat{x}_d(k) + \hat{x}_s^j(k)$
- Λ_k^j and Φ_k^j are known; Γ_k^j is not known

Note that:

- $\Lambda_k^j,\,\Phi_k^j$ are known; Γ_k^j is not known; $(\Lambda_k^k=\Phi_k^k\hat{x}_s^k(k)+\Gamma_k^k)$
- $(v(k))_{k\in\mathbb{N}}$ and $(w(k))_{k\in\mathbb{N}}$ sequences of Gaussian white noise with zero mean
- Find $\hat{x}_{s}^{j}(k)$ that minimizes the expected value

$$
F(\hat{x}_s^j(k), W_k^j) = \mathbf{E}\left[|\Lambda_k^j - \Phi_k^j \hat{x}_s^j(k)|_{W_k^j}\right]
$$

for $W_k^j \in \mathcal{S}_{>0}^{p(j+1)}$.

Note that:

- $\Lambda_k^j,\,\Phi_k^j$ are known; Γ_k^j is not known; $(\Lambda_k^k=\Phi_k^k\hat{x}_s^k(k)+\Gamma_k^k)$
- $(v(k))_{k\in\mathbb{N}}$ and $(w(k))_{k\in\mathbb{N}}$ sequences of Gaussian white noise with zero mean
- Find $\hat{x}_{s}^{j}(k)$ that minimizes the expected value

$$
F(\hat{x}_s^j(k), W_k^j) = \mathrm{E}\left[|\Lambda_k^j - \Phi_k^j \hat{x}_s^j(k)|_{W_k^j}\right]
$$

for $W_k^j \in \mathcal{S}_{>0}^{p(j+1)}$.

For $(\Phi_k^j)^T W_k^j \Phi_k^j$ nonsingular, it holds that:

$$
\begin{split} F(\hat{x}^j_s(k), W^j_k) &= {\rm E}\left[(\Lambda^j_k - \Phi^j_k \hat{x}^j_s(k))^{T} W^j_k (\Lambda^j_k - \Phi^j_k \hat{x}^j_s(k)) \right] \\ &= {\rm E}\left[[(\Phi^j_k)^T W_k \Phi^j_k) \hat{x}^j_s(k) - (\Phi^j_k)^T W^j_k \Lambda^j_k]^{T} ((\Phi^j_k)^T W^j_k \Phi^j_k)^{-1} \right. \\ &\qquad \qquad \cdot [(\Phi^j_k)^T W^j_k \Phi^j_k) \hat{x}^j_s(k) - (\Phi^j_k)^T W^j_k \Lambda^j_k] \right] \\ &\qquad \qquad + {\rm E}\left[(\Lambda^j_k)^T (I - W^j_k \Phi^j_k ((\Phi^j_k)^T W^j_k \Phi^j_k)^{-1} (\Phi^j_k)^T) W^j_k \Lambda^j_k \right] \end{split}
$$

Since second term is independent of $\hat{x}_{s}^{j}(k)$ $\hat{x}_s^j(k) = \hat{x}_s^j(k;W_k^j) = ((\Phi_k^j)^T W_k^j \Phi_k^j)^{-1} (\Phi_k^j)^T W_k^j \Lambda_k^j$

Note that:

- $\Lambda_k^j,\,\Phi_k^j$ are known; Γ_k^j is not known; $(\Lambda_k^k=\Phi_k^k\hat{x}_s^k(k)+\Gamma_k^k)$
- $(v(k))_{k\in\mathbb{N}}$ and $(w(k))_{k\in\mathbb{N}}$ sequences of Gaussian white noise with zero mean
- Find $\hat{x}_{s}^{j}(k)$ that minimizes the expected value

$$
F(\hat{x}_s^j(k), W_k^j) = \mathrm{E}\left[|\Lambda_k^j - \Phi_k^j \hat{x}_s^j(k)|_{W_k^j}\right]
$$

for $W_k^j \in \mathcal{S}_{>0}^{p(j+1)}$.

