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Section 1

Extended Kalman Filter (Continuous time)
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Extended Kalman Filter (Continuous time)

Consider (nonlinear) system with (nonlinear) output:
&(t) = f(z(t),u(®),  =(0) €R”
y(t) = h(x(t)).
Assumptions & Notations:
@ state z € R™;input u € R™; measured output y € RP

@ f:R™ xR™ — R™ and h : R™ — RP arbitrarily often
continuously differentiable by assumption.

@ For cont. u(-), f(z,u(t)) satisfies

A(t)=[ 2] lim sup FBD=A®s] _ o

e=0"  |2|50¢>0 la]
~+ ‘The linearization of f makes sense’
Observer dynamics:
#(t) = f(@(1), u()) + L(t)(y(t) — h(#(1))
@ i € R™: estimated state

@ L:R>q — R™*P represents a time-dependent output
injection term
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Extended Kalman Filter (Continuous time)

Observer design:
@ Error e = z — % and error dynamics
&t) = fa(®),u(®),  2(0) € R é = f(z,u) = £(#,u) = L) (h(x) — h(2))
y(t) = h(xz(t)).
Assumptions & Notations:
@ state z € R™;input u € R™; measured output y € RP At) = g(j(t), u(t)) and C(t) = %(g}(t))

19)
@ f:R™ xR™ — R™and h : R™ — RP arbitrarily often v
continuously differentiable by assumption.

@ For cont. u(-), f(z,u(t)) satisfies
A(t):[af(z(gl’“(t))]

Consider (nonlinear) system with (nonlinear) output:

@ Define (time-varying linearization in (&, u))

: lim sup [ftz)—A®)z| _ 0
=0 |z|—0¢>0 |

~+ ‘The linearization of f makes sense’
Observer dynamics:

() = f(@(8), u(t)) + L) (y(t) — h(@(1)))

@ 7 € R™: estimated state

@ L:R>q — R™*P represents a time-dependent output
injection term
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Extended Kalman Filter (Continuous time)

Observer design:

Consider (nonlinear) system with (nonlinear) output: @ Error e = z — 4 and error dynamics

a(t) = f(@(®),u(®),  =(0) R é= f(z,u) — f(&,u) — L{t)(h(z) — h(2))
y(t) = h(xz(t)). I L
) . @ Define (tlme—varymg linearization in (&, u))
Assumptions & Notations:
@ state z € R"; input uw € R™; measured output y € RP At) = (z(t) u(t)) and C(t) = ?(is(t))

@ f:R™ xR™ — R™and h : R™ — RP arbitrarily often
continuously differentiable by assumption.

@ For cont. u(-), f(z,u(t)) satisfies

_[of(@),u(t) [ftz)—AM)z]| _
A=[ 200 lateap A0 — g

lim sup 7]

2=0" |z|=0¢>0

~» ‘The linearization of f makes sense’
Observer dynamics:
() = f(&(t), ult)) + L(£)(y(t)

@ 7 € R™: estimated state

@ L:R>q — R™*P represents a time-dependent output
injection term

— h(2(1)))

C.M. Kellett & P. Braun (ANU)
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@ Adding and subtracting (A(t) — L(t)C(¢))e we obtain

é=(A®t) — L{t)C(t))e + Ale, z, u) (1)
where  A(c o u) = f(z,u) — F(&,u) — A(t)e
= L(t)(h(z) — h(2) — C(t)e)
@ Note that: f(e + &,u) — f(&,u) =0fore =0and
(f (@) = f(@ )| _g = pefle+&u) = f(@,0)),_,
= %f(e + z, u)|E:0 = A(t)
Z2(h(@) = h(@)) |,y = Shle+2)],_, = C(1)

~ (1) represents Taylor approximation at e = 0 w.r.t. &
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Extended Kalman Filter (Continuous time) (2)

Derivation of a time-dependent injection gain L(¢):
@ Consider P(t) > 0 and a1, a2 € R such that

arl <P(t) <asl, LI<P ()< LI vt
@ Candidate Lyapunov function V : R x R? — R

V(e(®)) = e(t)” P (t)e(t)
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Extended Kalman Filter (Continuous time) (2)

Derivation of a time-dependent injection gain L(¢):
@ Consider P(t) > 0 and a1, a2 € R such that

arl <P(t) <asl, LI<P ()< LI vt
@ Candidate Lyapunov function V : R x R? — R
V(e(t) = e(t)" P~ (t)e(t)
Lemma
Consider P : R — SZ, cont. diff. Then
P it) = —P L) P(t)P~L(t).

