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Extended Kalman Filter (Continuous time)

Consider (nonlinear) system with (nonlinear) output:

ẋ(t) = f(x(t), u(t)), x(0) ∈ Rn

y(t) = h(x(t)).

Assumptions & Notations:
state x ∈ Rn; input u ∈ Rm; measured output y ∈ Rp

f : Rn × Rm → Rn and h : Rn → Rp arbitrarily often
continuously differentiable by assumption.

For cont. u(·), f(x, u(t)) satisfies

A(t)=
[
∂f(x(t),u(t))

∂x

]
x=0

; lim
|x|→0

sup
t≥0

|f(t,x)−A(t)x|
|x| = 0

 ‘The linearization of f makes sense’
Observer dynamics:

˙̂x(t) = f(x̂(t), u(t)) + L(t)(y(t)− h(x̂(t)))

x̂ ∈ Rn: estimated state

L : R≥0 → Rn×p represents a time-dependent output
injection term

Observer design:
Error e = x− x̂ and error dynamics

ė = f(x, u)− f(x̂, u)− L(t)(h(x)− h(x̂))

Define (time-varying linearization in (x̂, u))

A(t) =
∂f

∂x
(x̂(t), u(t)) and C(t) =

∂h

∂x
(x̂(t))

Adding and subtracting (A(t)− L(t)C(t))e we obtain

ė = (A(t)− L(t)C(t))e+ ∆(e, x, u) (1)

where ∆(e, x, u) = f(x, u)− f(x̂, u)−A(t)e

− L(t)(h(x)− h(x̂)− C(t)e)

Note that: f(e+ x̂, u)− f(x̂, u) = 0 for e = 0 and

∂
∂e

(f(x, u)− f(x̂, u))
∣∣
e=0

= ∂
∂e

(f(e+ x̂, u)− f(x̂, u))
∣∣
e=0

= ∂
∂e
f(e+ x̂, u)

∣∣
e=0

= A(t)

∂
∂e

(h(x)− h(x̂))
∣∣
e=0

= ∂
∂e
h(e+ x̂)

∣∣
e=0

= C(t)

 (1) represents Taylor approximation at e = 0 w.r.t. x̂
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Extended Kalman Filter (Continuous time) (2)

Derivation of a time-dependent injection gain L(t):
Consider P (t) > 0 and α1, α2 ∈ R>0 such that

α1I ≤ P (t) ≤ α2I,
1
α2
I ≤ P−1(t) ≤ 1

α1
I ∀ t

Candidate Lyapunov function V : R×Rp → R≥0

V (e(t)) = e(t)TP−1(t)e(t)

Lemma
Consider P : R→ Sn>0 cont. diff. Then

Ṗ−1(t) = −P−1(t)Ṗ (t)P−1(t).

Proof.
With I = P (t)P−1(t) = P−1(t)P (t) it holds that

Ṗ−1 = d
dt

(
P−1PP−1

)
= Ṗ−1PP−1 + P−1ṖP−1 + P−1PṖ−1

= 2Ṗ−1 + P−1ṖP−1

Derivative of the candidate Lyapunov function:

V̇ (e) = ėTP−1e+ eT Ṗ−1e+ eTP−1ė

=((A− LC)e+∆)TP−1e+eTP−1((A−LC)e+∆)−eTP−1ṖP−1e

=eTP−1
(
P (A− LC)T + (A− LC)P − Ṗ

)
P−1e+ 2eTP−1∆

Select L(t) = P (t)C(t)TQ for Q > 0. Then:

V̇ (e)=eTP−1
(
PAT+AP−2PCTQCP−Ṗ

)
P−1e+2eTP−1∆

If P (t) sat. differential Riccati equation (P (t0) ∈ Sn>0, R ∈ Sn>0)