For $(\Phi_k^j)^T W_k^j \Phi_k^j$ nonsingular, it holds that:

$$
\begin{split} F(\hat{x}^{j}_{s}(k), W^{j}_{k}) &= \mathbf{E}\left[(\Lambda^{j}_{k} - \Phi^{j}_{k}\hat{x}^{j}_{s}(k))^{T}W^{j}_{k}(\Lambda^{j}_{k} - \Phi^{j}_{k}\hat{x}^{j}_{s}(k))\right] \\ &= \mathbf{E}\left[[(\Phi^{j}_{k})^{T}W_{k}\Phi^{j}_{k})\hat{x}^{j}_{s}(k) - (\Phi^{j}_{k})^{T}W^{j}_{k}\Lambda^{j}_{k}]^{T}((\Phi^{j}_{k})^{T}W^{j}_{k}\Phi^{j}_{k})^{-1} \right. \\ &\qquad \qquad \cdot [(\Phi^{j}_{k})^{T}W^{j}_{k}\Phi^{j}_{k})\hat{x}^{j}_{s}(k) - (\Phi^{j}_{k})^{T}W^{j}_{k}\Lambda^{j}_{k}] \right] \\ & \qquad \qquad + \mathbf{E}\left[(\Lambda^{j}_{k})^{T}(I - W^{j}_{k}\Phi^{j}_{k}((\Phi^{j}_{k})^{T}W^{j}_{k}\Phi^{j}_{k})^{-1}(\Phi^{j}_{k})^{T})W^{j}_{k}\Lambda^{j}_{k}\right] \end{split}
$$

Since second term is independent of $\hat{x}_{s}^{j}(k)$ $\hat{x}_s^j(k) = \hat{x}_s^j(k;W_k^j) = ((\Phi_k^j)^T W_k^j \Phi_k^j)^{-1} (\Phi_k^j)^T W_k^j \Lambda_k^j$

Question:

- How to define W_k^j in an optimal way?
- \rightarrow Minimize the variance

 $Var(x(k) - \hat{x}^j(k)) = Var(x(k) - \hat{x}_d(k) - \hat{x}_s^j(k))$

Note that:

- $\Lambda_k^j,\,\Phi_k^j$ are known; Γ_k^j is not known; $(\Lambda_k^k=\Phi_k^k\hat{x}_s^k(k)+\Gamma_k^k)$
- $(v(k))_{k\in\mathbb{N}}$ and $(w(k))_{k\in\mathbb{N}}$ sequences of Gaussian white noise with zero mean
- Find $\hat{x}_{s}^{j}(k)$ that minimizes the expected value

$$
F(\hat{x}_s^j(k), W_k^j) = \mathrm{E}\left[|\Lambda_k^j - \Phi_k^j \hat{x}_s^j(k)|_{W_k^j}\right]
$$

for $W_k^j \in \mathcal{S}_{>0}^{p(j+1)}$.

For $(\Phi_k^j)^T W_k^j \Phi_k^j$ nonsingular, it holds that:

$$
\begin{split} F(\hat{x}^{j}_{s}(k), W^{j}_{k}) &= \mathbf{E}\left[(\Lambda^{j}_{k} - \Phi^{j}_{k}\hat{x}^{j}_{s}(k))^{T}W^{j}_{k}(\Lambda^{j}_{k} - \Phi^{j}_{k}\hat{x}^{j}_{s}(k))\right] \\ &= \mathbf{E}\left[[(\Phi^{j}_{k})^{T}W_{k}\Phi^{j}_{k})\hat{x}^{j}_{s}(k) - (\Phi^{j}_{k})^{T}W^{j}_{k}\Lambda^{j}_{k}]^{T}((\Phi^{j}_{k})^{T}W^{j}_{k}\Phi^{j}_{k})^{-1} \right. \\ &\qquad \qquad \cdot [(\Phi^{j}_{k})^{T}W^{j}_{k}\Phi^{j}_{k})\hat{x}^{j}_{s}(k) - (\Phi^{j}_{k})^{T}W^{j}_{k}\Lambda^{j}_{k}] \right] \\ & \qquad \qquad + \mathbf{E}\left[(\Lambda^{j}_{k})^{T}(I - W^{j}_{k}\Phi^{j}_{k}((\Phi^{j}_{k})^{T}W^{j}_{k}\Phi^{j}_{k})^{-1}(\Phi^{j}_{k})^{T})W^{j}_{k}\Lambda^{j}_{k}\right] \end{split}
$$

Since second term is independent of $\hat{x}_{s}^{j}(k)$ $\hat{x}_s^j(k) = \hat{x}_s^j(k;W_k^j) = ((\Phi_k^j)^T W_k^j \Phi_k^j)^{-1} (\Phi_k^j)^T W_k^j \Lambda_k^j$

Question:

- How to define W_k^j in an optimal way?
- \rightarrow Minimize the variance

 $Var(x(k) - \hat{x}^j(k)) = Var(x(k) - \hat{x}_d(k) - \hat{x}_s^j(k))$

The variance satisfies

$$
\begin{split} \text{Var}(x(k) - \hat{x}_d(k) - \hat{x}^j_s(k)) = [(\Phi^j_k)^T W^j_k \Phi^j_k]^{-1} \\ \cdot (\Phi^j_k)^T W^j_k \, \text{E}[\Gamma^j_k (\Gamma^j_k)^T] W^j_k \Phi^j_k [(\Phi^j_k)^T W^j_k \Phi^j_k]^{-1} \end{split}
$$