Proof.
With I = P(t)P~1(t) = P~1(t)P(t) it holds that
H—1 d -1 -1
p~l =4 (p~lpp)
=P 'pp~' + P PPl + PTlPP!
=2P7 1+ plpp!
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Extended Kalman Filter (Continuous time) (2)

Derivation of a time-dependent injection gain L(¢): Derivative of the candidate Lyapunov function:
@ Consider P(t) > 0 and a1, a2 € R such that

arl <P(t) <asl, LI<P ()< LI vt

Ve)=e¢TPleteTPlet+eTPLe
=((A = LO)e+A) TP leteTP7Y((A-LC)e+A)—eTP~1 PP e
@ Candidate Lyapunov function V : R x R? — Rso =¢7 P! (P(A - O +(A-LC)P - P) P let2eTP71IA
V(e(t) = e(t)" P~ (t)e(t)
Lemma
Consider P : R — SZ, cont. diff. Then
P it) = —P L) P(t)P~L(t).

Proof.
With I = P(t)P~1(t) = P~1(t)P(t) it holds that
p~l =4 (p~lpp)
=P 'pp~' + P PPl + PTlPP!
=2P7 1+ plpp!
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Extended Kalman Filter (Continuous time) (2)

Derivation of a time-dependent injection gain L(¢): Derivative of the candidate Lyapunov function:
@ Consider P(t) > 0 and a1, a2 € R such that Vie)=eTP let el Plet TP le

al SP(t) <aol, SI<SPTHO)< 0T Vi _((A— LO)etA) TP Lete P L (A—LC)etrA)—eTP PP Le
@ Candidate Lyapunov function V : R x RP — Rsq  =¢’ P! (P(A - LT +(A-LCO)P - P) P let2eTP71IA
V(e(t) = e(t)" P~ (t)e(t) Select L(t) = P(t)C(t)TQ for Q > 0. Then:

Lemma V(e):eTP—l(PAT+AP—2PCTQCP—P) P let2eTPIA
Consider P : R — SZ, cont. diff. Then

Pl(t) = =P L) P(t)P~L(t).

Proof.
With I = P(t)P~1(t) = P~1(t)P(t) it holds that
p~l =4 (p~lpp)
=P 'pp~' + P PPl + PTlPP!
=2P7 1+ plpp!

O

V.
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Extended Kalman Filter (Continuous time) (2)

Derivation of a time-dependent injection gain L(¢):
@ Consider P(t) > 0 and a1, a2 € R such that

arl <P(t) <asl, LI<P ()< LI vt
@ Candidate Lyapunov function V : R x R? — R
V(e(t)) = e(t)" P~ (t)e(t)
Lemma
Consider P : R — SZ, cont. diff. Then

Pl(t) = =P L) P(t)P~L(t).

Proof.
With I = P(t)P~1(t) = P~1(¢)P(t) it holds that
p~l =4 (p~lpp)
=p-lpp-l 4 p-lpp-1 4 p-lpp-!
=2P7 1+ plpp!

Derivative of the candidate Lyapunov function:
Ve)=e¢TPleteTPlet+eTPLe
=((A = LO)e+A) TP leteTP7Y((A-LC)e+A)—eTP~1 PP e
—Tp-! (P(A —LO)T 4+ (A— LO)P — P) P le+2TP 1A
Select L(t) = P(t)C(t)TQ for Q > 0. Then:
V(e):eTP—l(PAT+AP—2PCTQCP—P) P let2eTPIA
If P(t) sat. differential Riccati equation (P(to) € SZ, R € SZ)
P(t) = P)A®)T + A(t)P(t) — PA)CH)TQC()P(t) + R™!
then
V(e) = —eTP! (PCTQCP + R—l) P let2.TP 1A

~ V(e) < 0 for e small enough
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Extended Kalman Filter (Continuous time) (2)

Derivation of a time-dependent injection gain L(¢):

@ Consider P(t) > 0 and a1, a2 € R such that
arl <P(t) <asl, LI<P ()< LI vt

@ Candidate Lyapunov function V : R x R? — R

V(e(t)) = e(t)" P~ (t)e(t)
Lemma
Consider P : R — SZ, cont. diff. Then
P7l(t) = —P7 L) P(t)P7(t).

