A Run Through Nonlinear Control Topics Stability, control design, and estimation

Philipp Braun

School of Engineering, Australian National University, Canberra, Australia

In Collaboration with:

C. M. Kellett: School of Electrical Engineering, Australian National University, Canberra, Australia

Introduction to Nonlinear Control: Stability, control design, and estimation

• Part I: Dynamical Systems

- 1. Nonlinear Systems Fundamentals
- 2. Nonlinear Systems Stability Notions
- 3. Linear Systems and Linearization
- **Frequency Domain Analysis**
- 5. Discrete Time Systems
- 6. Absolute Stability
- 7. Input-to-State Stability

• Part II: Controller Design

- 8. LMI Based Controller and Antiwindup **Designs**
- 9. Control Lyapunov Functions
- 10. Sliding Mode Control
- 11. Adaptive Control
- 12. Differential Geometric Methods
- 13. Output Regulation
- 14. Optimal Control
- 15. Model Predictive Control
- **Part III: Observer Design and Estimation**
	- 16. Observer Design for Linear Systems
	- 17. Extended & Unscented Kalman Filter & Moving Horizon Estimation
	- 18. Observer Design for Nonlinear Systems

Introduction to Nonlinear Control

STABILITY CONTROL DESIGN, AND ESTIMATION

(Autonomous) First order differential equations:

$$
\dot{x}(t) = \frac{d}{dt}x(t) = f(x(t)), \quad f: \mathbb{R}^n \to \mathbb{R}^n \tag{1}
$$

A *solution* is an absolutely continuous function that satisfies [\(1\)](#page-2-0) for almost all t .

Non-autonomous/time-varying system:

 $\dot{x}(t) = f(t, x(t)), \quad f: \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}^n$

Systems with external inputs $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$:

$$
\dot{x} = f(x, u), \qquad \dot{x} = f(x, w),
$$

 $\bullet u : \mathbb{R}^n \to \mathbb{R}^m$, $x \mapsto u(x) \leftarrow$ degree of freedom $\bullet w : \mathbb{R} \to \mathbb{R}^m$, $t \mapsto w(t) \leftarrow$ exogenous signal (disturbance or reference) (Autonomous) First order differential equations:

$$
\dot{x}(t) = \frac{d}{dt}x(t) = f(x(t)), \quad f: \mathbb{R}^n \to \mathbb{R}^n \tag{1}
$$

A *solution* is an absolutely continuous function that satisfies [\(1\)](#page-2-0) for almost all t .

Non-autonomous/time-varying system:

 $\dot{x}(t) = f(t, x(t)), \quad f: \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}^n$

Systems with external inputs $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$:

$$
\dot{x}=f(x,u),\qquad \dot{x}=f(x,w),
$$

 $\bullet u : \mathbb{R}^n \to \mathbb{R}^m$, $x \mapsto u(x) \leftarrow$ degree of freedom $\bullet w : \mathbb{R} \to \mathbb{R}^m$, $t \mapsto w(t) \leftarrow$ exogenous signal (disturbance or reference) Definition (Equilibrium, $\dot{x} = 0$)

The point $x^e \in \mathbb{R}^n$ is called equilibrium of the system $\dot{x} = f(x)$ or $\dot{x} = f(t, x)$, respectively, if

$$
\frac{\frac{d}{dt}x(t) = f(x^e) = 0, \n\frac{d}{dt}x(t) = f(t, x^e) = 0 \quad \forall t \in \mathbb{R}_{\geq 0}.
$$

The pair $(x^e, u^e) \in \mathbb{R}^n \times \mathbb{R}^m$ is called an equilibrium pair of the system $\dot{x} = f(x, u)$ if

$$
\frac{d}{dt}x(t) = f(x^e, u^e) = 0.
$$

- Without loss of generality $x^e = 0$ (or $(x^e, u^e) = 0$).
- Achieved through coordinate transf. $z = x x^e$, i.e.,

$$
\hat{f}(z) \doteq f(z + x^e)
$$
 yields $\dot{z} = \hat{f}(z)$

where $(z^e = 0)$

$$
\hat{f}(z^e)=f(z^e+x^e)=f(x^e)=0
$$

Definition (Class- P, K, K_{∞}, L, KL functions)

