A Run Through Nonlinear Control Topics Stability, control design, and estimation

Philipp Braun

School of Engineering, Australian National University, Canberra, Australia

In Collaboration with:

C. M. Kellett: School of Electrical Engineering, Australian National University, Canberra, Australia

• Part I: Dynamical Systems

- 1. Nonlinear Systems Fundamentals
- 2. Nonlinear Systems Stability Notions
- 3. Linear Systems and Linearization
- 4. Frequency Domain Analysis
- 5. Discrete Time Systems
- 6. Absolute Stability
- 7. Input-to-State Stability

• Part II: Controller Design

- 8. LMI Based Controller and Antiwindup Designs
- 9. Control Lyapunov Functions
- 10. Sliding Mode Control
- 11. Adaptive Control
- 12. Differential Geometric Methods
- 13. Output Regulation
- 14. Optimal Control
- 15. Model Predictive Control

- Part III: Observer Design and Estimation
 - 16. Observer Design for Linear Systems
 - 17. Extended & Unscented Kalman Filter & Moving Horizon Estimation
 - 18. Observer Design for Nonlinear Systems

Introduction to Nonlinear Control

STABILITY, CONTROL DESIGN, AND ESTIMATION

(Autonomous) First order differential equations:

$$\dot{x}(t) = \frac{d}{dt}x(t) = f(x(t)), \quad f: \mathbb{R}^n \to \mathbb{R}^n$$
(1)

• A *solution* is an absolutely continuous function that satisfies (1) for almost all *t*.

Non-autonomous/time-varying system:

 $\dot{x}(t) = f(t, x(t)), \qquad f: \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}^n$

Systems with external inputs $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$:

$$\dot{x} = f(x, u), \qquad \dot{x} = f(x, w),$$

• $u: \mathbb{R}^n \to \mathbb{R}^m, x \mapsto u(x) \leftarrow \text{degree of freedom}$ • $w: \mathbb{R} \to \mathbb{R}^m, t \mapsto w(t) \leftarrow \text{exogenous signal}$ (disturbance or reference)

(Autonomous) First order differential equations:

$$\dot{x}(t) = \frac{d}{dt}x(t) = f(x(t)), \quad f: \mathbb{R}^n \to \mathbb{R}^n$$
(1)

• A *solution* is an absolutely continuous function that satisfies (1) for almost all *t*.

Non-autonomous/time-varying system:

 $\dot{x}(t) = f(t, x(t)), \qquad f: \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}^n$

Systems with external inputs $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$:

$$\dot{x} = f(x, u), \qquad \dot{x} = f(x, w),$$

• $u: \mathbb{R}^n \to \mathbb{R}^m, x \mapsto u(x) \leftarrow \text{degree of freedom}$ • $w: \mathbb{R} \to \mathbb{R}^m, t \mapsto w(t) \leftarrow \text{exogenous signal}$ (disturbance or reference) Definition (Equilibrium, $\dot{x} = 0$)

The point $x^e \in \mathbb{R}^n$ is called equilibrium of the system $\dot{x} = f(x)$ or $\dot{x} = f(t, x)$, respectively, if

$$\begin{aligned} \frac{d}{dt}x(t) &= f(x^e) = 0, \\ \frac{d}{dt}x(t) &= f(t, x^e) = 0 \qquad \forall t \in \mathbb{R}_{\geq 0} \end{aligned}$$

The pair $(x^e,u^e)\in\mathbb{R}^n\times\mathbb{R}^m$ is called an equilibrium pair of the system $\dot{x}=f(x,u)$ if

$$\frac{d}{dt}x(t) = f(x^e, u^e) = 0.$$

- Without loss of generality $x^e = 0$ (or $(x^e, u^e) = 0$).
- Achieved through coordinate transf. $z = x x^e$, i.e.,

$$\hat{f}(z) \doteq f(z + x^e)$$
 yields $\dot{z} = \hat{f}(z)$

where $(z^e = 0)$

$$\hat{f}(z^e) = f(z^e + x^e) = f(x^e) = 0$$

Definition (Class- $\mathcal{P}, \mathcal{K}, \mathcal{K}_{\infty}, \mathcal{L}, \mathcal{KL}$ functions)

- A continuous function $\rho : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is said to be positive definite $(\rho \in \mathcal{P})$ if $\rho(0) = 0$ and $\rho(s) > 0 \ \forall \ s \in \mathbb{R}_{>0}$.
- $\alpha \in \mathcal{P}$ is said to be of class- \mathcal{K} ($\alpha \in \mathcal{K}$) if α strictly increasing.
- $\alpha \in \mathcal{K}$ is said to be of class- \mathcal{K}_{∞} ($\alpha \in \mathcal{K}_{\infty}$) if $\lim_{s \to \infty} \alpha(s) = \infty$.
- A continuous function $\sigma : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is said to be of class- \mathcal{L} ($\sigma \in \mathcal{L}$) if σ is strictly decreasing and $\lim_{s \to \infty} \sigma(s) = 0$.
- A continuous function $\beta : \mathbb{R}_{\geq 0}^2 \to \mathbb{R}_{\geq 0}$ is said to be of class- \mathcal{KL} ($\beta \in \mathcal{KL}$) if for each fixed $t \in \mathbb{R}_{\geq 0}$, $\beta(\cdot, t) \in \mathcal{K}_{\infty}$ and for each fixed $s \in \mathbb{R}_{>0}$, $\beta(s, \cdot) \in \mathcal{L}$.

$$\rightsquigarrow \mathcal{K}_\infty \subset \mathcal{K} \subset \mathcal{P}$$

Some properties:

- Class- \mathcal{K}_{∞} functions are invertible.
- If $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ then

$$\alpha(s) \doteq \alpha_1 (\alpha_2(s)) = \alpha_1 \circ \alpha_2(s) \in \mathcal{K}_{\infty}.$$

• If
$$\alpha \in \mathcal{K}$$
, $\sigma \in \mathcal{L}$ then $\alpha \circ \sigma \in \mathcal{L}$.

2. Nonlinear Systems - Stability Notions (Definitions)

Consider

 $\dot{x} = f(x),$ (with f(0) = 0)

Definition (Stability)

The origin is (Lyapunov) stable if, for any $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that if $|x(0)| \le \delta$ then, for all $t \ge 0$,

 $|x(t)| \le \varepsilon.$

Equivalent Definition:

The origin is stable if there exists $\alpha \in \mathcal{K}$ and an open neighborhood around the origin $\mathcal{D} \subset \mathbb{R}^n$, such that

 $|x(t)| \le \alpha(|x(0)|), \qquad \forall t \ge 0, \ \forall x_0 \in \mathcal{D}.$

Definition (Instability)

The origin is *unstable* if it is not stable.

Consider $\dot{x} = f(x)$ with f(0) = 0

Definition (Attractivity)

The origin is *attractive* if there exists $\delta > 0$ such that if $|x(0)| < \delta$ then $\lim_{t \to 0^+} |x(t)| = 0$

 $\lim_{t \to \infty} x(t) = 0.$

Definition (Asymptotic stability)

The origin is *asymptotically stable* if it is both stable and attractive.

Consider $\dot{x} = f(x)$ with f(0) = 0

Definition (Attractivity)

The origin is attractive if there exists $\delta>0$ such that if $|x(0)|<\delta$ then

 $\lim_{t \to \infty} x(t) = 0.$

Definition (Asymptotic stability)

The origin is *asymptotically stable* if it is both stable and attractive.

Definition (*KL*-stability)

The system is said to be \mathcal{KL} -stable if there exists $\delta > 0$ and $\beta \in \mathcal{KL}$ such that if $|x(0)| \leq \delta$ then for all $t \geq 0$,

 $|x(t)|\leq\beta(|x(0)|,t).$

Proposition

The origin is asymptotically stable if and only if it is \mathcal{KL} -stable.

Consider $\dot{x} = f(x)$ with f(0) = 0

Definition (Attractivity)

The origin is attractive if there exists $\delta>0$ such that if $|x(0)|<\delta$ then

 $\lim_{t \to \infty} x(t) = 0.$

Definition (Asymptotic stability)

The origin is *asymptotically stable* if it is both stable and attractive.

Definition (*KL*-stability)

The system is said to be \mathcal{KL} -stable if there exists $\delta > 0$ and $\beta \in \mathcal{KL}$ such that if $|x(0)| \le \delta$ then for all $t \ge 0$,

 $|x(t)|\leq\beta(|x(0)|,t).$

Proposition

The origin is asymptotically stable if and only if it is \mathcal{KL} -stable.

Definition (Exponential stability)

The origin is *exponentially stable* for $\dot{x} = f(x)$ if there exist $\delta, \lambda, M > 0$ such that if $|x(0)| \le \delta$ then for all $t \ge 0$,

 $|x(t)| \le M |x(0)| e^{-\lambda t}.$ (2)

Example: The origin of

- $\dot{x} = x$ is unstable
- $\dot{x} = 0$ is stable
- $\dot{x} = -x^3$ is asymptotically stable
- $\dot{x} = -x$ is exponentially stable

2. Nonlinear Systems – Stability Notions (Lyapunov's Second Method)

Consider $\dot{x} = f(x)$ with f(0) = 0

Theorem (Lyapunov stability theorem)

Let $V : \mathbb{R}^n \to \mathbb{R}$, cont. differentiable and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that, for all $x \in \mathbb{R}^n$,

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$ and $\langle \nabla V(x), f(x) \rangle \le 0.$

Then the origin is globally stable.

2. Nonlinear Systems – Stability Notions (Lyapunov's Second Method)

Consider $\dot{x} = f(x)$ with f(0) = 0

Theorem (Lyapunov stability theorem)

Let $V : \mathbb{R}^n \to \mathbb{R}$, cont. differentiable and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that, for all $x \in \mathbb{R}^n$,

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$ and $\langle \nabla V(x), f(x) \rangle \le 0.$

Then the origin is globally stable.