Proof.
With I = P(t)P~1(t) = P~1(¢)P(t) it holds that
p~l =4 (p~lpp)
=p-lpp-l 4 p-lpp-1 4 p-lpp-!
=2P7 1+ plpp!

O

y
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Derivative of the candidate Lyapunov function:
Ve)=e¢TPleteTPlet+eTPLe
=((A — LC)e+A) TP LeteTP L ((A—LC)e+A) TP PP e
—Tp-1 (P(A - LT +(A-LC)P - P) P let2eTP71A
Select L(t) = P(t)C(t)TQ for Q > 0. Then:
V(e):eTP—l(PAT+AP—2PCTQCP—P) P let2eTPIA
If P(t) sat. differential Riccati equation (P(to) € SZ, R € SZ)
P(t) = P)A®)T + A(t)P(t) — PA)CH)TQC()P(t) + R™!
then
V(e) = —eTP! (PCTQCP + R—l) P let2.TP 1A
~ V(e) < 0 for e small enough

Note that:
@ For A, L, C constant also P(t) is constant, i.e.,

P(t)=0=PAT + AP - PCTQCP + R~}
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Extended Kalman Filter (Continuous Time) (3)

Consider (nonlinear) system with (nonlinear) output:
i(t) = f(=(t),u(t)),  x(0) eR"
y(t) = h(x(t)).

Observer dynamics:

2(t) = f(@(1), u(®)) + L) (y(t) — h(E(1))

Error dynamics

é = f(z,u) = f(2,u) = L(t)(h(z) — h(2))

Lemma

Consider the error dynamics and let R € ST, and

Q € 8%, be given. Additionally, for P(to) = Po € SZ,
assume that the solution P : R — RP*? of the Riccati
differential equation exists for allt > to and satisfies
bounds for a1, s € Rsq. Then, for L(t) = P(t)C(t)TQ
the origin is locally exponentially stable; i.e., there exist
8, X\, M > 0 such that if |e(to)| < & then for all t > to,

le(t)] < Mle(to)lexp(A(t — to))-
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Extended Kalman Filter (Continuous Time) (3)

Consider (nonlinear) system with (nonlinear) output:
&(t) = f(z(t),u(®),  x(0) €R”
y(t) = h(z(t)).
Observer dynamics:
(1) = f(@(t), u(®)) + L) (y(1)
Error dynamics
€= f(:ﬂ, ’LL) -

— h(2(1)))
f(@,u) = L()(h(z) — h(2))

Lemma

Consider the error dynamics and let R € ST, and
Qe 8> be given. Additionally, for P(to) = Po € SZ,
assume that the solution P : R — RP*P of the Riccati
differential equation exists for allt > to and satisfies
bounds for a1, a2 € Rsq. Then, for L(t) =
the origin is locally exponentially stable; i.e., there exist
0, A\, M > 0 such that if |e(to)| < o then for all t > to,

le(t)] < Mle(to)lexp(A(t — to))-

PHCHTQ

C.M. Kellett & P. Braun (ANU)

Note that:

Introduction to Nonlinear Control

For nonlinear systems, only local exponential stability
z(t) — =(¢) is satisfied

Equations of the extended Kalman filter:
B(t) = S(@ (1), u(t))
+P() (2@() " Qut) — h(@(1))
P(t) = P (4L (@), ut) ) + (gL @, ut)) P
~P(26w) (2 @w) P+

Initial conditions: #(to) = @0 € R™, P(to) = Po € ST

For given u : R>;; — R™, y : R>;, — RP, the solution
provides an approxmatlon of z(f) with guaranteed
convergence &(t) — xz(t) for ¢ — oo if the assumptions
of the Lemma are satisfied.

The system of ODEs has to be solved in parallel. P(t)
is symmetric, i.e., the matrix equation can be written as
an ODE of dimension n(n + 1)/2.