Note that:

- $\Lambda_k^j,\,\Phi_k^j$ are known; Γ_k^j is not known; $(\Lambda_k^k=\Phi_k^k\hat{x}_s^k(k)+\Gamma_k^k)$
- $(v(k))_{k\in\mathbb{N}}$ and $(w(k))_{k\in\mathbb{N}}$ sequences of Gaussian white noise with zero mean
- Find $\hat{x}_{s}^{j}(k)$ that minimizes the expected value

$$
F(\hat{x}_s^j(k), W_k^j) = \mathrm{E}\left[|\Lambda_k^j - \Phi_k^j \hat{x}_s^j(k)|_{W_k^j}\right]
$$

for $W_k^j \in \mathcal{S}_{>0}^{p(j+1)}$.

For $(\Phi_k^j)^T W_k^j \Phi_k^j$ nonsingular, it holds that:

$$
\begin{split} F(\hat{x}^{j}_{s}(k), W^{j}_{k}) &= \mathbf{E}\left[(\Lambda^{j}_{k} - \Phi^{j}_{k}\hat{x}^{j}_{s}(k))^{T}W^{j}_{k}(\Lambda^{j}_{k} - \Phi^{j}_{k}\hat{x}^{j}_{s}(k))\right] \\ &= \mathbf{E}\left[[(\Phi^{j}_{k})^{T}W_{k}\Phi^{j}_{k})\hat{x}^{j}_{s}(k) - (\Phi^{j}_{k})^{T}W^{j}_{k}\Lambda^{j}_{k}]^{T}((\Phi^{j}_{k})^{T}W^{j}_{k}\Phi^{j}_{k})^{-1} \right. \\ &\qquad \qquad \cdot [(\Phi^{j}_{k})^{T}W^{j}_{k}\Phi^{j}_{k})\hat{x}^{j}_{s}(k) - (\Phi^{j}_{k})^{T}W^{j}_{k}\Lambda^{j}_{k}] \right] \\ & \qquad \qquad + \mathbf{E}\left[(\Lambda^{j}_{k})^{T}(I - W^{j}_{k}\Phi^{j}_{k}((\Phi^{j}_{k})^{T}W^{j}_{k}\Phi^{j}_{k})^{-1}(\Phi^{j}_{k})^{T})W^{j}_{k}\Lambda^{j}_{k}\right] \end{split}
$$

Since second term is independent of $\hat{x}_{s}^{j}(k)$ $\hat{x}_s^j(k) = \hat{x}_s^j(k;W_k^j) = ((\Phi_k^j)^T W_k^j \Phi_k^j)^{-1} (\Phi_k^j)^T W_k^j \Lambda_k^j$

Question:

- How to define W_k^j in an optimal way?
- \rightarrow Minimize the variance

 $Var(x(k) - \hat{x}^j(k)) = Var(x(k) - \hat{x}_d(k) - \hat{x}_s^j(k))$

The variance satisfies

$$
\begin{aligned} \text{Var}(x(k) - \hat{x}_d(k) - \hat{x}_s^j(k)) &= [(\Phi_k^j)^T W_k^j \Phi_k^j]^{-1} \\ \cdot (\Phi_k^j)^T W_k^j \, \mathbb{E}[\Gamma_k^j (\Gamma_k^j)^T] W_k^j \Phi_k^j [(\Phi_k^j)^T W_k^j \Phi_k^j]^{-1} \end{aligned}
$$

for

$$
W_k^j=(\Xi_k^j)^{-1}=\text{E}\left[\Gamma_k^j(\Gamma_k^j)^T\right]^{-1}\in\mathcal{S}_{>0}^{p(j+1)}
$$

the variance reduces to

$$
\text{Var}(x(k) - \hat{x}_d(k) - \hat{x}^j_s(k)) = [(\Phi^j_k)^T(\Xi^j_k)^{-1}\Phi^j_k]^{-1}
$$

Note that:

- $\Lambda_k^j,\,\Phi_k^j$ are known; Γ_k^j is not known; $(\Lambda_k^k=\Phi_k^k\hat{x}_s^k(k)+\Gamma_k^k)$
- $(v(k))_{k\in\mathbb{N}}$ and $(w(k))_{k\in\mathbb{N}}$ sequences of Gaussian white noise with zero mean
- Find $\hat{x}_{s}^{j}(k)$ that minimizes the expected value

$$
F(\hat{x}_s^j(k), W_k^j) = \mathrm{E}\left[|\Lambda_k^j - \Phi_k^j \hat{x}_s^j(k)|_{W_k^j}\right]
$$

for $W_k^j \in \mathcal{S}_{>0}^{p(j+1)}$.