Theorem (Asymptotic stability theorem)

Let $V : \mathbb{R}^n \to \mathbb{R}$, cont. differentiable, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$, and $\rho \in \mathcal{P}$ such that, for all $x \in \mathbb{R}^n$,

$$\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$$
 and $\langle \nabla V(x), f(x) \rangle \le -\rho(|x|)$.

Then the origin is globally asymptotically stable.

Theorem (Exponential stability theorem)

Let $V : \mathbb{R}^n \to \mathbb{R}$, cont. differentiable, constants $\lambda_1, \lambda_2, c > 0$ and $p \ge 1$ such that, for all $x \in \mathbb{R}^n$

 $\lambda_1 |x|^p \leq V(x) \leq \lambda_2 |x|^p \quad \text{and} \quad \langle \nabla V(x), f(x) \rangle \leq -c V(x).$

Then the origin is globally exponentially stable.

2. Nonlinear Systems – Stability Notions (Lyapunov's Second Method)

Consider $\dot{x} = f(x)$ with f(0) = 0

Theorem (Lyapunov stability theorem)

Let $V : \mathbb{R}^n \to \mathbb{R}$, cont. differentiable and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that, for all $x \in \mathbb{R}^n$,

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$ and $\langle \nabla V(x), f(x) \rangle \le 0$.

Then the origin is globally stable.

Theorem (Asymptotic stability theorem)

Let $V : \mathbb{R}^n \to \mathbb{R}$, cont. differentiable, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$, and $\rho \in \mathcal{P}$ such that, for all $x \in \mathbb{R}^n$,

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|) \quad \textit{and} \quad \langle \nabla V(x), f(x) \rangle \le -\rho(|x|).$

Then the origin is globally asymptotically stable.

Theorem (Exponential stability theorem)

Let $V : \mathbb{R}^n \to \mathbb{R}$, cont. differentiable, constants $\lambda_1, \lambda_2, c > 0$ and $p \ge 1$ such that, for all $x \in \mathbb{R}^n$

 $\lambda_1 |x|^p \leq V(x) \leq \lambda_2 |x|^p$ and $\langle \nabla V(x), f(x) \rangle \leq -cV(x)$.

Then the origin is globally exponentially stable.

Theorem (Partial Convergence)

Let $V : \mathbb{R}^n \to \mathbb{R}$, cont. differentiable, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$, and $W : \mathbb{R}^n \to \mathbb{R}_{\geq_0}$ such that, for all $x \in \mathbb{R}^n$,

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$ and $\langle \nabla V(x), f(x) \rangle \le -W(x)$. Then $\lim_{t \to \infty} W(x(t)) = 0$.

Theorem (Lyapunov theorem for instability)

Let $V: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ cont. differentiable and $\varepsilon > 0$ such that

 $\langle \nabla V(x), f(x) \rangle > 0 \quad \forall x \in \mathcal{B}_{\varepsilon} \setminus \{0\}$

Then the origin is (completely) unstable.

Theorem (Chetaev's theorem)

Let $V : \mathbb{R}^n \to \mathbb{R}$ be cont. differentiable with V(0) = 0 and $\mathcal{O}_r = \{x \in \mathcal{B}_r(0) | V(x) > 0\} \neq \emptyset$ for all r > 0. If for certain r > 0,

 $\langle \nabla V(x), f(x) \rangle > 0, \qquad \forall x \in \mathcal{O}_r$

then the origin is unstable.

Intuition:

- Lyapunov functions represent energy associated with the state of a system
- If energy is (strictly) decreasing, then an equilibrium is (symptotically) stable

 $\dot{V}(x(t)) = \langle \nabla V(x), f(x) \rangle < 0 \qquad \forall x \neq 0$

Extensions:

- (LaSalle's) Invariance principles
- Similar results for time-varying systems
- Converse Lyapunov results (i.e., asymptotic stability implies existence of Lyapunov function)

3. Linear Systems (Stability)

Linear Systems:

$$\dot{x} = Ax, \qquad A \in \mathbb{R}^{n \times n}$$

Theorem

For the linear system $\dot{x} = Ax$, the following are equivalent:

- The origin is asymptotically/exponentially stable:
- All eigenvalues of A have strictly negative real parts: 2
- For every Q > 0, there exists a unique P > 0. 3 satisfying the Lyapunov equation

 $A^T P + P A = -Q.$

Lyapunov Function:

$$V(x) = x^T P x$$

It holds that:

$$\begin{split} \dot{V}(x(t)) &= \frac{d}{dt} \left(x^T P x \right) = \dot{x}^T P x + x^T P \dot{x} \\ &= x^T A^T P x + x^T P A x = -x^T Q x \end{split}$$

Consider:

 $\dot{x} = f(x),$ f(0) = 0, f cont. differentiable

Define (Jacobian evaluated at the origin): A

$$= \left[\frac{\partial f(x)}{\partial x}\right]_{x=0}$$

Linearization of $\dot{x} = f(x)$ at x = 0:

 $\dot{z}(t) = Az(t)$

Theorem

Consider $\dot{x} = f(x)$ (*f* cont. differentiable) and its linearization $\dot{z} = Az$. If the origin $z^e = 0$ of $\dot{z} = Az$ is globally exponentially stable then the origin $x^e = 0$ of $\dot{x} = f(x)$ is locally exponentially stable.

3. Linear Systems (Stability)

Linear Systems:

$$\dot{x} = Ax, \qquad A \in \mathbb{R}^{n \times n}$$

Theorem

For the linear system $\dot{x} = Ax$, the following are equivalent:

- The origin is asymptotically/exponentially stable:
- All eigenvalues of A have strictly negative real parts: 2
- For every Q > 0, there exists a unique P > 0. 3 satisfying the Lyapunov equation

 $A^T P + P A = -Q.$

Lyapunov Function:

$$V(x) = x^T P x$$

It holds that:

$$\begin{split} \dot{V}(x(t)) &= \frac{d}{dt} \left(x^T P x \right) = \dot{x}^T P x + x^T P \dot{x} \\ &= x^T A^T P x + x^T P A x = -x^T Q x \end{split}$$

Consider:

 $\dot{x} = f(x),$ f(0) = 0, f cont. differentiable

Define (Jacobian evaluated at the origin): A

$$\mathbf{h} = \left[\frac{\partial f(x)}{\partial x}\right]_{x=0}$$

Linearization of $\dot{x} = f(x)$ at x = 0:

 $\dot{z}(t) = Az(t)$

Theorem

Consider $\dot{x} = f(x)$ (*f* cont. differentiable) and its linearization $\dot{z} = Az$. If the origin $z^e = 0$ of $\dot{z} = Az$ is globally exponentially stable then the origin $x^e = 0$ of $\dot{x} = f(x)$ is locally exponentially stable.

Semidefinite programming:

$$\begin{array}{ll} \varepsilon I \leq P & \varepsilon |x|^2 \leq V(x) \\ A^T P + PA \leq -\varepsilon I & \Leftrightarrow & \langle \nabla V(x), Ax \rangle \leq -\varepsilon |x|^2 \end{array}$$

~ Construction can be extended to systems with polynomial right-hand side

5. Discrete Time Systems (Fundamentals)

Discrete time systems:

$$x_d(k+1) = F(x_d(k), u_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n$$

$$y_d(k) = H(x_d(k), u_d(k))$$

Time-varying discrete time system ($k \ge k_0 \ge 0$):

 $x_d(k+1) = F(k, x_d(k)), \quad x_d(k_0) = x_{d,0} \in \mathbb{R}^n$

Time invariant discrete time systems without input:

$$x_d(k+1) = F(x_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n,$$

Shorthand notation for difference equations:

$$x_d^+ = F(x_d, u_d),$$

Discrete time systems:

$$\begin{aligned} x_d(k+1) &= F(x_d(k), u_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n \\ y_d(k) &= H(x_d(k), u_d(k)) \end{aligned}$$

Time-varying discrete time system $(k \ge k_0 \ge 0)$: $x_d(k+1) = F(k, x_d(k)), \quad x_d(k_0) = x_{d,0} \in \mathbb{R}^n$

Time invariant discrete time systems without input:

$$x_d(k+1) = F(x_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n,$$

Shorthand notation for difference equations:

$$x_d^+ = F(x_d, u_d),$$

Definition (Equilibrium)

- The point $x_d^e \in \mathbb{R}^n$ is called equilibrium if $x_d^e = F(x_d^e)$ or $x_d^e = F(k, x_d^e)$ for all $k \in \mathbb{N}$ is satisfied.
- The pair $(x_d^e, u_d^e) \in \mathbb{R}^n \times \mathbb{R}^m$ is called equilibrium pair of the system if $x_d^e = F(x_d^e, u_d^e)$ holds.

Again, without loss of generality we can shift the equilibrium (pair) to the origin.

Definition (Equilibrium, $\dot{x} = 0$)

The point $x^e \in \mathbb{R}^n$ is called an equilibrium of the system $\dot{x} = f(x)$ if $\frac{d}{dt}x(t) = f(x^e) = 0$

Discrete time systems: Consider

$$x^+ = F(x), \qquad x(0) = x_0 \in \mathbb{R}^n$$

Definition (\mathcal{KL} -stability)

The origin of the discrete time system is is globally asymptotically stable, or alternatively \mathcal{KL} -stable, if there exists $\beta \in \mathcal{KL}$ such that

 $|x(k)| < \beta(|x(0)|, k), \qquad \forall k \in \mathbb{N},$

is satisfied for all $x(0) \in \mathbb{R}^n$.

Theorem (Lyapunov stability theorem)

Suppose there exists a continuous function $V: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and functions $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that, for all $x \in \mathbb{R}^n$.

> $\alpha_1(|x|) < V(x) \le \alpha_2(|x|)$ V(F(x)) - V(x) < 0

Then the origin is stable.

Continuous time systems: Consider

 $\dot{x} = f(x), \qquad x(0) = x_0 \in \mathbb{R}^n$

Definition (\mathcal{KL} -stability)

The origin of the continuous time system is globally asymptotically stable, or alternatively KL-stable, if there exists $\beta \in \mathcal{KL}$ such that

 $|x(t)| \le \beta(|x(0)|, t), \qquad \forall t \in \mathbb{R}_{>0},$

is satisfied for all $x(0) \in \mathbb{R}^n$.