Ṗ (t) = P (t)A(t)T +A(t)P (t)− P (t)C(t)TQC(t)P (t) +R−1

then

V̇ (e) = −eTP−1
(
PCTQCP +R−1

)
P−1e+ 2eTP−1∆

 V̇ (e) ≤ 0 for e small enough

Note that:
For A, L, C constant also P (t) is constant, i.e.,

Ṗ (t) = 0 = PAT +AP − PCTQCP +R−1
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Ṗ−1(t) = −P−1(t)Ṗ (t)P−1(t).
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Ṗ (t) = 0 = PAT +AP − PCTQCP +R−1

C.M. Kellett & P. Braun (ANU) Introduction to Nonlinear Control Ch. 1: Nonlinear Systems - Fundamentals 5 / 14



Extended Kalman Filter (Continuous Time) (3)

Consider (nonlinear) system with (nonlinear) output:

ẋ(t) = f(x(t), u(t)), x(0) ∈ Rn

y(t) = h(x(t)).

Observer dynamics:

˙̂x(t) = f(x̂(t), u(t)) + L(t)(y(t)− h(x̂(t)))

Error dynamics

ė = f(x, u)− f(x̂, u)− L(t)(h(x)− h(x̂))

Lemma

Consider the error dynamics and let R ∈ Sn>0 and
Q ∈ Sp>0 be given. Additionally, for P (t0) = P0 ∈ Sn>0,
assume that the solution P : R→ Rp×p of the Riccati
differential equation exists for all t ≥ t0 and satisfies
bounds for α1, α2 ∈ R>0. Then, for L(t) = P (t)C(t)TQ
the origin is locally exponentially stable; i.e., there exist
δ, λ,M > 0 such that if |e(t0)| ≤ δ then for all t ≥ t0,

|e(t)| ≤M |e(t0)|exp(λ(t− t0)).

Note that:
For nonlinear systems, only local exponential stability
x̂(t)→ x(t) is satisfied

Equations of the extended Kalman filter:

˙̂x(t) = f(x̂(t), u(t))

+ P (t)
(
∂h
∂x

(x̂(t))
)T

Q(y(t)− h(x̂(t)))

Ṗ (t) = P
(
∂f
∂x

(x̂(t), u(t))
)T

+
(
∂f
∂x

(x̂(t), u(t))
)
P

− P
(
∂h
∂x

(x̂(t))
)T

Q
(
∂h
∂x

(x̂(t))
)
P +R−1

Initial conditions: x̂(t0) = x̂0 ∈ Rn, P (t0) = P0 ∈ Sn>0

For given u : R≥t0 → Rm, y : R≥t0 → Rp, the solution
provides an approximation of x(t) with guaranteed
convergence x̂(t)→ x(t) for t→∞ if the assumptions
of the Lemma are satisfied.

The system of ODEs has to be solved in parallel. P (t)
is symmetric, i.e., the matrix equation can be written as
an ODE of dimension n(n+ 1)/2.
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provides an approximation of x(t) with guaranteed
convergence x̂(t)→ x(t) for t→∞ if the assumptions
of the Lemma are satisfied.

The system of ODEs has to be solved in parallel. P (t)
is symmetric, i.e., the matrix equation can be written as
an ODE of dimension n(n+ 1)/2.
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Extended Kalman Filter (Continuous Time) (4)

Example (Inverted pendulum on a cart)

f(x, u)=


x3

x4

−J̄c̄x3−J̄ sin(x2)x2
4−γ̄ cos(x2)x4+g cos(x2) sin(x2)+J̄u

M̄J̄−cos2(x2)

−M̄γ̄x4+M̄g sin(x2)−c̄ cos(x2)x3−cos(x2) sin(x2)x2
4+cos(x2)u

M̄J̄−cos2(x2)


h(x) =

[
x1

x2

]
 

∂h

∂x
=

[
1 0 0 0
0 1 0 0

]
Partial derivatives of f :

