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Classical Observer Design
So far:

The concepts so far rely on the knowledge of the state
x ∈ Rn.

The full state x is in general not known and only the
output y ∈ Rp is available.

⇝ A controller design can not, in general, rely on the full
state x.

⇝ An estimate x̂ of the state needs to be derived
(observability, detectibility)

If x̂(t) → x(t) for t → ∞, can x̂ be used for the
definition of a feedback controller u(x̂)?

Consider Linear systems:

ẋ = Ax+Bu, x(0) ∈ Rn,

y = Cx+Du

We assume that y ∈ Rp and u ∈ Rm are known,
while the internal state x ∈ Rn and the initial condition
x(0) are unknown.

Assume that the matrix A is Hurwitz.

Introduce observer dynamics as a copy of the system

˙̂x = Ax̂+Bu, x̂(0) ∈ Rn

▶ x̂ ∈ Rn estimate of the state x ∈ Rn

▶ Estimation error e = x− x̂

Error dynamics:

ė = ẋ− ˙̂x = Ax+Bu−Ax̂−Bu = A(x− x̂) = Ae

x̂(t) → x(t) ⇔ e(t) → 0 ⇔ A Hurwitz
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Section 1

Luenberger Observers
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Luenberger Observers

Consider

ẋ = Ax+Bu, x(0) ∈ Rn, (or x+ = Ax+Bu)

y = Cx+Du

Define observer dynamics:

˙̂x = Ax̂+Bu− L(y − ŷ),

ŷ = Cx̂+Du.

output injection term L ∈ Rn×p

Estimation error: e = x− x̂

Error dynamics:

ė = ẋ− ˙̂x

= Ax+Bu−Ax̂−Bu+ L(Cx+Du− Cx̂−Du)

= Ae+ LCe = (A+ LC)e

⇝ The error dynamics are independent of u

A+ LC has the same eigenvalues as
(A+ LC)T = AT + CTLT

⇝ If (A,C) is observable, the poles of A+ LC can be
placed arbitrarily, i.e., L can be defined such that
A+ LC is Hurwitz.

⇝ If (A,C) is detectable, then there exists L such that
A+ LC is Hurwitz.

See pole placement

x can be approximated through x̂

Controller design u = Kx̂?
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ė = ẋ− ˙̂x

= Ax+Bu−Ax̂−Bu+ L(Cx+Du− Cx̂−Du)

= Ae+ LCe = (A+ LC)e

⇝ The error dynamics are independent of u

A+ LC has the same eigenvalues as
(A+ LC)T = AT + CTLT

⇝ If (A,C) is observable, the poles of A+ LC can be
placed arbitrarily, i.e., L can be defined such that
A+ LC is Hurwitz.

⇝ If (A,C) is detectable, then there exists L such that
A+ LC is Hurwitz.

See pole placement

x can be approximated through x̂

Controller design u = Kx̂?

C.M. Kellett & P. Braun (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 5 / 23



Luenberger Observers & Controller design

Consider

ẋ = Ax+Bu, x(0) ∈ Rn

y = Cx+Du

Define observer dynamics:

˙̂x = Ax̂+Bu− L(y − ŷ),

ŷ = Cx̂+Du.

Error dynamics:

ė = (A+ LC)e

Controller design:

u(x̂) = Kx̂, K ∈ Rm×n

We can rewrite the plant dynamics:

ẋ = Ax+Bu(x̂) = Ax+BKx̂

= Ax+BK(x+ e)

= (A+BK)x+BKe.

Overall closed loop system[
ẋ
ė

]
=

[
A+BK BK

0 A+ LC

] [
x
e

]
If (A,B) is controllable and (A,C) is observable, we
can place the poles of the closed-loop system
arbitrarily by choosing K and L.

The convergence |x(t)| → 0 and |e(t)| → 0 for
t → ∞ can be guaranteed by designing L and K
individually. ⇝ separation principle

(The separation principle is only true for the
asymptotic behavior)

Alternative representation in terms of x and x̂:[
ẋ
˙̂x

]
=

[
A BK

−LC A+BK + LC

] [
x
x̂

]
⇝While the separation principle is not visible the dynamics
capture the same information.
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ė

]
=

[
A+BK BK

0 A+ LC

] [
x
e

]
If (A,B) is controllable and (A,C) is observable, we
can place the poles of the closed-loop system
arbitrarily by choosing K and L.