Theorem (Lyapunov stability theorem)

Suppose there exists a smooth function $V: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and functions $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that, for all $x \in \mathbb{R}^n$.

> $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$ $\langle \nabla V(x), f(x) \rangle < 0$

Then the origin is stable.

Consider the discrete time linear system

 $x^+ = Ax, \qquad x(0) \in \mathbb{R}^n \qquad [\text{Solution } x(k) = A^k x(0)]$

Theorem

The following properties are equivalent:

- **1** The origin $x^e = 0$ is exponentially stable;
- **(3)** For Q > 0 there exists a unique P > 0 satisfying the discrete time Lyapunov equation

 $A^T P A - P = -Q.$

A matrix A which satisfies $|\lambda_i| < 1$ for all i = 1, ..., n is called a *Schur matrix*.

Consider the continuous time linear system

 $\dot{x} = Ax, \qquad x(0) \in \mathbb{R}^n \qquad [\text{Solution } x(t) = e^{At}x(0)]$

Theorem

The following properties are equivalent:

- The origin $x^e = 0$ is exponentially stable;
- Solution 3: The eigenvalues λ₁,..., λ_n ∈ C of A satisfy λ_i ∈ C[−] for all i = 1,..., n; and
- **(a)** For Q > 0 there exists a unique P > 0 satisfying the continuous time Lyapunov equation

 $A^T P + P A = -Q.$

A matrix A which satisfies $\lambda_i \in \mathbb{C}^-$ for all i = 1, ..., n is called a *Hurwitz matrix*.

5. Discrete Time Systems (Sampling)

Derivative for continuously differentiable function:

$$\frac{d}{dt}x(t) = \lim_{\Delta \to 0} \frac{x(t+\Delta) - x(t)}{\Delta}$$

Difference quotient (for $\Delta > 0$ small):

$$\frac{x(t+\Delta) - x(t)}{\Delta} \approx \frac{d}{dt}x(t) = \dot{x}(t) = f(x(t), u(t))$$

or equivalently

$$x(t + \Delta) \approx x(t) + \Delta f(x(t), u(t))$$

Approximated discrete time system (identify t with $k \cdot \Delta$)

$$x_d^+ = F(x_d, u_d) \doteq x_d + \Delta f(x_d, u_d)$$

~ This discretization is known as (explicit) Euler method.

Approximation of $\dot{x} = 1.1x$

Euler discretization: $x^+ = (1 + \Delta 1.1)x$

5. Discrete Time Systems (Runge-Kutta Methods)

• Consider

where

$$\dot{x} = g(t, x).$$

• Runge-Kutta update formula:

$$x(t + \Delta) = x(t) + \Delta \sum_{i=1}^{s} b_i k_i$$

$$k_1 = g(t, x(t)) k_2 = g(t + c_2\Delta, x + \Delta(a_{21}k_1)) k_3 = g(t + c_3\Delta, x + \Delta(a_{31}k_1 + a_{32}k_2))$$

$$k_{s} = g(t + c_{s}\Delta, x + \Delta(a_{s1}k_{1} + a_{s2}k_{2} + \dots + a_{s(s-1)}k(s)))$$

- $s \in \mathbb{N}$ (stage); $a_{ij}, b_{\ell}, c_i \in \mathbb{R}, 1 \leq j < i \leq s, 1 \leq \ell \leq s$ (given parameters)
- The case f(x, u) for sample-and-hold inputs $u(t + \delta) = u_d \in \mathbb{R}^m$ for all $\delta \in [0, \Delta)$ is covered through

$$g(t, x(t)) = f(x(t), u_d)$$

5. Discrete Time Systems (Runge-Kutta Methods)

Consider

where

$$\dot{x} = g(t, x).$$

• Runge-Kutta update formula:

$$x(t + \Delta) = x(t) + \Delta \sum_{i=1}^{s} b_i k_i$$

$$k_1 = g(t, x(t))$$

$$k_2 = g(t + c_2\Delta, x + \Delta(a_{21}k_1))$$

$$k_3 = g(t + c_3\Delta, x + \Delta(a_{31}k_1 + a_{32}k_2))$$

.

$$k_s = g(t + c_s \Delta, x + \Delta(a_{s1}k_1 + a_{s2}k_2 + \dots + a_{s(s-1)}k(s)))$$

- $s \in \mathbb{N}$ (stage); $a_{ij}, b_\ell, c_i \in \mathbb{R}, 1 \le j < i \le s, 1 \le \ell \le s$ (given parameters)
- The case f(x, u) for sample-and-hold inputs $u(t + \delta) = u_d \in \mathbb{R}^m$ for all $\delta \in [0, \Delta)$ is covered through

$$g(t, x(t)) = f(x(t), u_d)$$

• Butcher tableau:

 $\rightsquigarrow c_i$ is only necessary for time-varying systems

• Examples: The Euler and the Heun method

• Heun Method: Update of x in three steps

$$\begin{aligned} k_1 &= f(x(t), u_d), \\ k_2 &= f(x(t) + \Delta k_1, u_d), \\ x(t + \Delta) &= x(t) + \Delta \left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right). \end{aligned}$$

5. Discrete Time Systems (Runge-Kutta Methods in Matlab)

The function ode23.m relies on the Butcher tableaus

- One scheme is used to approximate $x(t + \Delta)$.
- The second scheme is needed to approximate the error, to select the step size Δ.

The function ode45.m relies on the Butcher tableaus

7. Input-to-State stability (Definition & Motivation)

Input-to-state stability (ISS) for nonlinear systems:

$$\begin{split} \dot{x} &= f(x, w), \quad x(0) = x_0 \in \mathbb{R}^n \\ w \in \mathcal{W} &= \{ w : \mathbb{R}_{>0} \to \mathbb{R}^m | \ w \text{ essentially bounded} \}. \end{split}$$

Definition (Input-to-state stability)

The system is said to be *input-to-state stable (ISS)* if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that solutions satisfy

 $|x(t)| \le \beta(|x(0)|, t) + \gamma(||w||_{\mathcal{L}_{\infty}})$

for all $x \in \mathbb{R}^n$, $w \in \mathcal{W}$, and $t \ge 0$.

• $\gamma \in \mathcal{K}$: *ISS-gain*;

• $\beta \in \mathcal{KL}$: transient bound.

P. Braun (ANU)

7. Input-to-State stability (Definition & Motivation)

Input-to-state stability (ISS) for nonlinear systems:

$$\begin{split} \dot{x} &= f(x, w), \quad x(0) = x_0 \in \mathbb{R}^n \\ w \in \mathcal{W} = \{ w : \mathbb{R}_{\geq 0} \to \mathbb{R}^m | \ w \text{ essentially bounded} \}. \end{split}$$

Definition (Input-to-state stability)

The system is said to be *input-to-state stable (ISS)* if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that solutions satisfy

 $|x(t)| \le \beta(|x(0)|, t) + \gamma(||w||_{\mathcal{L}_{\infty}})$

for all $x \in \mathbb{R}^n$, $w \in \mathcal{W}$, and $t \ge 0$.

• $\gamma \in \mathcal{K}$: *ISS-gain*;

• $\beta \in \mathcal{KL}$: transient bound.

Example

Consider the nonlinear/bilinear system:

 $\dot{x} = -x + xw.$

- The system is 0-input globally asymptotically stable (since w = 0 implies $\dot{x} = -x$ and so $x(t) = x(0)e^{-t}$)
- However, consider the bounded input/disturbance w = 2. Then $\dot{x} = x$ and so $x(t) = x(0)e^t$.
- Consequently, it is impossible to find $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that

 $|x(t)| = |x(0)|e^t \le \beta(|x(0)|, t) + \gamma(2).$

Definition (Input-to-state stability)

 $\dot{x} = f(x, w)$ is said to be *input-to-state stable (ISS*) if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that solutions satisfy

 $|x(t)| \le \beta(|x(0)|, t) + \gamma(||w||_{\mathcal{L}_{\infty}})$

for all $x \in \mathbb{R}^n$, $w \in \mathcal{W}$, and $t \ge 0$.

Theorem (ISS-Lyapunov function)

$$\begin{split} \dot{x} &= f(x, w) \text{ is ISS if and only if there exist a cont.} \\ \text{differentiable fcn. } V : \mathbb{R}^n \to \mathbb{R}_{\geq 0} \text{ and } \alpha_1, \alpha_2, \alpha_3, \sigma \in \mathcal{K}_{\infty} \\ \text{such that for all } x \in \mathbb{R}^n \text{ and all } w \in \mathbb{R}^m \\ & \alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|) \\ & \langle \nabla V(x), f(x, w) \rangle \leq -\alpha_3(|x|) + \sigma(|w|) \end{split}$$

Definition (Input-to-state stability)

 $\dot{x} = f(x, w)$ is said to be *input-to-state stable (ISS*) if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that solutions satisfy

 $|x(t)| \le \beta(|x(0)|, t) + \gamma(||w||_{\mathcal{L}_{\infty}})$

for all $x \in \mathbb{R}^n$, $w \in \mathcal{W}$, and $t \ge 0$.