- A continuous function $\rho : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is said to be positive definite ($\rho \in \mathcal{P}$) if $\rho(0) = 0$ and $\rho(s) > 0 \ \forall \ s \in \mathbb{R}_{\geq 0}$.
- $\bullet \ \alpha \in \mathcal{P}$ is said to be of class- \mathcal{K} ($\alpha \in \mathcal{K}$) if α strictly increasing.
- $\bullet \ \alpha \in \mathcal{K}$ is said to be of class- \mathcal{K}_{∞} ($\alpha \in \mathcal{K}_{\infty}$) if $\lim_{s\to\infty}\alpha(s)=\infty.$
- A continuous function $\sigma : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is said to be of class- \mathcal{L} ($\sigma \in \mathcal{L}$) if σ is strictly decreasing and $\lim_{s\to\infty}\sigma(s)=0.$
- A continuous function $\beta: \mathbb{R}_{\geq 0}^2 \to \mathbb{R}_{\geq 0}$ is said to be of class- KL ($\beta \in KL$) if for each fixed $t \in \mathbb{R}_{\geq 0}$, $\beta(\cdot,t) \in \mathcal{K}_{\infty}$ and for each fixed $s \in \mathbb{R}_{>0}$, $\overline{\beta}(s,\cdot) \in \mathcal{L}$.

Some properties:

- \bullet Class- \mathcal{K}_{∞} functions are invertible.
- **If** $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ then

 $\alpha(s) \doteq \alpha_1 (\alpha_2(s)) = \alpha_1 \circ \alpha_2(s) \in \mathcal{K}_{\infty}.$

• If
$$
\alpha \in \mathcal{K}
$$
, $\sigma \in \mathcal{L}$ then $\alpha \circ \sigma \in \mathcal{L}$.

2. Nonlinear Systems – Stability Notions (Definitions)

Consider

 $\dot{x} = f(x),$ (with $f(0) = 0$)

Definition (Stability)

The origin is *(Lyapunov)* stable if, for any $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that if $|x(0)| < \delta$ then, for all $t > 0$,

 $|x(t)| < \varepsilon$.

Equivalent Definition:

The origin is stable if there exists $\alpha \in \mathcal{K}$ and an open neighborhood around the origin $\mathcal{D} \subset \mathbb{R}^n$, such that

 $|x(t)| \leq \alpha(|x(0)|), \quad \forall t \geq 0, \forall x_0 \in \mathcal{D}.$

Definition (Instability)

The origin is *unstable* if it is not stable.

Consider $\dot{x} = f(x)$ with $f(0) = 0$

Definition (Attractivity)

The origin is *attractive* if there exists $\delta > 0$ such that if $|x(0)| < \delta$ then $\lim_{t\to\infty}x(t)=0.$

Definition (Asymptotic stability)

The origin is *asymptotically stable* if it is both stable and attractive.

Consider $\dot{x} = f(x)$ with $f(0) = 0$

Definition (Attractivity)

The origin is *attractive* if there exists $\delta > 0$ such that if $|x(0)| < \delta$ then

 $\lim_{t\to\infty}x(t)=0.$

Definition (Asymptotic stability)

The origin is *asymptotically stable* if it is both stable and attractive.

Definition $(KL$ -stability)

The system is said to be $K\mathcal{L}$ -stable if there exists $\delta > 0$ and $\beta \in \mathcal{KL}$ such that if $|x(0)| \leq \delta$ then for all $t \geq 0$,

 $|x(t)| \leq \beta(|x(0)|, t).$

Proposition

The origin is asymptotically stable if and only if it is KL*-stable.*

Consider $\dot{x} = f(x)$ with $f(0) = 0$

Definition (Attractivity)

The origin is *attractive* if there exists $\delta > 0$ such that if $|x(0)| < \delta$ then

 $\lim_{t\to\infty}x(t)=0.$

Definition (Asymptotic stability)

The origin is *asymptotically stable* if it is both stable and attractive.