The convergence |x(t)| → 0 and |e(t)| → 0 for
t → ∞ can be guaranteed by designing L and K
individually. ⇝ separation principle

(The separation principle is only true for the
asymptotic behavior)

Alternative representation in terms of x and x̂:[
ẋ
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ẋ
˙̂x

]
=

[
A BK

−LC A+BK + LC

] [
x
x̂

]
⇝While the separation principle is not visible the dynamics
capture the same information.

C.M. Kellett & P. Braun (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 6 / 23



Luenberger Observers & Controller design

Consider
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Luenberger Observers & Controller design (Linearization pendulum; upright position)

Example
• Linearization of the pendulum on a cart in the upright
position

A =

 0 0 1.00 0
0 0 0 1.00
0 3.27 −0.07 −0.03
0 6.54 −0.03 −0.07

 , B =

 0
0

0.67
0.33


with output

C =

[
1 0 0 0
0 1 0 0

]
;

i.e., only the position of the cart and the angle of the
pendulum are available as measurements.
• Feedback gain

K =
[

7.34 −140.84 15.47 −60.54
]

ensures that the closed loop matrix A+BK is Hurwitz and
has the eigenvalues {−4,−3,−2,−1}.
• Initial conditions:

x0 = [1, 1, 1, 1]T , x̂ = [1, 1, 0, 0]T

The observer gain

L =

 −2.90 −1.07
−3.75 −6.49
−2.58 −6.96
−8.53 −16.64


ensures that A+LC has the same eigenvalues as A+BK.

0 2 4 6 8

-20

-10

0

10

20

0 2 4 6 8

-1.5

-1

-0.5

0

0.5

1

Note that:
The convergence is independent of the initial
condition x0, x̂0 since for linear systems local results
are also global and the stability properties of the
linear system solely depend on the properties of the
closed loop matrix.

C.M. Kellett & P. Braun (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 7 / 23



Luenberger Observers & Controller design (Linearization pendulum; upright position)

Example
• Linearization of the pendulum on a cart in the upright
position

A =

 0 0 1.00 0
0 0 0 1.00
0 3.27 −0.07 −0.03
0 6.54 −0.03 −0.07

 , B =

 0
0

0.67
0.33


with output

C =

[
1 0 0 0
0 1 0 0

]
;

i.e., only the position of the cart and the angle of the
pendulum are available as measurements.
• Feedback gain

K =
[

7.34 −140.84 15.47 −60.54
]

ensures that the closed loop matrix A+BK is Hurwitz and
has the eigenvalues {−4,−3,−2,−1}.
• Initial conditions:

x0 = [1, 1, 1, 1]T , x̂ = [1, 1, 0, 0]T

The observer gain

L =

 −2.90 −1.07
−3.75 −6.49
−2.58 −6.96
−8.53 −16.64


ensures that A+LC has the same eigenvalues as A+BK.

0 2 4 6 8

-20

-10

0

10

20

0 2 4 6 8

-1.5

-1

-0.5

0

0.5

1

Note that:
The convergence is independent of the initial
condition x0, x̂0 since for linear systems local results
are also global and the stability properties of the
linear system solely depend on the properties of the
closed loop matrix.

C.M. Kellett & P. Braun (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 7 / 23



Luenberger Observers & Controller design (Linearization pendulum; upright position)

Example
• Linearization of the pendulum on a cart in the upright
position

A =

 0 0 1.00 0
0 0 0 1.00
0 3.27 −0.07 −0.03
0 6.54 −0.03 −0.07

 , B =

 0
0

0.67
0.33


with output

C =

[
1 0 0 0
0 1 0 0

]
;

i.e., only the position of the cart and the angle of the
pendulum are available as measurements.
• Feedback gain

K =
[

7.34 −140.84 15.47 −60.54
]

ensures that the closed loop matrix A+BK is Hurwitz and
has the eigenvalues {−4,−3,−2,−1}.
• Initial conditions:

x0 = [1, 1, 1, 1]T , x̂ = [1, 1, 0, 0]T

The observer gain

L =

 −2.90 −1.07
−3.75 −6.49
−2.58 −6.96
−8.53 −16.64


ensures that A+LC has the same eigenvalues as A+BK.