Theorem (ISS-Lyapunov function)

 $\dot{x} = f(x, w)$ is ISS if and only if there exist a cont. differentiable fcn. $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and $\alpha_1, \alpha_2, \alpha_3, \sigma \in \mathcal{K}_{\infty}$ such that for all $x \in \mathbb{R}^n$ and all $w \in \mathbb{R}^m$ $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$

 $\langle \nabla V(x), f(x, w) \rangle \leq -\alpha_3(|x|) + \sigma(|w|)$

Example

Consider

$$\dot{x} = f(x, w) = -x - x^3 + xw, \quad x(0) = x_0 \in \mathbb{R}$$

The candidate ISS-Lyapunov function $V(x) = \frac{1}{2}x^2$:

$$\begin{aligned} \langle V(x), f(x, w) \rangle &= \langle x, -x - x^3 + xw \rangle \\ &= -x^2 - x^4 + x^2 w \\ &\leq -x^2 - x^4 + \frac{1}{2}x^4 + \frac{1}{2}w^2 \\ &= -x^2 - \frac{1}{2}x^4 + \frac{1}{2}w^2 \end{aligned}$$

• The inequality follows from Young's inequality:

$$yz \le \frac{1}{2}y^2 + \frac{1}{2}z^2$$

• Define $\alpha(s)\doteq s^2+\frac{1}{2}s^4$ and $\sigma(s)\doteq\frac{1}{2}s^2$, Then $\dot{V}(x)\leq -\alpha(|x|)+\sigma(|w|)$

i.e., \boldsymbol{V} is an ISS-Lyapunov function, the system is ISS.

7. Input-to-State Stability (Cascade Interconnections)

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} f_1(x_1, w_1) \\ f_2(x_2, x_1) \end{bmatrix}$$

Theorem (ISS Cascade)

Consider the system with $[x_1, x_2]^T \in \mathbb{R}^n$, $w_2 = x_1$. If each of the subsystems are ISS, then the cascade interconnection is ISS with w_1 as input and x as state.

8. LMI Based Controller and Antiwindup Designs

Compact representation: $(x = [x_p^T, x_c^T]^T \in \mathbb{R}^n)$

$$\begin{bmatrix} A & B & E \\ \hline C & D & F \\ \hline K & L & G \end{bmatrix} = \begin{bmatrix} A_p + B_p D_{c,y} C_{p,y} & B_p C_c & -B_p & B_p D_{c,y} D_{p,y} + B_w \\ \hline B_c C_{p,y} & A_c & 0 & B_c D_{p,y} \\ \hline C_{p,z} & 0 & 0 & D_{p,z} \\ \hline D_{c,y} C_{p,y} & C_c & 0 & D_{c,y} D_{p,y} \end{bmatrix} \qquad \begin{array}{c} \dot{x} &= Ax + Bq + Ew \\ z &= Cx + Dq + Fw \\ u &= Kx + Lq + Gw \\ q &= u - \operatorname{sat}(u) \end{array}$$

8. LMI Based Controller and Antiwindup Designs (Linear Controller Design)

Consider:

$$\dot{x} = Ax + Bu$$
$$u = Kx$$

Goal: Find stabilizing controller, i.e., find K and P > 0:

 $V(x(t)) = x(t)^T P x(t) > 0, \quad \dot{V}(x(t)) < 0 \quad \forall x(t) \neq 0$

Consider:

$$\dot{x} = Ax + Bu$$
$$u = Kx$$

Goal: Find stabilizing controller, i.e., find K and P > 0:

 $V(x(t)) = x(t)^T P x(t) > 0, \quad \dot{V}(x(t)) < 0 \quad \forall x(t) \neq 0$

In terms of definite matrices:

$$\begin{split} P > 0, \qquad & (A + BK)^T P + P(A + BK) < 0, \\ P > 0, \qquad & A^T P + K^T B^T P + PA + PBK < 0 \end{split}$$

Define $\Lambda = P^{-1}$, $\Phi = K\Lambda$:

$$\Lambda > 0, \qquad \Lambda A^T + \Lambda K^T B^T + A \Lambda + B K \Lambda < 0,$$

$$\Lambda>0,\qquad \Lambda A^T+\Phi^TB^T+A\Lambda+B\Phi<0,$$

LMI (as convex optimization problem):

$$\begin{split} \min_{\Lambda, \ \Phi} & f(\Lambda, \Phi) \\ \text{subject to} & 0 < \ \Phi \\ & 0 > \Lambda A^T + \Phi^T B^T + A\Lambda + B \Phi \end{split}$$

Consider:

$$\dot{x} = Ax + Bu$$
$$u = Kx$$

Goal: Find stabilizing controller, i.e., find K and P > 0:

$$V(x(t)) = x(t)^T P x(t) > 0, \quad \dot{V}(x(t)) < 0 \quad \forall x(t) \neq 0$$

In terms of definite matrices:

$$\begin{split} P > 0, \qquad & (A+BK)^TP + P(A+BK) < 0, \\ P > 0, \qquad & A^TP + K^TB^TP + PA + PBK < 0 \end{split}$$

Define $\Lambda = P^{-1}$, $\Phi = K\Lambda$:

$$\Lambda > 0, \qquad \Lambda A^T + \Lambda K^T B^T + A\Lambda + BK\Lambda < 0,$$

$$\Lambda > 0, \qquad \Lambda A^T + \Phi^T B^T + A\Lambda + B\Phi < 0,$$

LMI (as convex optimization problem):

$$\begin{split} \min_{\Lambda, \ \Phi} & f(\Lambda, \Phi) \\ \text{subject to} & 0 < \Phi \\ & 0 > \Lambda A^T + \Phi^T B^T + A\Lambda + B\Phi \end{split}$$

Lemma (Schur Complement)

Let $Q \in \mathbb{R}^{n \times n}$ and $R \in \mathbb{R}^{q \times q}$, symmetric, and let $S \in \mathbb{R}^{r \times q}$. Then

$$\begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} < 0 \quad \Leftrightarrow \quad \begin{array}{c} R < 0 \\ Q - SR^{-1}S^T < 0 \end{array}$$

Consider:

$$\dot{x} = Ax + Bu$$
$$u = Kx$$

Goal: Find stabilizing controller, i.e., find K and P > 0:

$$V(x(t)) = x(t)^T P x(t) > 0, \quad \dot{V}(x(t)) < 0 \quad \forall x(t) \neq 0$$

In terms of definite matrices:

$$\begin{split} P > 0, \qquad (A + BK)^T P + P(A + BK) < 0, \\ P > 0, \qquad A^T P + K^T B^T P + PA + PBK < 0 \end{split}$$

Define $\Lambda = P^{-1}$, $\Phi = K\Lambda$:

$$\Lambda > 0, \qquad \Lambda A^T + \Lambda K^T B^T + A\Lambda + BK\Lambda < 0,$$

$$\Lambda > 0, \qquad \Lambda A^T + \Phi^T B^T + A\Lambda + B\Phi < 0,$$

LMI (as convex optimization problem):

$$\begin{split} \min_{\Lambda, \ \Phi} & f(\Lambda, \Phi) \\ \text{subject to} & 0 < \ \Phi \\ & 0 > \Lambda A^T + \Phi^T B^T + A\Lambda + B\Phi \end{split}$$

Lemma (Schur Complement)

Let $Q \in \mathbb{R}^{n \times n}$ and $R \in \mathbb{R}^{q \times q}$, symmetric, and let $S \in \mathbb{R}^{r \times q}$. Then

$$\left[\begin{array}{cc} Q & S \\ S^T & R \end{array}\right] < 0 \quad \Leftrightarrow \quad \begin{array}{c} R < 0 \\ Q - SR^{-1}S^T < 0 \end{array}$$

Lemma (S-Lemma or S-Procedure)

Let $M_0, M_1 \in \mathbb{R}^{r \times r}$, symmetric, and suppose there exists $\zeta^* \in \mathbb{R}^r$ such that $(\zeta^*)^T M_1 \zeta^* > 0$. Then the following statements are equivalent:

• There exists
$$\tau > 0$$
 such that $M_0 - \tau M_1 > 0$.

So For all $\zeta \neq 0$ such that $\zeta^T M_1 \zeta \ge 0$ it holds that $\zeta^T M_0 \zeta > 0$.

- If (1) is satisfied, then (2) is satisfied
- For known τ , (1) is an LMI which can be used to verify (2).

Consider the nonlinear system

$$\dot{x} = f(x, u)$$

- $\bullet \ f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$
- state x and control input u
- Goal: Define a feedback control law u = k(x) which asymptotically stabilizes the origin.

Consider the nonlinear system

$$\dot{x} = f(x, u)$$

- $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$
- state x and control input u
- Goal: Define a feedback control law u = k(x) which asymptotically stabilizes the origin.

Control Lyapunov function: $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$

• In terms of a feedback law u = k(x),

 $\frac{d}{dt}V(x(t)) = \langle \nabla V(x), f(x,k(x))\rangle < 0, \qquad \forall \ x \neq 0$

 $\rightsquigarrow V$ is a Lyapunov function for $\dot{x}=f(x,k(x))=\tilde{f}(x)$

• For each $x \neq 0$ we can find u such that

$$\frac{d}{dt}V(x(t)) = \langle \nabla V(x), f(x,u) \rangle < 0$$

Consider the nonlinear system

 $\dot{x} = f(x, u)$

- $\bullet \ f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$
- state x and control input u
- Goal: Define a feedback control law u = k(x) which asymptotically stabilizes the origin.