Ch. 1: Nonlinear Systems - Fundamentals 6/14



Extended Kalman Filter (Continuous Time) (4)

Example (Inverted pendulum on a cart)

x3
Zq
f("l‘, u): 7f5z37jsin(m2)m?lf:’y ios(z2)z4+g cos(zg) sin(zg)+Ju
Mchosz(mQ)
— M~z +Mgsin(zg)—&cos(zg)zg—cos(zg) sin(zg)ziﬁ—cos(mz)u

M J—cos2(zg)

_ | = Oh _['1 0 0 O
h(w)_[acz} e az_[o 10 0}
Partial derivatives of f:
0 1 0
0 1
afz 0 of — aJ 8f= 5 cos(zg)+2Jxy sin(xzs)
oz 0" Oxs cos2(zg)—JM |’ Oz cos?(xg)—JM
0 ccos(xg) FM+2x4 cos(xg) sin(xg)
cos?(zg)—JM cos?(xg)—JM
of -
——= ... (The expression is too long)
Oxo

(~ Use syms and symbolic differentiation di ££.m in Matlab to
obtain expressions)
of of of  Oof ]

_ 9f _
Alt) = 5z = [ do1 sz Oa3 Dea

W

C.M. Kellett & P. Braun (ANU)

Selection of the input

u(i) = —a3(t) — Za(t).

10

-10

Introduction to Nonlinear Control

Ch. 1: Nonlinear Systems - Fundamentals

7/14



Extended Kalman Filter (Continuous Time) (4)

Example (Inverted pendulum on a cart)

x3
Zq
f("l‘, u): 7f5z37jsin(m2)m?lf:’y ios(z2)z4+g cos(zg) sin(zg)+Ju
Mchosz(mQ)
— M~z +Mgsin(zg)—&cos(zg)zg—cos(zg) sin(zg)ziﬁ—cos(wz)u

M J—cos2(zg)

_| = Oh _['1 0 0 O
h(w)_[xz} e az_[o 10 0}
Partial derivatives of f:
0 1 0
af _|o| of 0 of 1
= = eJ — | A cos(zg)+2Jzy sin(xzy)
Oxq 0 78m3 cos2(wg)—JM |’ Oy _ cos?(xg)—JM
0 ccos(zg) FM42x4 cos(xzo) sin(xzg)
cos2(xg)—JM cos?(xg)—JM
of -
——= ... (The expression is too long)
Oxo

(~ Use syms and symbolic differentiation di ££.m in Matlab to
obtain expressions)

_of_[ o5 o5 85 s
an=5t=[ 2L 2L 2L 3L

Selection of the input

2+

4}

C.M. Kellett & P. Braun (ANU) Introduction to Nonlinear Control

u(Z) = —&3(t) — Ta(t).

— I — 1;71
by
N M T3 — {03 |

] T4 — T4
T\\k /l\

\‘ \/f’ VY

¢
0 J 2 4 6 8 10
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Extended Kalman Filter (Continuous Time) (4)

Example (Inverted pendulum on a cart)

x3
Zq
f(fl‘, u): 7f6z37jsin(m2)m?17:’y ios(z2)z4+g cos(zg) sin(zg)+Ju
Mchosz(mQ)
— M~z +Mgsin(zg)—&cos(zg)zg—cos(zg) sin(zg)ziﬁ—cos(zz)u

Selection of the input

u(i) = —a3(t) — Za(t).
10

i 1, T1

M J—cos2(zg)

oh 1 0 0 0
|z L 2
h(g”)—[xz] az_[o 1 0 0}

Partial derivatives of f:

1 0
0 0 1
of _|o 7 ﬁ: 7|, ﬁ: 5 cos(zg)+2J x4 sin(xg)
dx1 0|’ dzs cos2(zg)—JM Oy ~ cos2(wg)—JM
0 ccos(zg) FM42x4 cos(xzo) sin(xzg)
cos2(xg)—JM cos?(xg)—JM
af -
——= ... (The expression is too long)
6312

(~ Use syms and symbolic differentiation di ££.m in Matlab to
obtain expressions)

3.221 3.292 8393 83194

A(t):%:[ﬁ of  of ﬁ]

Iy — I3, if?Q
3, T3
T4, T4

51 [ | Y \
«,“'
iy

-10 .
0 2 4 6 8 10
t
~ Only local convergence! (Here, different selection
of Q.)