0 2 4 6 8

-20

-10

0

10

20

0 2 4 6 8

-1.5

-1

-0.5

0

0.5

1

Note that:
The convergence is independent of the initial
condition x0, x̂0 since for linear systems local results
are also global and the stability properties of the
linear system solely depend on the properties of the
closed loop matrix.

C.M. Kellett & P. Braun (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 7 / 23



Section 2

Minimum Energy Estimator (Continuous time setting)
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Minimum Energy Estimator (Continuous time setting)

Recall
We have discussed optimal control for linear systems

Can we derive an optimal estimator (in terms of
minimal energy)?

Consider a perturbed linear system:

ẋ = Ax+Bu+ B̄v

y = Cx+Du+ w

disturbance: v(·) : R → Rq (model uncertainty)

measurement noise: w(·) : R → Rp (depending on
the sensors)

The minimum energy estimation problem:
For given u(·), y(·), find x̄ : R≤t0 → Rn for t0 ≥ 0,
which satisfies the dynamics

˙̄x = Ax̄+Bu+ B̄v

y = Cx̄+Du+ w

an which minimizes the cost function

JMEE(x̄(t0), v(·)) =
∫ t0

−∞
w(τ)TQw(τ) + v(τ)TRv(τ)dτ

Note that:
Design parameters: Q ∈ Sp

>0, R ∈ Sq
>0

JMEE(x̄(t0), v(·)) is a function of v(·) but not w(·):

JMEE(x̄(t0), v(·)) =
∫ t0

−∞
vTRv

+ (Cx̄+Du− y)TQ(Cx̄+Du− y)dτ

⇝ Given past u(·) and y(·), the optimization problem
aims to find the disturbance v(·) with minimum energy
and an estimated state x̄(t0) that explains the
observed inputs and outputs.

To ensure that the problem is well-defined we assume

x̄(t) → 0, u(t) → 0, w(t) → 0, y(t) → 0 for t → −∞

Q large: penalize noise w(·); neglect disturbance

R large: penalize disturbance v(·); neglect noise
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Minimum Energy Estimator (Continuous time setting)

Optimization problem

VMEE(x̄0) = min
v(·):R→Rq

JMEE(x̄0, v(·))

subject to ẋ = Ax+Bu+ B̄v

Additionally define

X̄ = {x : R≤t0 → Rn} and V = {v : R≤t0 → Rq}.

Definition (Feedback invariant)

Consider the system

˙̄x = Ax̄+Bu+ B̄v

y = Cx̄+Du+ w,

t0 ∈ R≥0 and fixed u(·) : R<t0 → Rm, y(·) : R<t0 → Rp.
A functional H : X̄ × V → R is called feedback invariant if
for all solution pairs (x̄1(·), v1(·)), (x̄2(·), v2(·)) ∈ X̄ × V
with x̄1(t0) = x̄2(t0) the equation

H(x̄1(·), v1(·)) = H(x̄2(·), v2(·))

holds.

Theorem (Feedback invariant)

Consider the linear system for a y(·) : R≤t0 → Rp and
u(·) : R≤t0 → Rm for t0 > 0. Then, for every symmetric
matrix P ∈ Sn, differentiable signal β(·) : R≤t0 → Rn, and
a scalar H0 ∈ Rn (which does not depend on x̄(·) and
v(·)), the functional

H(x̄(·), v(·)) = H0

+

∫ t0

−∞

(
Ax̄+Bu+ B̄v − β̇

)T
P (x̄− β)

+ (x̄− β)T P
(
Ax̄+Bu+ B̄v − β̇

)
dτ

− (x̄(t0)− β(t0))
T P (x̄(t0)− β(t0))

is a feedback invariant as long as
limt→−∞(x̄(t)− β(t)) = 0.
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subject to ẋ = Ax+Bu+ B̄v

Additionally define

X̄ = {x : R≤t0 → Rn} and V = {v : R≤t0 → Rq}.