Control Lyapunov function: $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$

• In terms of a feedback law u = k(x),

 $\frac{d}{dt}V(x(t)) = \langle \nabla V(x), f(x,k(x)) \rangle < 0, \qquad \forall \ x \neq 0$

 $\rightsquigarrow V$ is a Lyapunov function for $\dot{x}=f(x,k(x))=\tilde{f}(x)$

• For each $x \neq 0$ we can find u such that

 $\frac{d}{dt}V(x(t)) = \langle \nabla V(x), f(x,u) \rangle < 0$

Definition (Control Lyapunov function (CLF))

Consider the nonlinear system and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$. A continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is called control Lyapunov function if

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|), \quad \forall x \in \mathbb{R}^n,$

and for all $x \in \mathbb{R}^n \setminus \{0\}$ there exists $u \in \mathbb{R}^m$ such that

 $\langle \nabla V(x), f(x,u) \rangle < 0.$

Control affine systems

 $\dot{x} = f(x) + g(x)u$

Assumptions:

- for simplicity we focus on $u \in \mathbb{R}$
- $f, g: \mathbb{R}^n \to \mathbb{R}^n$ (locally Lipschitz)
- f(0) = 0 without loss of generality

Lie derivative notation

$$L_f V(x) = \langle \nabla V(x), f(x) \rangle$$

The decrease condition:

$$\begin{split} \dot{V}(x) &= \langle \nabla V(x), f(x) + g(x) u \rangle \\ &= L_f V(x) + L_g V(x) u < 0, \quad \forall \, x \neq 0. \end{split}$$

Definition (Control Lyapunov function (CLF))

Consider the nonlinear system $\dot{x} = f(x, u)$ and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$. A continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is called control Lyapunov function if $\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|), \quad \forall x \in \mathbb{R}^n,$

and for all $x \in \mathbb{R}^n \setminus \{0\}$ there exists $u \in \mathbb{R}^m$ such that

 $\langle \nabla V(x), f(x,u) \rangle < 0.$

Control affine systems

 $\dot{x} = f(x) + g(x)u$

Assumptions:

- for simplicity we focus on $u \in \mathbb{R}$
- $f, g: \mathbb{R}^n \to \mathbb{R}^n$ (locally Lipschitz)
- f(0) = 0 without loss of generality

Lie derivative notation

$$L_f V(x) = \langle \nabla V(x), f(x) \rangle$$

The decrease condition:

$$\begin{split} \dot{V}(x) &= \langle \nabla V(x), f(x) + g(x) u \rangle \\ &= L_f V(x) + L_g V(x) u < 0, \quad \forall \ x \neq 0. \end{split}$$

Definition (Control Lyapunov function (CLF))

Consider the nonlinear system $\dot{x} = f(x, u)$ and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$. A continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is called control Lyapunov function if

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|), \quad \forall x \in \mathbb{R}^n,$

and for all $x \in \mathbb{R}^n \backslash \{0\}$ there exists $u \in \mathbb{R}^m$ such that

 $\langle \nabla V(x), f(x,u) \rangle < 0.$

The decrease condition for control affine systems:

 $L_f V(x) < 0 \quad \forall \ x \in \mathbb{R}^n \setminus \{0\}$ such that $L_g V(x) = 0$ In other words

- If $L_g V(x) = 0$ (i.e., we have no control authority)
- then $L_f V(x) < 0$ needs to be satisfied

9. Control Lyapunov Functions (Sontag's Universal Formula)

Consider a control affine system ($u \in \mathbb{R}$)

 $\dot{x} = f(x) + g(x)u$

with corresponding CLF V, i.e.,

 $L_f V(x) < 0 \quad \forall \ x \in \mathbb{R}^n \setminus \{0\}$ such that $L_g V(x) = 0$

Then, for $\kappa > 0$ define the feedback law

$$k(x) = \begin{cases} -\left(\kappa + \frac{L_f V(x) + \sqrt{L_f V(x)^2 + L_g V(x)^4}}{L_g V(x)^2}\right) L_g V(x), & L_g V(x) \neq 0 \\ 0, & L_g V(x) = 0 \end{cases}$$

The feedback law

- asymptotically stabilizes the origin
- inherits the regularity properties of the CLF except at the origin
- is continuous at the origin if the CLF satisfies a small control property (i.e., |k(x)| → 0 for |x| → 0)

Consider a control affine system ($u \in \mathbb{R}$)

 $\dot{x} = f(x) + g(x)u$

with corresponding CLF V, i.e.,

 $L_f V(x) < 0 \quad \forall \ x \in \mathbb{R}^n \setminus \{0\}$ such that $L_g V(x) = 0$

Then, for $\kappa>0$ define the feedback law

$$k(x) = \begin{cases} -\left(\kappa + \frac{L_f V(x) + \sqrt{L_f V(x)^2 + L_g V(x)^4}}{L_g V(x)^2}\right) L_g V(x), & L_g V(x) \neq 0\\ 0, & L_g V(x) = 0 \end{cases}$$

Sketch of the proof: For $\kappa = 0$ it holds that

$$\begin{split} \dot{V}(x) &= L_f V(x) + L_g V(x) k(x) \\ &= L_f V(x) - L_g V(x) \left(\frac{L_f V(x) + \sqrt{L_f V(x)^2 + L_g V(x)^4}}{L_g V(x)^2} \right) L_g V(x) \\ &= L_f V(x) - L_f V(x) - \sqrt{L_f V(x)^2 + L_g V(x)^4} = -\sqrt{L_f V(x)^2 + L_g V(x)^4}. \end{split}$$

• $\kappa > 0$ adds a term $-\kappa (L_g V(x))^2$ (which guarantees certain ISS properties)

The feedback law

- asymptotically stabilizes the origin
- inherits the regularity properties of the CLF except at the origin
- is continuous at the origin if the CLF satisfies a small control property (i.e., |k(x)| → 0 for |x| → 0)

Note that: Formula known as

- Universal formula
- Sontag's formula

(Derived by Eduardo Sontag)

9. Control Lyapunov Functions (Backstepping)

Systems in strict feedback form:

 $\dot{x}_1 = f_1(x_1, x_2)$ $\dot{x}_2 = f_2(x_1, x_2, x_3)$ \vdots $\dot{x}_{n-1} = f_{n-1}(x_1, x_2, \dots, x_{n-1}, x_n)$ $\dot{x}_n = f_n(x_1, x_2, \dots, x_n, u).$

Consider

 $\dot{x} = f(x), \qquad x(0) = x_0 \in \mathbb{R}^n, \qquad (f(0) = 0)$

Definition (Finite-time stability)

The origin is said to be (globally) finite-time stable if there exists a function $T: \mathbb{R}^n \setminus \{0\} \to (0, \infty)$, called the settling-time function, such that the following statements hold:

- (Stability) For every $\varepsilon > 0$ there exists a $\delta > 0$ such that, for every $x(0) = x_0 \in \mathcal{B}_{\delta} \setminus \{0\}, x(t) \in \mathcal{B}_{\varepsilon}$ for all $t \in [0, T(x_0))$.
- (Finite-time convergence) For every $x(0) = x_0 \in \mathbb{R}^n \setminus \{0\}, x(\cdot)$ is defined on $[0, T(x_0)), x(t) \in \mathbb{R}^n \setminus \{0\}$ for all $t \in [0, T(x_0))$, and $x(t) \to 0$ for $t \to T(x_0)$.

Consider

 $\dot{x} = f(x), \qquad x(0) = x_0 \in \mathbb{R}^n, \qquad (f(0) = 0)$

Definition (Finite-time stability)

The origin is said to be (globally) finite-time stable if there exists a function $T : \mathbb{R}^n \setminus \{0\} \to (0, \infty)$, called the settling-time function, such that the following statements hold:

• (Stability) For every $\varepsilon > 0$ there exists a $\delta > 0$ such that, for every $x(0) = x_0 \in \mathcal{B}_{\delta} \setminus \{0\}, x(t) \in \mathcal{B}_{\varepsilon}$ for all $t \in [0, T(x_0))$.

• (Finite-time convergence) For every $x(0) = x_0 \in \mathbb{R}^n \setminus \{0\}, x(\cdot)$ is defined on $[0, T(x_0)), x(t) \in \mathbb{R}^n \setminus \{0\}$ for all $t \in [0, T(x_0))$, and $x(t) \to 0$ for $t \to T(x_0)$.

Example

Consider

$$\dot{x} = f(x) = -\sqrt[3]{x^2},$$
 (with $f(0) = 0$)

Note that

- f is not Lipschitz at the origin
- $\bullet \,$ uniqueness of solutions can only be guaranteed if $x(t) \neq 0$

We can verify that

$$x(t) = -\frac{1}{27}(t - 3\operatorname{sign}(x(0))\sqrt[3]{|x(0)|})^3$$

is a solution for all $x \in \mathbb{R}$. However, for x(0) > 0

$$x(t) = \begin{cases} -\frac{1}{27}(t - 3\sqrt[3]{|x(0)|})^3 & \text{if } t \le 3\sqrt[3]{|x(0)|} \\ 0 & \text{if } t \ge 3\sqrt[3]{|x(0)|} \end{cases}$$

is also a solution.

Example

Consider

$$\dot{x} = f(x) = -\sqrt[3]{x^2}$$
, (with $f(0) = 0$)

Note that

- f is not Lipschitz at the origin
- uniqueness of solutions can only be guaranteed if x(t) = 0

We can verify that

$$x(t) = -\frac{1}{27}(t - 3\operatorname{sign}(x(0))\sqrt[3]{|x(0)|})^3$$

is a solution for all $x \in \mathbb{R}$. However, for x(0) > 0

$$x(t) = \begin{cases} -\frac{1}{27}(t - 3\sqrt[3]{|x(0)|})^3 & \text{if } t \le 3\sqrt[3]{|x(0)|} \\ 0 & \text{if } t \ge 3\sqrt[3]{|x(0)|} \end{cases}$$

is also a solution.