C.M. Kellett & P. Braun (ANU)
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Extended Kalman Filter (Continuous Time) (4)

Example (Inverted pendulum on a cart)

3
T4
7f6z37jsin(m2)m4 5 cos(xzg)xyg—+gcos(zg)sin(zg)+Ju

f(z,u): MJ— cosz(mQ)
— M~z +Mgsin(zg)—&cos(zg)zg — cos(m2)sln(22)24+cos(z2)u
M J—cos2(zg)
_ | = Oh _['1 0 0 O
h(g”)—[xz] h az_[o 1 0 0}
Partial derivatives of f:
0 1 0
af _|o| of 0 af r
—d , —= eJ , —= y cos(xzg)+2Jxy sin(xg)
oz 0 Oxs cos2(xg)—J M Ox4 cos2 (wg)—J M
0 ccos(zg) FM+2x4 cos(xg) sin(xg)
cos2(xg)—JM cos?(xg)—JM
of I
—= (The expression is too long)
6312

(~ Use syms and symbolic differentiation di ££.m in Matlab to
obtain expressions)

f_

£=

A(t)y=2L D

Oz

of

Oxo

of

of
ErTy *]

Oy

W
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Selection of the input
u(z) = —23(t) — 2a(t).

10 .
{\ —r — %
— Ty — Iy
5 ’//\ T3 — Cﬁg 1
/\\\/
\
0r \ | ,%/
5t “ /
VV
-10 '
0 2 4 6 8 10
t
~ Only local convergence! (Here, different selection
of Q.)
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Section 2

Extended Kalman Filter (Discrete Time)
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Extended Kalman Filter (Discrete Time)

Consider: Discrete time system

z(k +1) = f(k, z(k)) + g(k, z(k))v(k)
y(k) = h(k, z(k)) +w(k)

@ state z € R™; measured output y € R?; unknown
disturbances/noise (v(k))ren C R%; (w(k))ken C RP

@ f:NxR" > R" g=g1,.--,9q)
g1,---,9¢ : NXR" - R", and h : N x R” — RP are
continuously differentiable by assumption.

Note that:

@ (u(k))ren C R™ can be incorporated through the time
dependence, i.e.,

f(k,2(k)) = f(z(k), u(k), g(k,z(k)) = g(x(k), u(k)),
h(k, 2(k)) = h(z(k), u(k)),

C.M. Kellett & P. Braun (ANU) Introduction to Nonlinear Control Ch. 1: Nonlinear Systems - Fundamentals 9/14



Extended Kalman Filter (Discrete Time)

Consider: Discrete time system
z(k +1) = f(k, z(k)) + g(k, z(k))v(k)
y(k) = h(k, z(k)) + w(k)

@ state z € R™; measured output y € R?; unknown
disturbances/noise (v(k))ren C R%; (w(k))ken C RP

@ f:NxR" > R" g=g1,.--,9q)
g1,---,9¢ : NXR" - R", and h : N x R” — RP are
continuously differentiable by assumption.

Note that:
@ (u(k))ren C R™ can be incorporated through the time
dependence, i.e.,
f(k,2(k)) = f(z(k), u(k), g(k,z(k)) = g(x(k), u(k)),
h(k, 2(k)) = h(z(k), u(k)),

C.M. Kellett & P. Braun (ANU)

Introduction to Nonlinear Control

Assumptions: (zero mean Gaussian white noise)

o] - { 0 11
B [w(kuw()"] ={ N iz

Vj,keNandQ € 8%, R € S2,.
E[ok)uw()7] =0, E [ok)l] =0, B [uk)a] =0,

V3, k € N and for all initial conditions zo € R™.
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Extended Kalman Filter (Discrete Time)

Consider: Discrete time system

z(k +1) = f(k, z(k)) + g(k, z(k))v(k)
y(k) = h(k, z(k)) + w(k)

@ state z € R™; measured output y € R?; unknown
disturbances/noise (v(k))ren C R%; (w(k))ken C RP

@ f:NxR" > R" g=g1,.--,9q)
g1,---,9¢ : NXR" - R", and h : N x R” — RP are
continuously differentiable by assumption.

Note that:

@ (u(k))ren C R™ can be incorporated through the time
dependence, i.e.,

f(k,2(k)) = f(z(k), u(k), g(k,z(k)) = g(x(k), u(k)),
h(k, 2(k)) = h(z(k), u(k)),

C.M. Kellett & P. Braun (ANU)

Introduction to Nonlinear Control

Assumptions: (zero mean Gaussian white noise)

o] - { 0 11
B [w(kuw()"] ={ N iz

VikeNand Q € 8%, R 8.