Definition $(KL$ -stability)

The system is said to be $K\mathcal{L}$ -stable if there exists $\delta > 0$ and $\beta \in \mathcal{KL}$ such that if $|x(0)| \leq \delta$ then for all $t \geq 0$,

 $|x(t)| \leq \beta(|x(0)|, t).$

Proposition

The origin is asymptotically stable if and only if it is KL*-stable.*

Definition (Exponential stability)

The origin is *exponentially stable* for $\dot{x} = f(x)$ if there exist δ , λ , $M > 0$ such that if $|x(0)| < \delta$ then for all $t > 0$,

 $|x(t)| \leq M|x(0)|e^{-\lambda t}$

Example: The origin of

- \bullet $\dot{x} = x$ is unstable
- $\bullet \; \dot{x} = 0$ is stable
- $\dot{x} = -x^3$ is asymptotically stable
- \bullet $\dot{x} = -x$ is exponentially stable

 (2)

2. Nonlinear Systems – Stability Notions (Lyapunov's Second Method)

Consider $\dot{x} = f(x)$ with $f(0) = 0$

Theorem (Lyapunov stability theorem)

Let $V : \mathbb{R}^n \to \mathbb{R}$ *, cont. differentiable and* $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ *such that, for all* $x \in \mathbb{R}^n$ *,*

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$ and $\langle \nabla V(x), f(x) \rangle \le 0$.

Then the origin is globally stable.

2. Nonlinear Systems – Stability Notions (Lyapunov's Second Method)

Consider $\dot{x} = f(x)$ with $f(0) = 0$

Theorem (Lyapunov stability theorem)

Let $V : \mathbb{R}^n \to \mathbb{R}$, *cont. differentiable and* $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ *such that, for all* $x \in \mathbb{R}^n$ *,*

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$ and $\langle \nabla V(x), f(x) \rangle \le 0$.

Then the origin is globally stable.

Theorem (Asymptotic stability theorem)

Let $V : \mathbb{R}^n \to \mathbb{R}$ *, cont. differentiable,* $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ *, and* $\rho \in \mathcal{P}$ *such that, for all* $x \in \mathbb{R}^n$,

$$
\alpha_1(|x|)\leq V(x)\leq \alpha_2(|x|)\quad\text{and}\quad \langle \nabla V(x),f(x)\rangle\leq -\rho(|x|).
$$

Then the origin is globally asymptotically stable.

Theorem (Exponential stability theorem)

Let $V : \mathbb{R}^n \to \mathbb{R}$, *cont. differentiable, constants* $\lambda_1, \lambda_2, c > 0$ *and* $p > 1$ *such that, for all* $x \in \mathbb{R}^n$

 $\lambda_1|x|^p \le V(x) \le \lambda_2|x|^p$ and $\langle \nabla V(x), f(x) \rangle \le -cV(x)$.

Then the origin is globally exponentially stable.

2. Nonlinear Systems – Stability Notions (Lyapunov's Second Method)

Consider $\dot{x} = f(x)$ with $f(0) = 0$

Theorem (Lyapunov stability theorem)

Let $V : \mathbb{R}^n \to \mathbb{R}$, *cont. differentiable and* $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ *such that, for all* $x \in \mathbb{R}^n$ *,*

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$ and $\langle \nabla V(x), f(x) \rangle \le 0$.

Then the origin is globally stable.

Theorem (Asymptotic stability theorem)

Let $V : \mathbb{R}^n \to \mathbb{R}$ *, cont. differentiable,* $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ *, and* $\rho \in \mathcal{P}$ *such that, for all* $x \in \mathbb{R}^n$,

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$ *and* $\langle \nabla V(x), f(x) \rangle \le -\rho(|x|)$.

Then the origin is globally asymptotically stable.