For $(\Phi_k^j)^T W_k^j \Phi_k^j$ nonsingular, it holds that:

$$
\begin{split} F(\hat{x}^j_s(k), W^j_k) &= {\rm E}\left[(\Lambda^j_k - \Phi^j_k \hat{x}^j_s(k))^{T} W^j_k (\Lambda^j_k - \Phi^j_k \hat{x}^j_s(k)) \right] \\ &= {\rm E}\left[[(\Phi^j_k)^T W_k \Phi^j_k) \hat{x}^j_s(k) - (\Phi^j_k)^T W^j_k \Lambda^j_k]^{T} ((\Phi^j_k)^T W^j_k \Phi^j_k)^{-1} \right. \\ &\qquad \qquad \cdot [(\Phi^j_k)^T W^j_k \Phi^j_k) \hat{x}^j_s(k) - (\Phi^j_k)^T W^j_k \Lambda^j_k] \right] \\ &\qquad \qquad + {\rm E}\left[(\Lambda^j_k)^T (I - W^j_k \Phi^j_k ((\Phi^j_k)^T W^j_k \Phi^j_k)^{-1} (\Phi^j_k)^T) W^j_k \Lambda^j_k \right] \end{split}
$$

Since second term is independent of $\hat{x}_{s}^{j}(k)$ $\hat{x}_s^j(k) = \hat{x}_s^j(k;W_k^j) = ((\Phi_k^j)^T W_k^j \Phi_k^j)^{-1} (\Phi_k^j)^T W_k^j \Lambda_k^j$

Question:

- How to define W_k^j in an optimal way?
- \rightarrow Minimize the variance

 $Var(x(k) - \hat{x}^j(k)) = Var(x(k) - \hat{x}_d(k) - \hat{x}_s^j(k))$

The variance satisfies

$$
\begin{aligned} \text{Var}(x(k) - \hat{x}_d(k) - \hat{x}_s^j(k)) &= [(\Phi_k^j)^T W_k^j \Phi_k^j]^{-1} \\ \cdot (\Phi_k^j)^T W_k^j \, \mathbb{E}[\Gamma_k^j (\Gamma_k^j)^T] W_k^j \Phi_k^j [(\Phi_k^j)^T W_k^j \Phi_k^j]^{-1} \end{aligned}
$$

for

$$
W_k^j = (\Xi_k^j)^{-1} = \mathbf{E}\left[\Gamma_k^j (\Gamma_k^j)^T\right]^{-1} \in \mathcal{S}_{>0}^{p(j+1)}
$$

the variance reduces to

 $\text{Var}(x(k) - \hat{x}_d(k) - \hat{x}_s^j(k)) = [(\Phi_k^j)^T (\Xi_k^j)^{-1} \Phi_k^j]^{-1}$

Optimal estimate of $x(k) - \hat{x}_d(k)$ based on $y(0)$ to $y(i)$:

$$
\hat{x}_{s}^{j}(k)=[(\Phi_{k}^{j})^{T}(\Xi_{k}^{j})^{-1}\Phi_{k}^{j}]^{-1}(\Phi_{k}^{j})^{T}(\Xi_{k}^{j})^{-1}\Lambda_{k}^{j},
$$

For $j = k$, the index is omitted: $\hat{x}_s(k) = \hat{x}_s^k(k)$.

Note that:

- $\Lambda_k^j,\,\Phi_k^j$ are known; Γ_k^j is not known; $(\Lambda_k^k=\Phi_k^k\hat{x}_s^k(k)+\Gamma_k^k)$
- $(v(k))_{k\in\mathbb{N}}$ and $(w(k))_{k\in\mathbb{N}}$ sequences of Gaussian white noise with zero mean
- Find $\hat{x}_{s}^{j}(k)$ that minimizes the expected value

$$
F(\hat{x}_s^j(k), W_k^j) = \mathrm{E}\left[|\Lambda_k^j - \Phi_k^j \hat{x}_s^j(k)|_{W_k^j}\right]
$$

for $W_k^j \in \mathcal{S}_{>0}^{p(j+1)}$.