Example

Consider

$$\dot{x} = f(x) = -\operatorname{sign}(x)\sqrt[3]{x^2}.$$

We can verify

$$x(t) = \begin{cases} -\frac{1}{27} \operatorname{sign}(x(0))(t - 3\sqrt[3]{|x(0)|})^3 & \text{ if } t \le 3\sqrt[3]{|x(0)|} \\ 0 & \text{ if } t \ge 3\sqrt[3]{|x(0)|} \end{cases}$$

 \rightsquigarrow The ODE admits unique solutions Once the equilibrium is reached, the inequalities

$$-\operatorname{sign}(x)\sqrt[3]{x^2} < 0 \text{ for all } x > 0, \quad \text{and} \\ -\operatorname{sign}(x)\sqrt[3]{x^2} > 0 \text{ for all } x < 0$$

ensure that the origin is attractive. It follows from the explicit solution that

• The origin is finite-time stable

• Settling time
$$T(x) = 3\sqrt[3]{|x|}$$

Theorem (Lyapunov fcn for finite-time stability)

Consider $\dot{x} = f(x)$ with f(0) = 0. Assume there exist a continuous function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$, which is continuously differentiable on $\mathbb{R}^n \setminus \{0\}$, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and a constant $\kappa > 0$ such that

$$\alpha_1(|x|) \le V(x) \le \alpha_2(|x|),$$
$$\dot{V}(x) = \langle \nabla V(x), f(x) \rangle \le -\kappa \sqrt{V(x)} \qquad \forall x \ne 0.$$

Then the origin is globally finite-time stable. Moreover, the settling-time $T(x) : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is upper bounded by

 $T(x) \leq \frac{2}{\kappa} \sqrt{\alpha_2(|x|)}.$

As an example, consider:

$$\dot{x} = x^3 + z,$$

$$\dot{z} = u + \delta(t, x, z).$$

- Unknown disturbance $\delta: \mathbb{R}_{\geq 0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that

 $|\delta(t, x, z)| \le L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\ge 0} \times \mathbb{R}^{2}$

• Thus, δ is bounded but not necessarily continuous

As an example, consider:

$$\begin{split} \dot{x} &= x^3 + z, \\ \dot{z} &= u + \delta(t, x, z). \end{split}$$

- Unknown disturbance $\delta:\mathbb{R}_{\geq 0}\times\mathbb{R}^2\to\mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that

 $|\delta(t, x, z)| \le L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\ge 0} \times \mathbb{R}^{2}$

• Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the *x*-subsystem

- I.e., we want x to behave as $\dot{x} = -x$ (for all bounded disturbances)
- The desired behavior implies $\dot{x} + x = 0$
- Thus

$$x^3 + z + x = 0$$

As an example, consider:

$$\begin{split} \dot{x} &= x^3 + z, \\ \dot{z} &= u + \delta(t, x, z). \end{split}$$

- Unknown disturbance $\delta:\mathbb{R}_{\geq 0}\times\mathbb{R}^2\to\mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that

 $|\delta(t, x, z)| \le L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\ge 0} \times \mathbb{R}^{2}$

• Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the *x*-subsystem

- I.e., we want x to behave as $\dot{x} = -x$ (for all bounded disturbances)
- The desired behavior implies $\dot{x} + x = 0$
- Thus

$$x^3 + z + x = 0$$

Approach: Define a new state

$$\sigma\doteq x^3+z+x \quad \text{and} \quad V(\sigma)=\tfrac{1}{2}\sigma^2$$

Then

$$\begin{split} \dot{V}(\sigma) &= \sigma \dot{\sigma} = \sigma \left(3x^2 \dot{x} + \dot{z} + \dot{x} \right) \\ &= \sigma \left(3x^5 + 3x^2 z + u + \delta(t, x, z) + x^3 + z \right). \end{split}$$

As an example, consider:

$$\begin{split} \dot{x} &= x^3 + z, \\ \dot{z} &= u + \delta(t, x, z) \end{split}$$

- Unknown disturbance $\delta: \mathbb{R}_{\geq 0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that

 $|\delta(t, x, z)| \le L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\ge 0} \times \mathbb{R}^{2}$

• Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the x-subsystem

- I.e., we want x to behave as $\dot{x} = -x$ (for all bounded disturbances)
- The desired behavior implies $\dot{x} + x = 0$
- Thus

$$x^3 + z + x = 0$$

Approach: Define a new state

 $\sigma\doteq x^3+z+x \quad \text{and} \quad V(\sigma)=\tfrac{1}{2}\sigma^2$

Then

$$\dot{\nabla}(\sigma) = \sigma \dot{\sigma} = \sigma \left(3x^2 \dot{x} + \dot{z} + \dot{x}\right)$$
$$= \sigma \left(3x^5 + 3x^2 z + u + \delta(t, x, z) + x^3 + z\right).$$

• To cancel the known terms define

$$u = v - 3x^5 - 3x^2z - x^3 - z$$

so that $\dot{V}(\sigma) = \sigma \left(v + \delta(t,x,z) \right)$ (with new input v)

• Selecting $v = -\rho \operatorname{sign}(\sigma), \rho > 0$, provides the estimate

$$\begin{split} \dot{V}(\sigma) &= \sigma \left(-\rho \, \operatorname{sign}(\sigma) + \delta(t, x, z) \right) = -\rho |\sigma| + \sigma \delta(t, x, z) \\ &\leq -\rho |\sigma| + L_{\delta} |\sigma| = -(\rho - L_{\delta}) |\sigma|. \end{split}$$

• Finally, with
$$\rho = L_{\delta} + \frac{\kappa}{\sqrt{2}}$$
, $\kappa > 0$, we have

$$\dot{V}(\sigma) \leq -rac{\kappa |\sigma|}{\sqrt{2}} = - \alpha \sqrt{V(\sigma)} \rightsquigarrow$$
 finite-time stab. of $\sigma = 0$

As an example, consider:

$$\begin{split} \dot{x} &= x^3 + z, \\ \dot{z} &= u + \delta(t, x, z) \end{split}$$

- Unknown disturbance $\delta: \mathbb{R}_{\geq 0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that

 $|\delta(t, x, z)| \le L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\ge 0} \times \mathbb{R}^2$

 $\bullet~$ Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the x-subsystem

- I.e., we want x to behave as $\dot{x} = -x$ (for all bounded disturbances)
- The desired behavior implies $\dot{x} + x = 0$
- Thus

$$x^3 + z + x = 0$$

Approach: Define a new state

$$\sigma \doteq x^3 + z + x$$
 and $V(\sigma) = \frac{1}{2}\sigma^2$

Then

$$\dot{\nabla}(\sigma) = \sigma \dot{\sigma} = \sigma \left(3x^2 \dot{x} + \dot{z} + \dot{x}\right)$$
$$= \sigma \left(3x^5 + 3x^2 z + u + \delta(t, x, z) + x^3 + z\right).$$

• To cancel the known terms define

$$u = v - 3x^5 - 3x^2z - x^3 - z$$

so that $\dot{V}(\sigma) = \sigma \left(v + \delta(t,x,z) \right)$ (with new input v)

• Selecting $v = -\rho \operatorname{sign}(\sigma), \rho > 0$, provides the estimate

$$\begin{split} \dot{V}(\sigma) &= \sigma \left(-\rho \operatorname{sign}(\sigma) + \delta(t, x, z) \right) = -\rho |\sigma| + \sigma \delta(t, x, z) \\ &\leq -\rho |\sigma| + L_{\delta} |\sigma| = -(\rho - L_{\delta}) |\sigma|. \end{split}$$

• Finally, with
$$\rho = L_{\delta} + \frac{\kappa}{\sqrt{2}}$$
, $\kappa > 0$, we have

$$\dot{V}(\sigma) \leq -rac{\kappa |\sigma|}{\sqrt{2}} = - \alpha \sqrt{V(\sigma)} \rightsquigarrow$$
 finite-time stab. of $\sigma = 0$

Note that the control

$$u = -\left(L_{\delta} + \frac{\kappa}{\sqrt{2}}\right) \operatorname{sign}\left(x^3 + z + x\right) - 3x^5 - 3x^2z - x^3 - z$$

is independent of the term $\delta(t, x, z)$.

Consider:

$$\dot{x} = x^3 + z, \dot{z} = u + \delta(t, x, z)$$

.

Control law:

$$u = -\left(L_{\delta} + \frac{\kappa}{\sqrt{2}}\right)\operatorname{sign}\left(x^{3} + z + x\right) - 3x^{5} - 3x^{2}z - x^{3} - z$$

Parameter selection for the simulations:

- $L_{\delta} = 1$ and $\kappa = 2$
- $\delta(t, x, z) = \sin(t)$ (top)
- $\delta(t, x, z) = \operatorname{sign}(\cos(2t)\sin(2t))$ (bottom)

We observe that

- σ converges to zero in finite-time
- Afterwards (x, z) asymptotically approach the origin
- Since the ordinary differential equation is solved numerically, *σ* is not exactly zero!

Consider:

$$\dot{x} = x^3 + z, \dot{z} = u + \delta(t, x, z)$$

.

Control law:

$$u = -\left(L_{\delta} + \frac{\kappa}{\sqrt{2}}\right)\operatorname{sign}\left(x^{3} + z + x\right) - 3x^{5} - 3x^{2}z - x^{3} - z$$

Parameter selection for the simulations:

- $L_{\delta} = 1$ and $\kappa = 2$
- $\delta(t, x, z) = \sin(t)$ (top)
- $\delta(t, x, z) = \operatorname{sign}(\cos(2t)\sin(2t))$ (bottom)

We observe that

- σ converges to zero in finite-time
- Afterwards (x, z) asymptotically approach the origin
- Since the ordinary differential equation is solved numerically, *σ* is not exactly zero!

Consider parameter-dependent systems:

 $\dot{x} = f(x, u, \theta), \qquad (\theta \in \mathbb{R}^q \text{ constant but unknown})$

Goal: Stabilization of the origin.

Consider parameter-dependent systems:

 $\dot{x} = f(x, u, \theta), \quad (\theta \in \mathbb{R}^q \text{ constant but unknown})$

Goal: Stabilization of the origin. Simple motivating example:

$$\dot{x} = \theta x + u$$

• Linear controller: For u = -kx it holds that

$$\dot{x} = -(k - \theta)x$$

i.e., asymptotic stability for $(k - \theta) > 0$ and instability for $(k - \theta) < 0$.

• What if a bound on $|\theta|$ is not known?

Consider parameter-dependent systems:

 $\dot{x} = f(x, u, \theta), \qquad (\theta \in \mathbb{R}^q \text{ constant but unknown})$

Goal: Stabilization of the origin. Simple motivating example:

$$\dot{x} = \theta x + u$$

• Linear controller: For u = -kx it holds that

$$\dot{x} = -(k - \theta)x$$

i.e., asymptotic stability for $(k - \theta) > 0$ and instability for $(k - \theta) < 0$.