Theorem (Exponential stability theorem)

Let $V : \mathbb{R}^n \to \mathbb{R}$, *cont. differentiable, constants* $\lambda_1, \lambda_2, c > 0$ *and* $p > 1$ *such that, for all* $x \in \mathbb{R}^n$

 $\lambda_1|x|^p \le V(x) \le \lambda_2|x|^p$ and $\langle \nabla V(x), f(x) \rangle \le -cV(x)$.

Then the origin is globally exponentially stable.

Theorem (Partial Convergence)

Let $V : \mathbb{R}^n \to \mathbb{R}$ *, cont. differentiable,* $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ *, and* $W:\mathbb{R}^n\to\mathbb{R}_{\geq 0}$ such that, for all $x\in\mathbb{R}^n$,

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$ *and* $\langle \nabla V(x), f(x) \rangle \le -W(x)$. *Then* $\lim_{t\to\infty} W(x(t)) = 0$.

Theorem (Lyapunov theorem for instability)

Let $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ *cont. differentiable and* $\varepsilon > 0$ *such that*

 $\langle \nabla V(x), f(x) \rangle > 0 \quad \forall x \in \mathcal{B}_{\varepsilon} \setminus \{0\}$

Then the origin is (completely) unstable.

Theorem (Chetaev's theorem)

Let $V : \mathbb{R}^n \to \mathbb{R}$ *be cont. differentiable with* $V(0) = 0$ *and* $\mathcal{O}_r = \{x \in \mathcal{B}_r(0) | V(x) > 0\} \neq \emptyset$ for all $r > 0$. If for $certain r > 0$.

 $\langle \nabla V(x), f(x) \rangle > 0, \quad \forall x \in \mathcal{O}_r$

then the origin is unstable.

Intuition:

- Lyapunov functions represent energy associated with the state of a system
- **•** If energy is (strictly) decreasing, then an equilibrium is (symptotically) stable

 $\dot{V}(x(t)) = \langle \nabla V(x), f(x) \rangle < 0 \quad \forall x \neq 0$

Extensions:

- (LaSalle's) Invariance principles
- **•** Similar results for time-varying systems
- Converse Lyapunov results (i.e., asymptotic stability implies existence of Lyapunov function)

3. Linear Systems (Stability)

Linear Systems:

$$
\dot{x} = Ax, \qquad A \in \mathbb{R}^{n \times n}
$$

Theorem

For the linear system $\dot{x} = Ax$, the following are *equivalent:*

- ¹ *The origin is asymptotically/exponentially stable;*
- ² *All eigenvalues of* A *have strictly negative real parts;*
- **3** For every $Q > 0$, there exists a unique $P > 0$, *satisfying the Lyapunov equation*

 $A^T P + P A = -Q.$

Lyapunov Function:

$$
V(x) = x^T P x
$$

It holds that:

$$
\dot{V}(x(t)) = \frac{d}{dt} \left(x^T P x \right) = \dot{x}^T P x + x^T P \dot{x}
$$

$$
= x^T A^T P x + x^T P A x = -x^T Q x
$$

Consider:

 $\dot{x} = f(x),$ $f(0) = 0,$ f cont. differentiable

Define (Jacobian evaluated at the origin):

$$
A=\left[\frac{\partial f(x)}{\partial x}\right]_{x=0}
$$

Linearization of $\dot{x} = f(x)$ at $x = 0$:

 $\dot{z}(t) = Az(t)$

Theorem

Consider $\dot{x} = f(x)$ *(f cont. differentiable) and its linearization* $\dot{z} = Az$. If the origin $z^e = 0$ of $\dot{z} = Az$ is *globally exponentially stable then the origin* $x^e = 0$ *of* $\dot{x} = f(x)$ *is locally exponentially stable.*

3. Linear Systems (Stability)

Linear Systems:

$$
\dot{x} = Ax, \qquad A \in \mathbb{R}^{n \times n}
$$

Theorem

For the linear system $\dot{x} = Ax$, the following are *equivalent:*

- ¹ *The origin is asymptotically/exponentially stable;*
- ² *All eigenvalues of* A *have strictly negative real parts;*
- **3** *For every* $Q > 0$ *, there exists a unique* $P > 0$ *, satisfying the Lyapunov equation*