For $(\Phi_k^j)^T W_k^j \Phi_k^j$ nonsingular, it holds that:

$$
\begin{split} F(\hat{x}^j_s(k), W^j_k) &= {\rm E}\left[(\Lambda^j_k - \Phi^j_k \hat{x}^j_s(k))^{T} W^j_k (\Lambda^j_k - \Phi^j_k \hat{x}^j_s(k)) \right] \\ &= {\rm E}\left[[(\Phi^j_k)^T W_k \Phi^j_k) \hat{x}^j_s(k) - (\Phi^j_k)^T W^j_k \Lambda^j_k]^{T} ((\Phi^j_k)^T W^j_k \Phi^j_k)^{-1} \right. \\ &\qquad \qquad \cdot [(\Phi^j_k)^T W^j_k \Phi^j_k) \hat{x}^j_s(k) - (\Phi^j_k)^T W^j_k \Lambda^j_k] \right] \\ &\qquad \qquad + {\rm E}\left[(\Lambda^j_k)^T (I - W^j_k \Phi^j_k ((\Phi^j_k)^T W^j_k \Phi^j_k)^{-1} (\Phi^j_k)^T) W^j_k \Lambda^j_k \right] \end{split}
$$

Since second term is independent of $\hat{x}_{s}^{j}(k)$ $\hat{x}_s^j(k) = \hat{x}_s^j(k;W_k^j) = ((\Phi_k^j)^T W_k^j \Phi_k^j)^{-1} (\Phi_k^j)^T W_k^j \Lambda_k^j$

Question:

- How to define W_k^j in an optimal way?
- \rightarrow Minimize the variance

 $Var(x(k) - \hat{x}^j(k)) = Var(x(k) - \hat{x}_d(k) - \hat{x}_s^j(k))$

The variance satisfies

$$
\begin{aligned} &\text{Var}(x(k)-\hat{x}_d(k)-\hat{x}_s^j(k))=[(\Phi_k^j)^T W_k^j \Phi_k^j]^{-1}\\ &\cdot (\Phi_k^j)^T W_k^j \, \text{E}[\Gamma_k^j (\Gamma_k^j)^T] W_k^j \Phi_k^j [(\Phi_k^j)^T W_k^j \Phi_k^j]^{-1} \end{aligned}
$$

for

$$
W_k^j = (\Xi_k^j)^{-1} = \mathbf{E}\left[\Gamma_k^j (\Gamma_k^j)^T\right]^{-1} \in \mathcal{S}_{>0}^{p(j+1)}
$$

the variance reduces to

 $\text{Var}(x(k) - \hat{x}_d(k) - \hat{x}_s^j(k)) = [(\Phi_k^j)^T (\Xi_k^j)^{-1} \Phi_k^j]^{-1}$

Optimal estimate of $x(k) - \hat{x}_d(k)$ based on $y(0)$ to $y(i)$:

$$
\hat{x}_{s}^{j}(k)=[(\Phi_{k}^{j})^{T}(\Xi_{k}^{j})^{-1}\Phi_{k}^{j}]^{-1}(\Phi_{k}^{j})^{T}(\Xi_{k}^{j})^{-1}\Lambda_{k}^{j},
$$

For $j = k$, the index is omitted: $\hat{x}_s(k) = \hat{x}_s^k(k)$.

 \rightarrow Dim. of linear equation grows linearly with $k \in \mathbb{N}$

The discrete time Kalman filter (A prediction-correction formulation)

Goal: Rewrite problem such that the complexity of the calculation of $\hat{x}(k)$ is independent of k.

The discrete time Kalman filter (A prediction-correction formulation)

Goal: Rewrite problem such that the complexity of the calculation of $\hat{x}(k)$ is independent of k.

Derive a recursive formula to iteratively compute $\hat{x}(k)$:

 $\hat{\chi}(k) = A\hat{x}(k-1) + Bu(k-1)$ (prediction step) $\hat{x}(k) = \chi(k) + G_k(y(k) - C\hat{\chi}(k))$ (correction step)

 \bullet How to define the Kalman gain matrices $G_k \in \mathbb{R}^{n \times p}$, $k \in \mathbb{N}$?

Goal: Rewrite problem such that the complexity of the calculation of $\hat{x}(k)$ is independent of k.

Derive a recursive formula to iteratively compute $\hat{x}(k)$:

- $\hat{\chi}(k) = A\hat{x}(k-1) + Bu(k-1)$ (prediction step) $\hat{x}(k) = \chi(k) + G_k(y(k) - C\hat{\chi}(k))$ (correction step)
- \bullet How to define the Kalman gain matrices $G_k \in \mathbb{R}^{n \times p}$, $k \in \mathbb{N}$?