- What if a bound on $|\theta|$ is not known?
- Nonlinear controller: $u = -k_1x k_2x^3$, $k_1, k_2 \in \mathbb{R}_{>0}$,

$$\dot{x} = (\theta - k_1)x - k_2 x^3 = \left[(\theta - k_1) - k_2 x^2\right] x.$$
 (3)

- For $\theta \leq k_1$, (3) exhibits a unique equilibrium $x^e = 0$ in \mathbb{R}
- For $\theta > k_1$, (3) exhibits three equilibria $x^e \in \{0, \pm \sqrt{\frac{\theta k_1}{k_2}}\}$

$$x(t) \to S_{\theta} = \left\{ x \in \mathbb{R} \mid |x| \le \sqrt{\frac{1}{k_1}} |\theta| \right\}$$

Consider parameter-dependent systems:

 $\dot{x} = f(x, u, \theta),$ ($\theta \in \mathbb{R}^q$ constant but unknown)

Goal: Stabilization of the origin. Simple motivating example:

$$\dot{x} = \theta x + u$$

• Linear controller: For u = -kx it holds that

$$\dot{x} = -(k - \theta)x$$

- i.e., asymptotic stability for $(k \theta) > 0$ and instability for $(k \theta) < 0$.
- What if a bound on $|\theta|$ is not known?
- Nonlinear controller: $u = -k_1x k_2x^3$, $k_1, k_2 \in \mathbb{R}_{>0}$,

$$\dot{x} = (\theta - k_1)x - k_2 x^3 = [(\theta - k_1) - k_2 x^2] x.$$
 (3)

- For $\theta \leq k_1$, (3) exhibits a unique equilibrium $x^e = 0$ in \mathbb{R}
- For $\theta > k_1$, (3) exhibits three equilibria $x^e \in \{0, \pm \sqrt{\frac{\theta k_1}{k_2}}\}$

 \rightsquigarrow It can be shown that

$$x(t) \to S_{\theta} = \left\{ x \in \mathbb{R} \ \Big| \ |x| \leq \sqrt{\frac{1}{k_1}} |\theta| \right\}$$

• Dynamic controller:
$$u = -k_1 x - \xi x, \dot{\xi} = x^2$$

$$\left[\frac{\dot{x}}{\dot{\xi}}\right] = \left[\frac{-\theta x - k_1 x - \xi x}{x^2}\right],$$

• In terms of error dynamics:
$$\hat{\theta} = \xi - \theta$$

$$\left[\begin{array}{c} \dot{x} \\ \hline \dot{\hat{\theta}} \end{array} \right] = \left[\begin{array}{c} -\hat{\theta}x - k_1 x \\ x^2 \end{array} \right],$$

• Lyapunov function
$$V(x, \hat{\theta}) = \frac{1}{2}x^2 + \frac{1}{2}\hat{\theta}^2$$
;

 $\dot{V}(x,\hat{\theta}) = (-(\xi - \theta)x - k_1x)x + (\xi - \theta)x^2 = -k_1x^2$

- $\stackrel{\rightsquigarrow}{\to} x(t) \to 0 \text{ for } t \to \infty \ \forall \ x(0) \in \mathbb{R}, \ \xi(0) \in \mathbb{R} \\ (\text{LaSalle-Yoshizawa theorem})$
- $\xi(t) \to \theta$ for $t \to \infty$ is not guaranteed

• Consider linear systems

$$\dot{x} = Ax + Bu$$

with unknown matrices A, B.

• Goal: Design a controller so that the unknown system behaves like

$$\dot{\bar{x}} = \bar{A}\bar{x} + \bar{B}u^e$$

where $\bar{A} \in \mathbb{R}^{n \times n}$ and $\bar{B} \in \mathbb{R}^{n \times m}$ are design parameters and $u^e \in \mathbb{R}^m$ is a constant reference.

• Consider linear systems

$$\dot{x} = Ax + Bu$$

with unknown matrices A, B.

• Goal: Design a controller so that the unknown system behaves like

$$\dot{\bar{x}} = \bar{A}\bar{x} + \bar{B}u^e$$

where $\bar{A} \in \mathbb{R}^{n \times n}$ and $\bar{B} \in \mathbb{R}^{n \times m}$ are design parameters and $u^e \in \mathbb{R}^m$ is a constant reference.

 $\bullet~{\rm For}~\bar{A}$ Hurwitz, u^e defines the asymptotically stable equilibrium

$$\bar{x}^e = -\bar{A}^{-1}\bar{B}u^e$$

Control law:

$$u = M(\theta)u^e + L(\theta)x,$$

parameter dependent matrices $M(\cdot),\,L(\cdot),$ to be designed

• Closed-loop dynamics:

$$\begin{split} \dot{x} &= Ax + B(M(\theta)u^e + L(\theta)x) \\ &= (A + BL(\theta))x + BM(\theta)u^e \\ &= A_{\mathsf{cl}}(\theta)x + B_{\mathsf{cl}}(\theta)u^e \end{split}$$

where

$$A_{\rm cl}(\theta) = A + BL(\theta), \qquad B_{\rm cl}(\theta) = BM(\theta)$$

• Compatibility conditions

$$\begin{aligned} A_{\mathsf{Cl}}(\theta) &= \bar{A} & \Longleftrightarrow & BL(\theta) = \bar{A} - A, \\ B_{\mathsf{Cl}}(\theta) &= \bar{B} & \Longleftrightarrow & BM(\theta) = \bar{B}. \end{aligned}$$

Overall system dynamics

$$\begin{bmatrix} \dot{x} \\ \dot{\bar{x}} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} (A + BL(\theta))x + BM(\theta)u^e \\ A\bar{x} + Bu^e \\ \Psi(x, \bar{x}, u^e) \end{bmatrix}$$

for $\boldsymbol{\Psi}$ defined appropriately

11. Adaptive Control (Adaptive Backstepping)

Systems in *parametric strict-feedback form*:

$$\dot{x}_1 = x_2 + \phi_1(x_1)^T \theta$$
$$\dot{x}_2 = x_3 + \phi_2(x_1, x_2)^T \theta$$
$$\vdots$$
$$\dot{x}_{n-1} = x_n + \phi_{n-1}(x_1, \dots, x_{n-1})^T \theta$$
$$\dot{x}_n = \beta(x)u + \phi_n(x)^T \theta$$

where $\beta(x) \neq 0$ for all $x \in \mathbb{R}^n$

Theorem

Let $c_i > 0$ for $i \in \{1, ..., n\}$. Consider the adaptive controller $u = \frac{1}{\beta(x)} \alpha_n(x, \vartheta_1, ..., \vartheta_n)$ $\dot{\vartheta}_i = \Gamma\left(\phi_i(x_1, ..., x_i) - \sum_{j=1}^{i-1} \frac{\partial \alpha_{i-1}}{\partial x_j} \phi_j(x_1, ..., x_j)\right) z_i, \quad i = 1, ..., n,$

where $\vartheta_i \in \mathbb{R}^q$ are multiple estimates of θ , $\Gamma > 0$ is the adaptation gain matrix, and the variables z_i and the stabilizing functions

 $\alpha_i = \alpha_i(x_1, \dots, x_i, \vartheta_1, \dots, \vartheta_i), \qquad \alpha_i : \mathbb{R}^{i+i \cdot q} \to \mathbb{R}, \qquad i = 1, \dots, n,$

are defined by the following recursive expressions (and $z_0 \equiv 0$, $\alpha_0 \equiv 0$ for notational convenience)

$$\begin{aligned} z_i &= x_i - \alpha_{i-1}(x_1, \dots, x_i, \vartheta_1, \dots, \vartheta_i) \\ \alpha_i &= -c_i z_i - z_{i-1} - \left(\phi_i - \sum_{j=1}^{i-1} \frac{\partial \alpha_{i-1}}{\partial x_j} \phi_j\right)^T \vartheta_i \\ &+ \sum_{j=1}^{i-1} \left(\frac{\partial \alpha_{i-1}}{\partial x_j} x_{j+1} + \frac{\partial \alpha_{i-1}}{\partial \vartheta_j} \Gamma\left(\phi_j - \sum_{k=1}^{j-1} \frac{\partial \alpha_{j-1}}{\partial x_k} \phi_k\right) z_j\right). \end{aligned}$$

This adaptive controller guarantees global boundedness of $x(\cdot)$, $\vartheta_1(\cdot)$, ..., $\vartheta_n(\cdot)$, and $x_1(t) \to 0$, $x_i(t) \to x_i^e$ for i = 2, ..., n for $t \to \infty$ where

$$x_i^e = -\theta^T \phi_{i-1}(0, x_2^e, \dots, x_{i-1}^e), \qquad i = 2, \dots, n.$$

We consider continuous time system

$$\dot{x}(t) = f(x(t), u(t)), \quad x(0) = x_0 \in \mathbb{R}^n$$
 (4)

By assumption

• $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ locally Lipschitz continuous

Set of inputs and set of solutions:

$$\mathbb{U} = \{ u(\cdot) : \mathbb{R}_{\geq 0} \to \mathbb{R}^m | \ u(\cdot) \text{ measurable} \}$$

 $\mathbb{X} = \{x(\cdot) : \mathbb{R}_{\geq 0} \to \mathbb{R}^n | x(\cdot) \text{ is absolutely continuous} \}$

We say that

(x(·), u(·)) ∈ X × U is a solution pair if it satisfies (4) for almost all t ∈ ℝ_{≥0}.

Note that:

- If the initial condition is important (or not clear from context), we use $x(\cdot; x_0) \in \mathbb{X}$ and $u(\cdot; x_0) \in \mathbb{U}$
- x_0 , and $u(\cdot)$ are sufficient to describe $x(\cdot)$

For $(x(\cdot), u(\cdot)) \in \mathbb{X} \times \mathbb{U}$ we define

• Cost functional (or performance criterion) $J: \mathbb{R}^n \times \mathbb{U} \to \mathbb{R} \cup \{\pm \infty\}$ as

$$J(x_0, u(\cdot)) = \int_0^\infty \ell(x(\tau), u(\tau)) d\tau.$$

- Running cost: $\ell : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$
- (Optimal) Value function: $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$,

$$V(x_0) = \min_{u(\cdot) \in \mathbb{U}} J(x_0, u(\cdot))$$

subject to (4).