E [v(k)w(j)T] =0, B [v(k)xOT] =0, B [w(k)xg“] =

V3, k € N and for all initial conditions zo € R™.

Filter/Observer equations:

X(k) = f(k = 1,2(k = 1))
&(k) = X(k) + G (y(k) — h(k, x(K))) -

Task:
@ How to define the Kalman gain matrix G ?

Ch. 1: Nonlinear Systems - Fundamentals
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Extended Kalman Filter (Discrete Time)

@ Decompose z and y (stochastic/deterministic part)

t==2qa+&s, Y=0a+7s

@ Deterministic dynamics:
Eq(k+1) = f(k, 2a(k))
Ja(k) = h(k, 24(k)).
@ Stochastic dynamics:
Zs(k+1)=2(k+1) —2q(k+1)
= f(k,2q(k) + &5 (k) + g(k, 2(k))0(k) — f(k, 2a(k))

C.M. Kellett & P. Braun (ANU) Introduction to Nonlinear Control Ch. 1: Nonli - Fur 10/14




Extended Kalman Filter (Discrete Time)

@ Decompose z and y (stochastic/deterministic part)
E=%&3+%s, yY="Ua+Us
@ Deterministic dynamics:
za(k+1) = f(k, 2a(k))
Ja(k) = h(k, 24(k)).
@ Stochastic dynamics:
Zs(k+1)=2(k+1) —2q(k+1)
= f(k,2q(k) + &5 (k) + g(k, 2(k))0(k) — f(k, 2a(k))
@ First order Taylor approximation of f(k,-) around Z4(k):
&s(k+1) & GL(k, 2a(k))s (k) + g(k, (k)b (k)

@ Taylor approx. of g(k, -) around Z4(k) (9s(k) = y(k) — ga(k)):

Gs (k) ~ h(k, &a(k)) + B (k, &a(k))as (k) + (k) — h(k, 34(k))
= G (k,za(k))as(k) + (k)
= S8 (k, f(k — 1, 8alk — 1))as (k) + b (k)
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Extended Kalman Filter (Discrete Time)

@ Decompose z and y (stochastic/deterministic part)
E=%&3+%s, yY="Ua+Us

@ Deterministic dynamics:

za(k+1) = f(k, 2a(k))

Ja(k) = h(k, 24(k)).
@ Stochastic dynamics:
Zs(k+1)=2(k+1) —2q(k+1)
= f(k,2q(k) + &5 (k) + g(k, 2(k))0(k) — f(k, 2a(k))

@ First order Taylor approximation of f(k,-) around Z4(k):

&s(k+1) & SL(k, &a(k))2s (k) + g(k, 2 (k))o(k)

@ Taylor approx. of g(k, -) around Z4(k) (9s(k) = y(k) — ga(k)):

Gs (k) = h(k, 34(k)) + 92 (k, 24(K))&s (k) + (k) — h(k, 24(k))
O (k, &a(k))is (k) + (k)
%(k’ f(k -1 id(k - 1))i's (k) + w(k)

@ With &, (k) and 95 (k), we define A, B, C:
A(k) = SL(k,2(k)), B(k) = g(k, (k)
C(k) = (k% (k)

~~ Matrices define a linear time varying system
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Extended Kalman Filter (Discrete Time)

@ Decompose z and y (stochastic/deterministic part)

T =2q+2s, Yy ="9d + Ys _
@ With (k) and s (k), we define A, B, C:

@ Deterministic dynamics: 5 B
A(k) = SL(k,2(k)), B(k) = g(k, (k)

&q(k +1) = f(k,2a(k))

_ dh(p o
Ga(k) = h(k, 24(k)). C(k) = 5z (k, x(k))
@ Stochastic dynamics: ~ Matrices define a linear time varying system
Gk +1) = a(k+1) — dq(k+ 1) @ We adapt the equations of the linear Kalman filter:

= f(k, (k) + &5(k)) + g(k, 2(k))0(k) — f(k, Za(k))
@ First order Taylor approximation of f(k,-) around Z4(k):