It can be shown that:

$$
G_k = P_k^{k-1} C^T [C P_k^{k-1} C^T + R^{-1}]^{-1} \label{eq:Gk}
$$

where

$$
\begin{split} P_k^{k-1} &= AP_{k-1}A^T + \bar{B}Q^{-1}\bar{B}^T \\ P_k &= [I-G_kC]P_k^{k-1} \end{split}
$$

and

$$
P_0 = \mathrm{E}\left[(x_0 - \mathrm{E}[x_0])(x_0 - \mathrm{E}[x_0])^T \right] = \mathrm{Var}(x_0).
$$

The discrete time Kalman filter (A prediction-correction formulation)

Goal: Rewrite problem such that the complexity of the calculation of $\hat{x}(k)$ is independent of k.

Derive a recursive formula to iteratively compute $\hat{x}(k)$:

- $\hat{\chi}(k) = A\hat{x}(k-1) + Bu(k-1)$ (prediction step) $\hat{x}(k) = \chi(k) + G_k(y(k) - C\hat{\chi}(k))$ (correction step)
- \bullet How to define the Kalman gain matrices $G_k \in \mathbb{R}^{n \times p}$, $k \in \mathbb{N}$?

It can be shown that:

$$
G_k = P_k^{k-1} C^T [C P_k^{k-1} C^T + R^{-1}]^{-1} \label{eq:Gk}
$$

where

$$
\begin{split} P_k^{k-1} &= AP_{k-1}A^T + \bar{B}Q^{-1}\bar{B}^T \\ P_k &= [I-G_kC]P_k^{k-1} \end{split}
$$

and

$$
P_0 = \mathrm{E}\left[(x_0 - \mathrm{E}[x_0])(x_0 - \mathrm{E}[x_0])^T \right] = \mathrm{Var}(x_0).
$$

Input: $Q^{-1} = \text{Var}(v(k))$, $R^{-1} = \text{Var}(w(k))$, $\hat{x}(0) =$ $\hat{x}_0, P_0 \in \mathcal{S}_{>0}^n$. **Output:** Estimates $\hat{\chi}(k)$, $\hat{x}(k)$ of $x(k)$ for $k \in \mathbb{N}$. **Algorithm:** For $k \in \mathbb{N}$:

- **1** Update the gain matrix G_k :
	- $P_k^{k-1} = AP_{k-1}A^T + \bar{B}Q^{-1}\bar{B}^T,$ $G_k = P_k^{k-1} C^T [C P_k^{k-1} C^T + R^{-1}]^{-1},$ $P_k = [I - G_k C] P_k^{k-1}.$
- **2** Update estimate (before $y(k)$ is available): $\hat{\gamma}(k) = A\hat{x}(k-1) + Bu(k-1).$
- \bullet Measure the output: $y(k) = Cx(k) + w(k)$
- 4 Update estimate (after $y(k)$ is available):

 $\hat{x}(k) = \hat{\chi}(k) + G_k(y(k) - C\hat{\chi}(k)),$

set $k = k + 1$ and go to step 1.

The discrete time Kalman filter (Additional comments)

Input: $Q^{-1} = \text{Var}(v(k))$, $R^{-1} = \text{Var}(w(k))$, $\hat{x}(0) = \hat{x}_0$, $P_0 \in S^n_{>0}$. **Output:** Estimates $\hat{\chi}(k)$, $\hat{x}(k)$ of $x(k)$ for $k \in \mathbb{N}$. **Algorithm:** For $k \in \mathbb{N}$:

1 Update the gain matrix G_k :

$$
P_k^{k-1} = AP_{k-1}A^T + \bar{B}Q^{-1}\bar{B}^T,
$$

\n
$$
G_k = P_k^{k-1}C^T[CP_k^{k-1}C^T + R^{-1}]^{-1},
$$

\n
$$
P_k = [I - G_kC]P_k^{k-1}.
$$

\n- Update estimate (before
$$
y(k)
$$
 is available):
\n- $\hat{\chi}(k) = A\hat{x}(k-1) + Bu(k-1).$
\n

$$
• \text{ Measure the output: } y(k) = Cx(k) + w(k)
$$

4 Update estimate (after $y(k)$ is available):

 $\hat{x}(k) = \hat{\chi}(k) + G_k(y(k) - C\hat{\chi}(k)),$

set $k = k + 1$ and go to step 1.