Definition (Feedback invariant)

Consider the system

˙̄x = Ax̄+Bu+ B̄v

y = Cx̄+Du+ w,

t0 ∈ R≥0 and fixed u(·) : R<t0 → Rm, y(·) : R<t0 → Rp.
A functional H : X̄ × V → R is called feedback invariant if
for all solution pairs (x̄1(·), v1(·)), (x̄2(·), v2(·)) ∈ X̄ × V
with x̄1(t0) = x̄2(t0) the equation

H(x̄1(·), v1(·)) = H(x̄2(·), v2(·))

holds.

Theorem (Feedback invariant)

Consider the linear system for a y(·) : R≤t0 → Rp and
u(·) : R≤t0 → Rm for t0 > 0. Then, for every symmetric
matrix P ∈ Sn, differentiable signal β(·) : R≤t0 → Rn, and
a scalar H0 ∈ Rn (which does not depend on x̄(·) and
v(·)), the functional

H(x̄(·), v(·)) = H0

+

∫ t0

−∞

(
Ax̄+Bu+ B̄v − β̇

)T
P (x̄− β)

+ (x̄− β)T P
(
Ax̄+Bu+ B̄v − β̇

)
dτ

− (x̄(t0)− β(t0))
T P (x̄(t0)− β(t0))

is a feedback invariant as long as
limt→−∞(x̄(t)− β(t)) = 0.

C.M. Kellett & P. Braun (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 10 / 23



Minimum Energy Estimator (Continuous time setting)

Optimization problem

VMEE(x̄0) = min
v(·):R→Rq

JMEE(x̄0, v(·))
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Minimum Energy Estimator (Continuous time setting)

Perturbed linear system:

ẋ = Ax+Bu+ B̄v

y = Cx+Du+ w

Optimization problem

VMEE(x̄0) = min
v(·):R→Rq

JMEE(x̄0, v(·))

subject to ẋ = Ax+Bu+ B̄v

⇝ ‘Optimal disturbance’ v(·) : R → Rq :

‘Optimal disturbance’ defines ‘optimal estimated
dynamics’:

˙̄x = Ax̄+Bu+ B̄v

y = Cx̄+Du+ w

Theorem (The minimum energy estimator)

Consider the perturbed linear system and assume
that (A, B̄) is controllable and (A,C) is detectable.

Consider the optimization problem where the cost
function is defined through positive definite matrices
Q ∈ Sp

>0 and R ∈ Sq
>0.

Then there exists S ∈ Sn
>0 to the dual algebraic

Riccati equation

AS + SAT + B̄R−1B̄T − SCTQCS = 0

such that A− LC is Hurwitz, where L = SCTQ.

The minimum energy estimator is given by

˙̂x = Ax̂+Bu+ L(y − Cx̂−Du)

and the initial condition x̂(t0) = x̄0, t0 ∈ R≥0.
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Minimum Energy Estimator (Continuous time setting)

Example (Pendulum)
The linearization at the stable equilibrium
[xe

1, x
e
2]

T = [θe, θ̇e]T = [π, 0]T ;

ẋ = Ax+Bu+ B̄v

y = Cx+ w

A =

[
0 1

− mgℓ
J+mℓ2

− γ
J+mℓ2

]
, B =

[
0
ℓ

J+mℓ2

]
, C =

[
1 0

]

B̄ =

[
1 0
0 1

]
, Q = 1, R =

[
1 0
0 1

]
Constants: m = ℓ = 1, J = 0, g = 9.81, and γ = 0.1.
Observer gain:

L =

[
0.9548

−0.0441

]
Eigenvalues of A− LC: λ1,2 = −0.5274± 3.0957j

Initialization: x0 = [1, 1]T and x̂0 = [0, 0]T

v(t) ≡ 0, w(t) ≡ 0
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Minimum Energy Estimator (Continuous time setting)

Concluding remarks:
Here, we have derived the minimum energy estimator
using a deterministic setting

In the stochastic setting the minimum energy
estimator is known as (cont. time) Kalman filter.

Under certain assumptions on disturbances v(t), w(t)
in the system dynamics

ẋ = Ax+Bu+ B̄v

y = Cx+Du+ w

equivalences between the minimum energy estimator
and the Kalman filter can be derived.