∂f

∂x1

=

0
0
0
0

 ,
∂f

∂x3

=


1
0
c̄J̄

cos2(x2)−J̄M̄
c̄ cos(x2)

cos2(x2)−J̄M̄

 ,
∂f

∂x4

=


0
1

γ̄ cos(x2)+2J̄x4 sin(x2)

cos2(x2)−J̄M̄
γ̄M̄+2x4 cos(x2) sin(x2)

cos2(x2)−J̄M̄


∂f

∂x2

= · · · (The expression is too long)

( Use syms and symbolic differentiation diff.m in Matlab to
obtain expressions)

A(t) = ∂f
∂x

=
[

∂f
∂x1

∂f
∂x2

∂f
∂x3

∂f
∂x4

]

Selection of the input

u(x̂) = −x̂3(t)− x̂4(t).

0 2 4 6 8 10

-10

-5

0

5

10

 Only local convergence! (Here, different selection
of Q.)

C.M. Kellett & P. Braun (ANU) Introduction to Nonlinear Control Ch. 1: Nonlinear Systems - Fundamentals 7 / 14



Extended Kalman Filter (Continuous Time) (4)

Example (Inverted pendulum on a cart)

f(x, u)=


x3

x4

−J̄c̄x3−J̄ sin(x2)x2
4−γ̄ cos(x2)x4+g cos(x2) sin(x2)+J̄u

M̄J̄−cos2(x2)

−M̄γ̄x4+M̄g sin(x2)−c̄ cos(x2)x3−cos(x2) sin(x2)x2
4+cos(x2)u

M̄J̄−cos2(x2)


h(x) =

[
x1

x2

]
 

∂h

∂x
=

[
1 0 0 0
0 1 0 0

]
Partial derivatives of f :

∂f

∂x1

=

0
0
0
0

 ,
∂f

∂x3

=


1
0
c̄J̄

cos2(x2)−J̄M̄
c̄ cos(x2)

cos2(x2)−J̄M̄

 ,
∂f

∂x4

=


0
1

γ̄ cos(x2)+2J̄x4 sin(x2)

cos2(x2)−J̄M̄
γ̄M̄+2x4 cos(x2) sin(x2)

cos2(x2)−J̄M̄


∂f

∂x2

= · · · (The expression is too long)

( Use syms and symbolic differentiation diff.m in Matlab to
obtain expressions)

A(t) = ∂f
∂x

=
[

∂f
∂x1

∂f
∂x2

∂f
∂x3

∂f
∂x4

]

Selection of the input

u(x̂) = −x̂3(t)− x̂4(t).

0 2 4 6 8 10

-6

-4

-2

0

2

4

6

 Only local convergence! (Here, different selection
of Q.)

C.M. Kellett & P. Braun (ANU) Introduction to Nonlinear Control Ch. 1: Nonlinear Systems - Fundamentals 7 / 14



Extended Kalman Filter (Continuous Time) (4)

Example (Inverted pendulum on a cart)

f(x, u)=


x3

x4

−J̄c̄x3−J̄ sin(x2)x2
4−γ̄ cos(x2)x4+g cos(x2) sin(x2)+J̄u

M̄J̄−cos2(x2)

−M̄γ̄x4+M̄g sin(x2)−c̄ cos(x2)x3−cos(x2) sin(x2)x2
4+cos(x2)u

M̄J̄−cos2(x2)


h(x) =

[
x1

x2

]
 

∂h

∂x
=

[
1 0 0 0
0 1 0 0

]
Partial derivatives of f :

∂f

∂x1

=

0
0
0
0

 ,
∂f

∂x3

=


1
0
c̄J̄

cos2(x2)−J̄M̄
c̄ cos(x2)

cos2(x2)−J̄M̄

 ,
∂f

∂x4

=


0
1

γ̄ cos(x2)+2J̄x4 sin(x2)

cos2(x2)−J̄M̄
γ̄M̄+2x4 cos(x2) sin(x2)

cos2(x2)−J̄M̄


∂f

∂x2

= · · · (The expression is too long)

( Use syms and symbolic differentiation diff.m in Matlab to
obtain expressions)

A(t) = ∂f
∂x

=
[

∂f
∂x1

∂f
∂x2

∂f
∂x3

∂f
∂x4

]

Selection of the input

u(x̂) = −x̂3(t)− x̂4(t).