The Kalman filter can be written as a discrete time system:

$$
\hat{\chi}(k+1) = A(\hat{\chi}(k) + Bu(k) + G_k(y(k) - C\hat{\chi}(k)))
$$

= $(A - AG_kC)\hat{\chi}(k) + Bu(k) + AG_ky(k)$

$$
\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + G_{k+1}(y(k+1) - C(A\hat{x}(k) + Bu(k)))
$$

= $(I - G_{k+1}C)(A\hat{x}(k) + Bu(k)) + G_{k+1}y(k+1)$

The Kalman filter can be applied to time varying systems (i.e., $A(k), B(k), \bar{B}(k), C(k)$

Example

Consider $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$ and $A = \begin{bmatrix} 1.000 & 0.050 \\ -0.491 & 0.995 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0.05 \end{bmatrix}, \bar{B} = \begin{bmatrix} 0.05 & 0 \\ 0 & 0.05 \end{bmatrix}$ Additionally, let

$$
R^{-1} = \frac{1}{2}
$$
 and $Q^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

(defined based on $v(k)$ and $w(k)$)

The discrete time Kalman filter (at steady-state)

Recall: Update the gain matrix G_k :

$$
P_k^{k-1} = AP_{k-1}A^T + \bar{B}Q^{-1}\bar{B}^T,
$$

\n
$$
G_k = P_k^{k-1}C^T[CP_k^{k-1}C^T + R^{-1}]^{-1},
$$

\n
$$
P_k = [I - G_kC]P_k^{k-1}.
$$

Note that:

 \bullet Under certain conditions $G_k = G_{\infty}$, (i.e., $P_k = P_{\infty}$) converges to a steady-state

The discrete time Kalman filter (at steady-state)

Recall: Update the gain matrix G_k :

$$
P_k^{k-1} = AP_{k-1}A^T + \bar{B}Q^{-1}\bar{B}^T,
$$

\n
$$
G_k = P_k^{k-1}C^T[CP_k^{k-1}C^T + R^{-1}]^{-1},
$$

\n
$$
P_k = [I - G_kC]P_k^{k-1}.
$$

Note that:

 \bullet Under certain conditions $G_k = G_{\infty}$, (i.e., $P_k = P_{\infty}$) converges to a steady-state

In particular, with $P_{\infty} = P_k = P_{k-1}$, $\Pi = P_k^{k-1}$:

$$
\Pi = A\Pi A^T - A\Pi C^T (C\Pi C^T + R^{-1})^{-1} C\Pi A^T + \bar{B}Q^{-1} \bar{B}^T
$$

 \rightsquigarrow discrete time algebraic Riccati equation

It holds that:

$$
G_{\infty} = \Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1}
$$

\n
$$
\tilde{G}_{\infty} = A \Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1}
$$

\n
$$
P_{\infty} = (I - G_{\infty} C) \Pi = (I - (\Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1}) C) \Pi
$$

Recall: Update the gain matrix G_k :

$$
\begin{split} P_k^{k-1} &= AP_{k-1}A^T + \bar{B}Q^{-1}\bar{B}^T, \\ G_k &= P_k^{k-1}C^T[CP_k^{k-1}C^T + R^{-1}]^{-1}, \\ P_k &= [I-G_kC]P_k^{k-1}. \end{split}
$$

Note that:

 \bullet Under certain conditions $G_k = G_{\infty}$, (i.e., $P_k = P_{\infty}$) converges to a steady-state

In particular, with $P_{\infty} = P_k = P_{k-1}$, $\Pi = P_k^{k-1}$:

$$
\Pi = A\Pi A^T - A\Pi C^T (C\Pi C^T + R^{-1})^{-1} C\Pi A^T + \bar{B}Q^{-1} \bar{B}^T
$$

 \rightsquigarrow discrete time algebraic Riccati equation

It holds that:

$$
G_{\infty} = \Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1}
$$

\n
$$
\tilde{G}_{\infty} = A \Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1}
$$

\n
$$
P_{\infty} = (I - G_{\infty} C) \Pi = (I - (\Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1}) C) \Pi
$$

Theorem

Consider the linear system

$$
x(k+1) = Ax(k) + Bu(k) + \overline{B}v(k),
$$

$$
y(k) = Cx(k) + w(k).
$$

and assume that (A, \overline{B}) *is stabilizable and* (A, C) *is detectable. Additionally, let* $R \in S_{>0}^p$ and $Q \in S_{>0}^q$. Then *the Riccati equation has a unique positive definite solution* $\Pi \in \mathcal{S}^n_{>0}$, and the matrix

$$
A - \tilde{G}_{\infty}C = A - A\Pi C^{T}(C\Pi C^{T} + R^{-1})^{-1}C \quad (2)
$$

is a Schur matrix.