In particular, assume v(·) and w(·) represent
functions of zero-mean Gaussian white noise with
covariance matrices satisfying

E[v(t)v(τ)T ] = δ(t− τ)R−1,

E[w(t)w(τ)T ] = δ(t− τ)Q−1,

for all t, τ ∈ R and Q ∈ Sp
>0, R ∈ Sq

>0.

Additionally, E[v(t)w(τ)T ] = 0 ∀ t, τ ∈ R.
Here:

expected value: E[·]:
Dirac delta function: δ : R → R ∪ {∞}

δ(t) =

{
∞, t = 0
0, t ̸= 0

and
∫ ∞

−∞
δ(t)dt = 1.

Under these conditions
x̂ obtained through the minimum energy estimator
minimizes the expected value

lim
t→∞

E
[
|x(t)− x̂(t)|2

]
(1)

⇝ The Kalman filter is derived based on (1)
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Section 3

The discrete time Kalman filter
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The discrete time Kalman filter

Consider

x(k + 1) = Ax(k) +Bu(k) + B̄v(k),

y(k) = Cx(k) + w(k).

(v(k))k∈N ⊂ Rq , (w(k))k∈N ⊂ Rp: unknown
disturbances and measurement noise.

Goal: For a finite set of measurements y(0), . . . , y(k),
define a state observer

x̂(k + 1) = Ax̂(k) +Bu(k) + B̄v̂(k), x̂(0) = x̂0

y(k) = Cx̂(k) + ŵ(k)

and sequences v̂(·), ŵ(·), to be determined.
v̂(k), ŵ(k) will be defined such that x̂(k) is optimal
w.r.t. assumptions on v(·) and w(·), and w.r.t. the
measured output y(0), . . . , y(k).

Variance: Var(·)
Expected value: E[·]

Assumption
v : N → Rq , w : N → Rp sequences of zero-mean
Gaussian white noise such that Var(v(k)) = Q−1 ∈ Sq

>0

and Var(w(k)) = R−1 ∈ Sp
>0 and E

[
v(k)w(j)T

]
= 0 for

all k, j ∈ N0.
Additionally, the initial state is assumed to be independent
of v(k) and w(k) in the sense that E

[
x0v(k)T

]
= 0 and

E
[
x0w(k)T

]
= 0 for all k ∈ N0.

Additionally, assume that
(A,B,C) is controllable and observable

A is nonsingular (if not, define u = Kx+ ũ with
A+BK nonsingular)
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and sequences v̂(·), ŵ(·), to be determined.
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The discrete time Kalman filter (2)

Consider

x(k + 1) = Ax(k) +Bu(k) + B̄v(k),

y(k) = Cx(k) + w(k).

(v(k))k∈N ⊂ Rq , (w(k))k∈N ⊂ Rp: unknown
disturbances and measurement noise.

Goal: For a finite set of measurements y(0), . . . , y(k),
define a state observer

x̂(k + 1) = Ax̂(k) +Bu(k) + B̄v̂(k), x̂(0) = x̂0

y(k) = Cx̂(k) + ŵ(k)

and sequences v̂(·), ŵ(·), to be determined.
v̂(k), ŵ(k) will be defined such that x̂(k) is optimal
w.r.t. assumptions on v(·) and w(·), and w.r.t. the
measured output y(0), . . . , y(k).

Variance: Var(·)
expectation: E[·]

Split the estimated state x̂ = x̂d + x̂s (deterministic
and stochastic component)
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ŷs(k) = y(k)− ŷd(k)
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deterministic output ŷd(k) in an optimal way.

C.M. Kellett & P. Braun (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 16 / 23



The discrete time Kalman filter (Least squares & minimum variance solution)

It holds that (for all 0 ≤ j ≤ k ∈ N):

x̂s(k) = Ax̂s(k − 1) + B̄v̂(k − 1)

= Ak−j x̂s(j) +
k∑

i=j+1

Ak−iB̄v̂(i− 1)

or equivalently

x̂s(j) = Aj−kx̂s(k)−
k∑

i=j+1

Aj−iB̄v̂(i− 1).