0 2 4 6 8 10

-10

-5

0

5

10

 Only local convergence! (Here, different selection
of Q.)

C.M. Kellett & P. Braun (ANU) Introduction to Nonlinear Control Ch. 1: Nonlinear Systems - Fundamentals 7 / 14



Extended Kalman Filter (Continuous Time) (4)

Example (Inverted pendulum on a cart)

f(x, u)=


x3

x4

−J̄c̄x3−J̄ sin(x2)x2
4−γ̄ cos(x2)x4+g cos(x2) sin(x2)+J̄u

M̄J̄−cos2(x2)

−M̄γ̄x4+M̄g sin(x2)−c̄ cos(x2)x3−cos(x2) sin(x2)x2
4+cos(x2)u

M̄J̄−cos2(x2)


h(x) =

[
x1

x2

]
 

∂h

∂x
=

[
1 0 0 0
0 1 0 0

]
Partial derivatives of f :

∂f

∂x1

=

0
0
0
0

 ,
∂f

∂x3

=


1
0
c̄J̄

cos2(x2)−J̄M̄
c̄ cos(x2)

cos2(x2)−J̄M̄

 ,
∂f

∂x4

=


0
1

γ̄ cos(x2)+2J̄x4 sin(x2)

cos2(x2)−J̄M̄
γ̄M̄+2x4 cos(x2) sin(x2)

cos2(x2)−J̄M̄


∂f

∂x2

= · · · (The expression is too long)

( Use syms and symbolic differentiation diff.m in Matlab to
obtain expressions)

A(t) = ∂f
∂x

=
[

∂f
∂x1

∂f
∂x2

∂f
∂x3

∂f
∂x4

]

Selection of the input

u(x̂) = −x̂3(t)− x̂4(t).

0 2 4 6 8 10

-10

-5

0

5

10

 Only local convergence! (Here, different selection
of Q.)

C.M. Kellett & P. Braun (ANU) Introduction to Nonlinear Control Ch. 1: Nonlinear Systems - Fundamentals 7 / 14



Section 2

Extended Kalman Filter (Discrete Time)
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Extended Kalman Filter (Discrete Time)

Consider: Discrete time system

x(k + 1) = f(k, x(k)) + g(k, x(k))v(k)

y(k) = h(k, x(k)) + w(k)

state x ∈ Rn; measured output y ∈ Rp; unknown
disturbances/noise (v(k))k∈N ⊂ Rq ; (w(k))k∈N ⊂ Rp

f : N× Rn → Rn, g = [g1, . . . , gq ],
g1, . . . , gq : N× Rn → Rn, and h : N× Rn → Rp are
continuously differentiable by assumption.

Note that:
(u(k))k∈N ⊂ Rm can be incorporated through the time
dependence, i.e.,

f(k, x(k)) = f̃(x(k), u(k)), g(k, x(k)) = g̃(x(k), u(k)),

h(k, x(k)) = h̃(x(k), u(k)),

Assumptions: (zero mean Gaussian white noise)

E
[
v(k)v(j)T

]
=

{
Q−1, if k = j

0, if k 6= j
,

E
[
w(k)w(j)T

]
=

{
R−1, if k = j

0, if k 6= j

∀j, k ∈ N and Q ∈ Sq>0, R ∈ Sp>0.

E
[
v(k)w(j)T

]
= 0, E

[
v(k)xT0

]
= 0, E

[
w(k)xT0

]
= 0,

∀j, k ∈ N and for all initial conditions x0 ∈ Rn.