&s(k+1) & SL(k, &a(k))2s (k) + g(k, 2 (k))o(k)

PEI= (2L (k=13 (b= )] Pi- 1[ (k—1,(k— 1))]
+g(k =12k —1)Q g(k — La(k —1))"

G = Pek — 1 [ }
@ Taylor approx. of g(k, -) around Z (k) (s (k) = y(k) — §a(k)): 1
T —
9s(k) ~ h(k 2q(k)) + 2 (k,&q(k))as(k) + w(k) — h(k, 2q(k)) ' ([ (ks %(K)) ] B [%( (k))} Tt 1)
= Bk, 4(k))ds (k) + (k) Pe= (1- Gy [k x(k))]) PE

= %Z(k, F(k = 1,2a(k — 1))as (k) + b (k)
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Extended Kalman Filter (3)

and initial estimates 2(0) = 2o, Po € SZ,,.
Output: Estimates #(k) and x(k) of the state z(k) for k € N.
Algorithm: For £ € N:

@ Compute x(k) = f(k—1,2(k — 1))
and 9
Ak-D=2Lg-180-1),  BE-D=gk-1,80-1),

@ Update the gain matrix

=i
G = PF1C(k)T [C(k)P,f—lc(k)T + R—l] ,
Py = [I — GxC(k)] PF1.

© Measure the output y(k) and update the state estimate

&(k) = X(k) + Gk (y(k) — h(k, X(K)))
setk =k + 1andgotostep 1.

PF 1 = A(k — 1)Py_1 Ak — )T + B(k — 1)Q ' B(k

Input: Discrete time system with output, positive definite weight matrices Q—1 = Var(v(k)), R~! = Var(w(k)),

Ok) = ok X(K)).

- 1)7x
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Section 3

Moving Horizon Estimation
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Moving Horizon Estimation

Recall:

@ The dual to LQR is MME (Minimum energy estimator)

@ We have discussed MPC as an extension of LQR

@ The dual to MPC is MHE (Moving Horizon Estimation)
Consider:

x(k+1) = f(k,z(k),v(k))
y(k) = h(k,z(k)) + w(k)
@ State z € X C R™; measured output y € RP;

(v(k))ken C V C R7 and unknown
disturbances/noise (w(k))reny C W C R?

@ Constraints: X, V, W
@ (Inputs u(k) can be included as before)
@ Goal: Based on measured data y(k), find “optimal”
0(k), w(k) such that
2k +1) = f(k 2(k),0(k)),
y(k) = h(k,2(k)) + w(k).
~ optimal state estimates (k)

@ DefineD =X x Vx W
C.M. Kellett & P. Braun (ANU)

Introduction to Nonlinear Control

@ Attime k € N, for given y(é) for i € Zp,_ 5 j,_q), define
the set of feasible disturbance trajectories

(i 4+ 1) = f(i,2(3),v(3))

(i) = h(i, 2(i)) + w(i)

2(i+1),v(i),w(z)) € D
Vi€ Ly §k-1]

< B

VE=Svg : Zy— 1) = RY

—

(Note that VY = VY (k, y5) depends on k)
@ Cost function: Jg : R™ x UL — RU {co},
T @k = N), o5 () yx ()
= Fy(@(k— N)) + 120y €0(0),y(5) — h(i,£(5)))

@ For given &(k — N), v(-) and y(-), () and w(-) are
implicitly defined through the dynamics.
@ Costs with respect to disturbance ¢ : R? x RP — R;

@ Costs with respect to estimate of the state Fiy : R — R
(‘terminal costs’)
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Moving Horizon Estimation (2)

Moving horizon optimization problem:

Vy(k,yg()) = min _ Jg(@(k—N),v5()iyn(.))
vfy(-)g\ﬁg
#(k—N)ex
subject to Z(k + 1) = f(k, &(k), 0(k))
Note that:

@ Optimal 95 () and optimal state estimate #(k — N) can be obtained
from the solution

@ Optimality is achieved w.r.t. a particular cost function.
@ From 95(-) and #(k — N) we obtain 2 (k)

@ The estimate Z(k) can be used to design a state feedback
(k) = u(&(k)) through MPC, for example.

@ Similar to MPC, after shifting the horizon by going from k to k& + 1,
the shifted optimization problem can be solved at the next time step
to obtain z(k + 1).
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