Moreover: (j ∈ {0, . . . , k})

ŷs(j) = Cx̂s(j) + ŵ(j)

= CAj−kx̂s(k) + ŵ(j)−
k∑

i=j+1

CAj−iB̄v̂(i− 1)

In vector form: (j ∈ {0, . . . , k})

Λj
k = Φj

kx̂
j
s(k) + Γj

k

Where

Λj
k =


ŷs(0)
ŷs(1)

...
ŷs(j)

 , Φj
k =


CA−k

CA1−k

...
CAj−k

 ,

Γj
k =


ŵ(0)−

∑k
i=1 CA1−iB̄v̂(i− 1)

ŵ(1)−
∑k

i=2 CA2−iB̄v̂(i− 1)
...

ŵ(j)−
∑k

i=j+1 CAk−iB̄v̂(i− 1)


Note that:

j ∈ {0, . . . , k} indicates that y(0) to y(j) are taken
into account to calculate the stochastic part x̂j

s(k)

Λk
k = Φk

kx̂
k
s (k) + Γk

k

Λj
k contains mismatch between y(·) and ŷd(·)

⇝ Find x̂j
s(k) which fits the data in an optimal way

⇝ estimate of x(k) through x̂(k) = x̂d(k) + x̂j
s(k)

Λj
k and Φj

k are known; Γj
k is not known
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The discrete time Kalman filter (Least squares & minimum variance solution)
Note that:

Λj
k, Φj

k are known; Γj
k is not known; (Λk

k = Φk
kx̂

k
s (k) + Γk

k)

(v(k))k∈N and (w(k))k∈N sequences of Gaussian white
noise with zero mean

Find x̂j
s(k) that minimizes the expected value

F (x̂j
s(k),W

j
k ) = E

[
|Λj

k − Φj
kx̂

j
s(k)|W j

k

]
for W j

k ∈ Sp(j+1)
>0 .

For (Φj
k)

TW j
kΦ

j
k nonsingular, it holds that:

F (x̂j
s(k),W

j
k ) = E

[
(Λj

k − Φj
kx̂

j
s(k))

TW j
k (Λ

j
k − Φj

kx̂
j
s(k))

]
= E

[
[(Φj

k)
TWkΦ

j
k)x̂

j
s(k)− (Φj

k)
TW j

kΛ
j
k]

T ((Φj
k)

TW j
kΦ

j
k)

−1

· [(Φj
k)

TW j
kΦ

j
k)x̂

j
s(k)− (Φj

k)
TW j

kΛ
j
k]
]

+ E
[
(Λj

k)
T (I −W j

kΦ
j
k((Φ

j
k)

TW j
kΦ

j
k)

−1(Φj
k)

T )W j
kΛ

j
k

]
Since second term is independent of x̂j

s(k)

⇝ x̂j
s(k) = x̂j

s(k;W
j
k ) = ((Φj

k)
TW j

kΦ
j
k)

−1(Φj
k)

TW j
kΛ

j
k

Question:
How to define W j

k in an optimal way?

⇝ Minimize the variance

Var(x(k)− x̂j(k)) = Var(x(k)− x̂d(k)− x̂j
s(k))

The variance satisfies

Var(x(k)− x̂d(k)− x̂j
s(k)) = [(Φj

k)
TW j

kΦ
j
k]

−1

· (Φj
k)

TW j
k E[Γj

k(Γ
j
k)

T ]W j
kΦ

j
k[(Φ

j
k)

TW j
kΦ

j
k]

−1

for

W j
k = (Ξj

k)
−1 = E

[
Γj
k(Γ

j
k)

T
]−1

∈ Sp(j+1)
>0

the variance reduces to

Var(x(k)− x̂d(k)− x̂j
s(k)) = [(Φj

k)
T (Ξj

k)
−1Φj

k]
−1

Optimal estimate of x(k)− x̂d(k) based on y(0) to y(j):

x̂j
s(k) = [(Φj

k)
T (Ξj

k)
−1Φj

k]
−1(Φj

k)
T (Ξj

k)
−1Λj

k,

For j = k, the index is omitted: x̂s(k) = x̂k
s (k).

⇝ Dim. of linear equation grows linearly with k ∈ N
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For j = k, the index is omitted: x̂s(k) = x̂k
s (k).