Filter/Observer equations:

χ̂(k) = f(k − 1, x̂(k − 1))

x̂(k) = χ̂(k) +Gk (y(k)− h(k, χ̂(k))) .

Task:
How to define the Kalman gain matrix Gk?
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Extended Kalman Filter (Discrete Time)

Decompose x and y (stochastic/deterministic part)

x̂ = x̂d + x̂s, y = ŷd + ŷs

Deterministic dynamics:

x̂d(k + 1) = f(k, x̂d(k))

ŷd(k) = h(k, x̂d(k)).

Stochastic dynamics:

x̂s(k + 1) = x̂(k + 1)− x̂d(k + 1)

= f(k, x̂d(k) + x̂s(k)) + g(k, x̂(k))v̂(k)− f(k, x̂d(k))

First order Taylor approximation of f(k, ·) around x̂d(k):

x̂s(k + 1) ≈ ∂f
∂x

(k, x̂d(k))x̂s(k) + g(k, x̂(k))v̂(k)

Taylor approx. of g(k, ·) around x̂d(k) (ŷs(k) = y(k)− ŷd(k)):

ŷs(k) ≈ h(k, x̂d(k)) + ∂h
∂x

(k, x̂d(k))x̂s(k) + ŵ(k)− h(k, x̂d(k))

= ∂h
∂x

(k, x̂d(k))x̂s(k) + ŵ(k)

= ∂h
∂x

(k, f(k − 1, x̂d(k − 1))x̂s(k) + ŵ(k)

With x̂s(k) and ŷs(k), we define A, B̄, C:

A(k) = ∂f
∂x

(k, x̂(k)), B̄(k) = g(k, x̂(k))

C(k) = ∂h
∂x

(k, χ̂(k))

 Matrices define a linear time varying system

We adapt the equations of the linear Kalman filter:

Pk−1
k =

[
∂f
∂x

(k−1, x̂(k−1))
]
Pk−1

[
∂f
∂x

(k−1, x̂(k−1))
]T

+ g(k − 1, x̂(k − 1))Q−1g(k − 1, x̂(k − 1))T

Gk = Pkk − 1
[
∂h
∂x

(k, χ̂(k))
]T

·
([
∂h
∂x

(k, χ̂(k))
]
Pk−1
k

[
∂h
∂x

(k, χ̂(k))
]T

+R−1

)−1

Pk =
(
I −Gk

[
∂h
∂x

(k, χ̂(k))
])
Pk−1
k
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(k, x̂d(k))x̂s(k) + ŵ(k)

= ∂h
∂x

(k, f(k − 1, x̂d(k − 1))x̂s(k) + ŵ(k)

With x̂s(k) and ŷs(k), we define A, B̄, C:

A(k) = ∂f
∂x

(k, x̂(k)), B̄(k) = g(k, x̂(k))

C(k) = ∂h
∂x

(k, χ̂(k))

 Matrices define a linear time varying system

We adapt the equations of the linear Kalman filter:

Pk−1
k =

[
∂f
∂x

(k−1, x̂(k−1))
]
Pk−1

[
∂f
∂x

(k−1, x̂(k−1))
]T

+ g(k − 1, x̂(k − 1))Q−1g(k − 1, x̂(k − 1))T

Gk = Pkk − 1
[
∂h
∂x

(k, χ̂(k))
]T

·
([
∂h
∂x

(k, χ̂(k))
]
Pk−1
k

[
∂h
∂x

(k, χ̂(k))
]T

+R−1

)−1

Pk =
(
I −Gk

[
∂h
∂x

(k, χ̂(k))
])
Pk−1
k
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Extended Kalman Filter (3)

Input: Discrete time system with output, positive definite weight matrices Q−1 = Var(v(k)), R−1 = Var(w(k)),
and initial estimates x̂(0) = x̂0, P0 ∈ Sn>0.
Output: Estimates x̂(k) and χ̂(k) of the state x(k) for k ∈ N.
Algorithm: For k ∈ N:

1 Compute χ̂(k) = f(k − 1, x̂(k − 1))

and
A(k − 1) =

∂f

∂x
(k − 1, x̂(k − 1)), B̄(k − 1) = g(k − 1, x̂(k − 1)), C(k) =

∂h

∂x
(k, χ̂(k)).