(We assume that the minimum exists!)

• Optimal input:

$$u^{\star}(\cdot) = \arg\min_{u(\cdot)\in\mathbb{U}} J(x_0, u(\cdot))$$

subject to (4).

12. Optimal Control (Linear Quadratic Regulator)

Linear system:

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0 \in \mathbb{R}^n$$

Quadratic cost function:

$$J(x_0, u(\cdot)) = \int_0^\infty \left(x^T(\tau) Q x(\tau) + u^T(\tau) R u(\tau) \right) d\tau$$

Theorem

Let $Q \ge 0$, R > 0. If there exists P > 0 satisfying the continuous time algebraic Riccati equation

$$A^T P + PA + Q - PBR^{-1}B^T P = 0$$

and if $A - BR^{-1}B^TP$ is a Hurwitz matrix, then

$$\mu(x) = -R^{-1}B^T P x$$

minimizes the quadratic cost function and the optimal value function is given by

$$V(x_0) = x_0^T P x_0$$

Linear system

$$x(k+1) = Ax(k) + Bu(k), \quad x(0) = x_0 \in \mathbb{R}^n$$

Quadratic cost function:

$$J(x_0, u(\cdot)) = \sum_{k=0}^{\infty} x(k)^T Q x(k) + u(k)^T R u(k)$$

Theorem

Let $Q \ge 0$, R > 0. If there exists P > 0 satisfying the discrete time algebraic Riccati equation

$$Q + A^T P A - P - A^T P B \left(R + B^T P B \right)^{-1} B^T P A = 0$$

and if $A - B(R + B^T P B)^{-1} B^T P A$ is a Schur matrix, then

$$\mu(x) = -(R + B^T P B)^{-1} B^T P A x$$

minimizes the quadratic cost function and the optimal value function is given by

$$V(x_0) = x_0^T P x_0.$$

13. Model Predictive Control (Receding Horizon Principle)

MPC is also known as

- predictive control
- receding horizon control
- rolling horizon control

Here, we consider discrete time systems

$$x^+ = f(x, u), \qquad x(0) = x_0 \in \mathbb{R}^n$$

with $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ f(0,0) = 0.

- State constraints $x \in \mathbb{X} \subset \mathbb{R}^n$
- Input constraints $u \in \mathbb{U}(x) \subset \mathbb{R}^m$

- Prediction horizon: $N \in \mathbb{N} \cup \{\infty\}$
- Set of feasible input trajectories of length N (depending on x_0):

$$\mathbb{U}_{x_0}^N = \begin{cases} u_N(\cdot) : \mathbb{N}_{[0,N-1]} \to \mathbb{R}^m & x(0) = x_0, \\ x(k+1) = f(x(k), u(k)) \\ (x(k), u(k)) \in \mathbb{X} \times \mathbb{U}(x) \\ \forall k \in \mathbb{N}_{[0,N-1]} \end{cases}$$

• For clarity, note that

 $u_N(\cdot; x_0) = u_N(\cdot) = [u_N(0), u_N(1), u(2), \dots, u_N(N-1)]$

- Prediction horizon: $N \in \mathbb{N} \cup \{\infty\}$
- Set of feasible input trajectories of length N (depending on x_0):

$$\mathbb{U}_{x_0}^N = \begin{cases} u_N(\cdot) : \mathbb{N}_{[0,N-1]} \to \mathbb{R}^m & x(0) = x_0, \\ x(k+1) = f(x(k), u(k)) \\ (x(k), u(k)) \in \mathbb{X} \times \mathbb{U}(x) \\ \forall k \in \mathbb{N}_{[0,N-1]} \end{cases}$$

• For clarity, note that

$$u_N(\cdot; x_0) = u_N(\cdot) = [u_N(0), u_N(1), u(2), \dots, u_N(N-1)]$$

• Cost function: $J_N : \mathbb{R}^n \times \mathbb{U}^N_{\mathbb{D}} \to \mathbb{R} \cup \{\infty\},$

$$J_N(x_0, u_N(\cdot)) = \sum_{i=0}^{N-1} \ell(x(i), u(i))$$

(with running costs $\ell : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$)

• Terminal cost $F : \mathbb{R}^n \to \mathbb{R}$ and terminal constraints $\mathbb{X}_F \subset \mathbb{R}^n$

- Prediction horizon: $N \in \mathbb{N} \cup \{\infty\}$
- Set of feasible input trajectories of length N (depending on x_0):

$$\mathbb{U}_{x_0}^N = \begin{cases} u_N(\cdot) : \mathbb{N}_{[0,N-1]} \to \mathbb{R}^m & x(0) = x_0, \\ x(k+1) = f(x(k), u(k)) \\ (x(k), u(k)) \in \mathbb{X} \times \mathbb{U}(x) \\ \forall k \in \mathbb{N}_{[0,N-1]} \end{cases}$$

• For clarity, note that

$$u_N(\cdot; x_0) = u_N(\cdot) = [u_N(0), u_N(1), u(2), \dots, u_N(N-1)]$$

• Cost function: $J_N : \mathbb{R}^n \times \mathbb{U}^N_{\mathbb{D}} \to \mathbb{R} \cup \{\infty\},\$

$$J_N(x_0, u_N(\cdot)) = \sum_{i=0}^{N-1} \ell(x(i), u(i))$$

(with running costs $\ell : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$)

- Terminal cost $F : \mathbb{R}^n \to \mathbb{R}$ and terminal constraints $\mathbb{X}_F \subset \mathbb{R}^n$
- Optimal control problem

$$V_N(x_0) = \min_{u_N(\cdot) \in \mathbb{U}_{x_0}^N} J_N(x_0, u_N(\cdot)) + F(x(N))$$

subject to dyn. & init. cond. and $x(N) \in \mathbb{X}_F$

(\rightsquigarrow finite dimensional optimization problem if N is finite)

- Prediction horizon: $N \in \mathbb{N} \cup \{\infty\}$
- Set of feasible input trajectories of length N (depending on x_0):

$$\mathbb{U}_{x_0}^N = \begin{cases} x(0) = x_0, & \\ x(k+1) = f(x(k), u(k)) \\ (x(k), u(k)) \in \mathbb{X} \times \mathbb{U}(x) \\ \forall & k \in \mathbb{N}_{[0,N-1]} \end{cases}$$

• For clarity, note that

$$u_N(\cdot; x_0) = u_N(\cdot) = [u_N(0), u_N(1), u(2), \dots, u_N(N-1)]$$

• Cost function: $J_N : \mathbb{R}^n \times \mathbb{U}_{\mathbb{D}}^N \to \mathbb{R} \cup \{\infty\},\$

$$J_N(x_0, u_N(\cdot)) = \sum_{i=0}^{N-1} \ell(x(i), u(i))$$

(with running costs $\ell: \mathbb{R}^n imes \mathbb{R}^m o \mathbb{R}$)

- Terminal cost $F : \mathbb{R}^n \to \mathbb{R}$ and terminal constraints $\mathbb{X}_F \subset \mathbb{R}^n$
- Optimal control problem

$$V_N(x_0) = \min_{u_N(\cdot) \in \mathbb{U}_{x_0}^N} J_N(x_0, u_N(\cdot)) + F(x(N))$$

subject to dyn. & init. cond. and $x(N) \in \mathbb{X}_F$

(\rightsquigarrow finite dimensional optimization problem if N is finite)

- Even if $V_N : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is not known explicitly, for a given $x_0 \in \mathbb{R}^n$, the function $V_N(\cdot)$ can be evaluated in x_0 by solving the OCP.
- Optimal open-loop input trajectory $u_N^{\star}(\cdot; x_0) \in \mathbb{U}_{\mathbb{D}}^N$ s.t. $x(N) \in \mathbb{X}_F$ &

 $V_N(x_0) = J_N(x_0, u_N^{\star}(\cdot; x_0)) + F(x(N))$

• $u_N^{\star}(\cdot; x_0)$ is used to iteratively define a feedback law μ_N , i.e.,

 $\mu_N(x_0) = u_N^{\star}(0; x_0)$ $x_{\mu_N}(k+1) = f(x_{\mu_N}(k), \mu_N(x(k)))$

13. Model Predictive Control (Example)

Consider $x^+ = Ax + Bu$ with unstable origin and $A = \begin{bmatrix} \frac{6}{5} & \frac{6}{5} \\ -\frac{1}{2} & \frac{6}{5} \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}$

- Prediction horizon: N = 5
- The running cost: $\ell(x, u) = x^T x + 5u^2$
- Constraints: $u \in \mathbb{U} = [-2.5, 2.5], x \in \mathbb{R}^2$ (i.e., $\mathbb{D} = \mathbb{R}^2 \times \mathbb{U}$)

• Terminal cost & constraints: $F(x) = x^T x$, $\mathbb{X}_F = \mathbb{R}^2$.

13. Model Predictive Control (Example)

Consider $x^+ = Ax + Bu$ with unstable origin and $A = \begin{bmatrix} \frac{6}{5} & \frac{6}{5} \\ -\frac{1}{2} & \frac{6}{5} \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}$

- Prediction horizon: N = 5
- The running cost: $\ell(x, u) = x^T x + 5u^2$
- Constraints: $u \in \mathbb{U} = [-2.5, 2.5], x \in \mathbb{R}^2$ (i.e., $\mathbb{D} = \mathbb{R}^2 \times \mathbb{U}$)
- Terminal cost & constraints: $F(x) = x^T x$, $\mathbb{X}_F = \mathbb{R}^2$.

- Now, use the terminal constraint $X_F = \{0\}$ (which makes F(x) superfluous)
- Prediction horizon N = 11 (since for N < 11 the OCP is not feasible for $x_0 = [3 \ 3]^T$)

A Run Through Nonlinear Control Topics Stability, control design, and estimation

Philipp Braun

School of Engineering, Australian National University, Canberra, Australia

In Collaboration with:

C. M. Kellett: School of Electrical Engineering, Australian National University, Canberra, Australia