⇝ Dim. of linear equation grows linearly with k ∈ N
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The discrete time Kalman filter (A prediction-correction formulation)

Goal: Rewrite problem such that the complexity of the
calculation of x̂(k) is independent of k.

Derive a recursive formula to iteratively compute x̂(k):

χ̂(k) = Ax̂(k − 1) +Bu(k − 1) (prediction step)
x̂(k) = χ(k) +Gk(y(k)− Cχ̂(k)) (correction step)

How to define the Kalman gain matrices Gk ∈ Rn×p,
k ∈ N?

It can be shown that:

Gk = Pk−1
k CT [CPk−1

k CT +R−1]−1

where

Pk−1
k = APk−1A

T + B̄Q−1B̄T

Pk = [I −GkC]Pk−1
k

and

P0 = E
[
(x0 − E[x0])(x0 − E[x0])

T
]
= Var (x0) .

Input: Q−1 = Var(v(k)), R−1 = Var(w(k)), x̂(0) =
x̂0, P0 ∈ Sn

>0.
Output: Estimates χ̂(k), x̂(k) of x(k) for k ∈ N.
Algorithm: For k ∈ N:

1 Update the gain matrix Gk:

Pk−1
k = APk−1A

T + B̄Q−1B̄T ,

Gk = Pk−1
k CT [CPk−1

k CT +R−1]−1,

Pk = [I −GkC]Pk−1
k .

2 Update estimate (before y(k) is available):

χ̂(k) = Ax̂(k − 1) +Bu(k − 1).

3 Measure the output: y(k) = Cx(k) + w(k)

4 Update estimate (after y(k) is available):

x̂(k) = χ̂(k) +Gk(y(k)− Cχ̂(k)),

set k = k + 1 and go to step 1.
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The discrete time Kalman filter (Additional comments)

Input: Q−1 = Var(v(k)), R−1 = Var(w(k)),
x̂(0) = x̂0, P0 ∈ Sn

>0.
Output: Estimates χ̂(k), x̂(k) of x(k) for k ∈ N.
Algorithm: For k ∈ N:

1 Update the gain matrix Gk:

Pk−1
k = APk−1A

T + B̄Q−1B̄T ,

Gk = Pk−1
k CT [CPk−1

k CT +R−1]−1,

Pk = [I −GkC]Pk−1
k .

2 Update estimate (before y(k) is available):

χ̂(k) = Ax̂(k − 1) +Bu(k − 1).

3 Measure the output: y(k) = Cx(k) +w(k)

4 Update estimate (after y(k) is available):

x̂(k) = χ̂(k) +Gk(y(k)− Cχ̂(k)),

set k = k + 1 and go to step 1.

The Kalman filter can be written as a discrete time system:

χ̂(k + 1) = A(χ̂(k) +Bu(k) +Gk(y(k)− Cχ̂(k)))

= (A−AGkC)χ̂(k) +Bu(k) +AGky(k)

x̂(k + 1) =Ax̂(k)+Bu(k)+Gk+1(y(k + 1)− C(Ax̂(k) +Bu(k)))

= (I −Gk+1C)(Ax̂(k) +Bu(k)) +Gk+1y(k + 1)

The Kalman filter can be applied to time varying systems (i.e.,
A(k), B(k), B̄(k), C(k))
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The discrete time Kalman filter (A prediction-correction formulation)

Example

Consider C =
[

1 0
]

and

A =

[
1.000 0.050

−0.491 0.995

]
, B =

[
0

0.05

]
, B̄ =

[
0.05 0

0 0.05

]
Additionally, let

R−1 =
1

2
and Q−1 =

1

2

[
1 0
0 1

]
(defined based on v(k) and w(k))

0 2 4 6 8 10

0

0.5

1

0 2 4 6 8 10

0

0.5

1

0 2 4 6 8 10

-0.5

0

0.5

1

1.5

2

C.M. Kellett & P. Braun (ANU) Introduction to Nonlinear Control Ch. 13: Model Predictive Control 21 / 23



The discrete time Kalman filter (at steady-state)

Recall: Update the gain matrix Gk:

Pk−1
k = APk−1A

T + B̄Q−1B̄T ,

Gk = Pk−1
k CT [CPk−1

k CT +R−1]−1,

Pk = [I −GkC]Pk−1
k .