2 Update the gain matrix

Pk−1
k = A(k − 1)Pk−1A(k − 1)T + B̄(k − 1)Q−1B̄(k − 1)T ,

Gk = Pk−1
k C(k)T

[
C(k)Pk−1

k C(k)T +R−1
]−1

,

Pk = [I −GkC(k)]Pk−1
k .

3 Measure the output y(k) and update the state estimate

x̂(k) = χ̂(k) +Gk (y(k)− h(k, χ̂(k)))

set k = k + 1 and go to step 1.
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Section 3

Moving Horizon Estimation
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Moving Horizon Estimation
Recall:

The dual to LQR is MME (Minimum energy estimator)

We have discussed MPC as an extension of LQR

The dual to MPC is MHE (Moving Horizon Estimation)
Consider:

x(k + 1) = f(k, x(k), v(k))

y(k) = h(k, x(k)) + w(k)

State x ∈ X ⊂ Rn; measured output y ∈ Rp;
(v(k))k∈N ⊂ V ⊂ Rq and unknown
disturbances/noise (w(k))k∈N ⊂W ⊂ Rp

Constraints: X,V,W
(Inputs u(k) can be included as before)

Goal: Based on measured data y(k), find “optimal”
v̂(k), ŵ(k) such that

x̂(k + 1) = f(k, x̂(k), v̂(k)),

y(k) = h(k, x̂(k)) + ŵ(k).

 optimal state estimates x̂(k)

Define D = X× V×W

At time k ∈ N , for given y(i) for i ∈ Z[k−N̄,k−1], define
the set of feasible disturbance trajectories

VN̄D =

vN̄ : Z[k−N̄,k−1] → Rq

∣∣∣∣∣∣∣
x̂(i+ 1) = f(i, x̂(i), v(i))
y(i) = h(i, x̂(i)) + w(i)
(x̂(i+ 1), v(i), w(i)) ∈ D
∀ i ∈ Z[k−N̄,k−1]


(Note that VN̄D = VN̄D (k, yN̄ ) depends on k)

Cost function: J̄N̄ : Rn × UND → R ∪ {∞},

J̄N̄ (x̂(k − N̄), vN̄ (·); yN̄ (·))

= FN̄ (x̄(k − N̄)) +
∑k−1
i=k−N `(v(i), y(i)− h(i, x̂(i)))

For given x̂(k − N̄), v(·) and y(·), x̂(·) and w(·) are
implicitly defined through the dynamics.

Costs with respect to disturbance ` : Rq × Rp → R;

Costs with respect to estimate of the state FN̄ : Rn → R
(‘terminal costs’)
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Moving Horizon Estimation (2)

Moving horizon optimization problem:

V̄N̄ (k, yN̄ (·)) = min
vN̄ (·)∈VN̄D
x̂(k−N̄)∈X

J̄N̄ (x̂(k − N̄), vN̄ (·); yN̄(·))

subject to x̂(k + 1) = f(k, x̂(k), v̂(k))

Note that:
Optimal v̂N̄ (·) and optimal state estimate x̂(k − N̄) can be obtained
from the solution

Optimality is achieved w.r.t. a particular cost function.

From v̂N̄ (·) and x̂(k − N̄) we obtain x̂(k)

The estimate x̂(k) can be used to design a state feedback
µ(k) = u(x̂(k)) through MPC, for example.

Similar to MPC, after shifting the horizon by going from k to k + 1,
the shifted optimization problem can be solved at the next time step
to obtain x̂(k + 1).
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