Recall: Update the gain matrix G_k :

$$
\begin{split} P_k^{k-1} &= AP_{k-1}A^T + \bar{B}Q^{-1}\bar{B}^T, \\ G_k &= P_k^{k-1}C^T[CP_k^{k-1}C^T + R^{-1}]^{-1}, \\ P_k &= [I-G_kC]P_k^{k-1}. \end{split}
$$

Note that:

 \bullet Under certain conditions $G_k = G_{\infty}$, (i.e., $P_k = P_{\infty}$) converges to a steady-state

In particular, with $P_{\infty} = P_k = P_{k-1}$, $\Pi = P_k^{k-1}$:

$$
\Pi = A\Pi A^T - A\Pi C^T (C\Pi C^T + R^{-1})^{-1} C\Pi A^T + \bar{B}Q^{-1} \bar{B}^T
$$

 \rightsquigarrow discrete time algebraic Riccati equation

It holds that:

$$
G_{\infty} = \Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1}
$$

\n
$$
\tilde{G}_{\infty} = A \Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1}
$$

\n
$$
P_{\infty} = (I - G_{\infty} C) \Pi = (I - (\Pi C^{T} (C \Pi C^{T} + R^{-1})^{-1}) C) \Pi
$$

Theorem

Consider the linear system

$$
x(k+1) = Ax(k) + Bu(k) + \overline{B}v(k),
$$

$$
y(k) = Cx(k) + w(k).
$$

and assume that (A, \overline{B}) *is stabilizable and* (A, C) *is detectable. Additionally, let* $R \in S_{>0}^p$ and $Q \in S_{>0}^q$. Then *the Riccati equation has a unique positive definite solution* $\Pi \in \mathcal{S}^n_{>0}$, and the matrix

$$
A - \tilde{G}_{\infty}C = A - A\Pi C^{T}(C\Pi C^{T} + R^{-1})^{-1}C \quad (2)
$$

is a Schur matrix.

The steady-state Kalman filter reduces to

$$
\begin{aligned} \label{eq:chi} \hat{\chi}(k+1) &= (A - \tilde{G}_{\infty}C)\hat{\chi}(k) + \tilde{G}_{\infty}y(k) + Bu(k) \\ \hat{x}(k+1) &= (I - G_{\infty}C)(A\hat{x}(k) + Bu(k)) + G_{\infty}y(k+1) \end{aligned}
$$

 \rightsquigarrow The structure of the Luenberger observer or the minimum energy estimator is recovered

A hybrid Kalman filter

Input: Linear system

 $\dot{x}_c(t) = A_c x(t) + B_c u(t) + \bar{B}_c v_c(t),$ $y_c(t) = C_c x(t) + w_c(t).$

control input $u:\R_{\geq 0}\to\R^m$, positive definite matrices Q,R , initial estimates $\hat{x}(0)=\hat{x}_0,$ $P_0\in\mathcal{S}^n_{>0},$ and a sequence of discrete time steps $(\tau_k)_{k\in\mathbb{N}}\subset\mathbb{R}_{\geq0}$, $\tau_k<\tau_{k+1}$, for all $k\in\mathbb{N}_0$. **Output:** Continuous time and discrete time estimates $\hat{\chi}(t)$ and $\hat{x}(\tau_k)$ of the state $x(t)$. **Algorithm:** For $k \in \mathbb{N}$:

1 Continuous time update: For $t \in [\tau_{k-1}, \tau_k]$ solve

$$
\dot{P}(t) = A_c P(t) + P(t)A_c^T + \bar{B}_c Q^{-1} \bar{B}_c^T, \qquad P(\tau_{k-1}) = P_{k-1}
$$

$$
\dot{\chi}(t) = A_c \dot{\chi}(t) + B_c u(t), \qquad \dot{\chi}(\tau_{k-1}) = \hat{x}(k-1).
$$

2 Measure the output:
$$
y_c(\tau_k) = Cx_c(\tau_k) + w(\tau_k)
$$
.

³ Discrete time update:

$$
G_k = P(\tau_k)C_c^T(C_cP(\tau_k)C_c^T + R^{-1})^{-1},
$$

\n
$$
P_k = (I - G_kC_c)P(\tau_k),
$$

\n
$$
\hat{x}(k) = \hat{\chi}(\tau_k) + G_k(y_c(\tau_k) - C_c\hat{\chi}(\tau_k)).
$$

Set $k = k + 1$ and go to step 1.

Introduction to Nonlinear Control

Stability, control design, and estimation

Christopher M. Kellett & Philipp Braun School of Engineering, Australian National University, Canberra, Australia

Part III:

Chapter 16: Classical Observer Design 16.1 Luenberger Observer 16.2 Minimum Energy Estimator (Continuous Time Setting) 16.3 The Discrete Time Kalman Filter