Note that:
Under certain conditions Gk = G∞, (i.e., Pk = P∞)
converges to a steady-state

In particular, with P∞ = Pk = Pk−1, Π = Pk−1
k :

Π = AΠAT−AΠCT (CΠCT+R−1)−1CΠAT+B̄Q−1B̄T

⇝ discrete time algebraic Riccati equation

It holds that:

G∞ = ΠCT (CΠCT +R−1)−1

G̃∞ = AΠCT (CΠCT +R−1)−1

P∞ = (I−G∞C)Π = (I − (ΠCT (CΠCT +R−1)−1)C)Π

Theorem

Consider the linear system

x(k + 1) = Ax(k) +Bu(k) + B̄v(k),

y(k) = Cx(k) + w(k).

and assume that (A, B̄) is stabilizable and (A,C) is
detectable. Additionally, let R ∈ Sp

>0 and Q ∈ Sq
>0. Then

the Riccati equation has a unique positive definite solution
Π ∈ Sn

>0, and the matrix

A− G̃∞C = A−AΠCT (CΠCT +R−1)−1C (2)

is a Schur matrix.

The steady-state Kalman filter reduces to

χ̂(k + 1) = (A− G̃∞C)χ̂(k) + G̃∞y(k) +Bu(k)

x̂(k + 1) = (I −G∞C)(Ax̂(k) +Bu(k)) +G∞y(k + 1)

⇝ The structure of the Luenberger observer or the
minimum energy estimator is recovered
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The discrete time Kalman filter (at steady-state)

Recall: Update the gain matrix Gk:

Pk−1
k = APk−1A

T + B̄Q−1B̄T ,

Gk = Pk−1
k CT [CPk−1

k CT +R−1]−1,

Pk = [I −GkC]Pk−1
k .

Note that:
Under certain conditions Gk = G∞, (i.e., Pk = P∞)
converges to a steady-state

In particular, with P∞ = Pk = Pk−1, Π = Pk−1
k :

Π = AΠAT−AΠCT (CΠCT+R−1)−1CΠAT+B̄Q−1B̄T

⇝ discrete time algebraic Riccati equation

It holds that:

G∞ = ΠCT (CΠCT +R−1)−1

G̃∞ = AΠCT (CΠCT +R−1)−1

P∞ = (I−G∞C)Π = (I − (ΠCT (CΠCT +R−1)−1)C)Π

Theorem

Consider the linear system

x(k + 1) = Ax(k) +Bu(k) + B̄v(k),

y(k) = Cx(k) + w(k).

and assume that (A, B̄) is stabilizable and (A,C) is
detectable. Additionally, let R ∈ Sp

>0 and Q ∈ Sq
>0. Then

the Riccati equation has a unique positive definite solution
Π ∈ Sn
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A hybrid Kalman filter

Input: Linear system

ẋc(t) = Acx(t) +Bcu(t) + B̄cvc(t), yc(t) = Ccx(t) + wc(t).

control input u : R≥0 → Rm, positive definite matrices Q, R, initial estimates x̂(0) = x̂0, P0 ∈ Sn
>0, and a sequence

of discrete time steps (τk)k∈N ⊂ R≥0, τk < τk+1, for all k ∈ N0.
Output: Continuous time and discrete time estimates χ̂(t) and x̂(τk) of the state x(t).
Algorithm: For k ∈ N:

1 Continuous time update: For t ∈ [τk−1, τk] solve

Ṗ (t) = AcP (t) + P (t)AT
c + B̄cQ

−1B̄T
c , P (τk−1) = Pk−1

˙̂χ(t) = Acχ̂(t) +Bcu(t), χ̂(τk−1) = x̂(k − 1).

2 Measure the output: yc(τk) = Cxc(τk) + w(τk).

3 Discrete time update:

Gk = P (τk)C
T
c (CcP (τk)C

T
c +R−1)−1,

Pk = (I −GkCc)P (τk),

x̂(k) = χ̂(τk) +Gk(yc(τk)− Ccχ̂(τk)).

Set k = k + 1 and go to step 1.
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