 $A^T P + P A = -Q.$

Lyapunov Function:

$$
V(x) = x^T P x
$$

It holds that:

$$
\dot{V}(x(t)) = \frac{d}{dt} \left(x^T P x \right) = \dot{x}^T P x + x^T P \dot{x}
$$

$$
= x^T A^T P x + x^T P A x = -x^T Q x
$$

Consider:

 $\dot{x} = f(x),$ $f(0) = 0,$ f cont. differentiable

Define (Jacobian evaluated at the origin):

$$
A=\left[\frac{\partial f(x)}{\partial x}\right]_{x=0}
$$

Linearization of $\dot{x} = f(x)$ at $x = 0$:

 $\dot{z}(t) = Az(t)$

Theorem

Consider $\dot{x} = f(x)$ *(f cont. differentiable) and its linearization* $\dot{z} = Az$. If the origin $z^e = 0$ of $\dot{z} = Az$ is *globally exponentially stable then the origin* $x^e = 0$ *of* $\dot{x} = f(x)$ *is locally exponentially stable.*

Semidefinite programming:

$$
\varepsilon I \le P AT P + PA \le -\varepsilon I \quad \Leftrightarrow \quad \varepsilon |x|^2 \le V(x) \langle \nabla V(x), Ax \rangle \le -\varepsilon |x|^2
$$

 \rightsquigarrow Construction can be extended to systems with polynomial right-hand side

5. Discrete Time Systems (Fundamentals)

Discrete time systems:

$$
x_d(k+1) = F(x_d(k), u_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n
$$

$$
y_d(k) = H(x_d(k), u_d(k))
$$

Time-varying discrete time system $(k \ge k_0 \ge 0)$:

$$
x_d(k+1) = F(k, x_d(k)), \quad x_d(k_0) = x_{d,0} \in \mathbb{R}^n
$$

Time invariant discrete time systems without input:

$$
x_d(k+1) = F(x_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n,
$$

Shorthand notation for difference equations:

$$
x_d^+ = F(x_d, u_d),
$$

Discrete time systems:

$$
x_d(k+1) = F(x_d(k), u_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n
$$

$$
y_d(k) = H(x_d(k), u_d(k))
$$

Time-varying discrete time system $(k > k_0 > 0)$: $x_d(k+1) = F(k, x_d(k)), \quad x_d(k_0) = x_{d,0} \in \mathbb{R}^n$

Time invariant discrete time systems without input: $x_d(k+1) = F(x_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n,$

Shorthand notation for difference equations:

$$
x_d^+ = F(x_d, u_d),
$$

Definition (Equilibrium)

- The point $x_d^e \in \mathbb{R}^n$ is called equilibrium if $x_d^e = F(x_d^e)$ or $x_d^e = F(\ddot{k}, x_d^e)$ for all $k \in \mathbb{N}$ is satisfied.
- The pair $(x_d^e, u_d^e) \in \mathbb{R}^n \times \mathbb{R}^m$ is called equilibrium pair of the system if $x_d^e = F(x_d^e, u_d^e)$ holds.

Again, without loss of generality we can shift the equilibrium (pair) to the origin.

Definition (Equilibrium, $\dot{x} = 0$)

The point $x^e \in \mathbb{R}^n$ is called an equilibrium of the system $\dot{x} = f(x)$ if $\frac{d}{dt}x(t) = f(x^e) = 0$

Discrete time systems: Consider

$$
x^+ = F(x), \qquad x(0) = x_0 \in \mathbb{R}^n
$$

Definition (KL -stability)

The origin of the discrete time system is is globally asymptotically stable, or alternatively KL -stable, if there exists $\beta \in \mathcal{KL}$ such that

 $|x(k)| \leq \beta(|x(0)|, k), \qquad \forall k \in \mathbb{N},$

is satisfied for all $x(0) \in \mathbb{R}^n$.

Theorem (Lyapunov stability theorem)

Suppose there exists a continuous function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ *and functions* $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ *such that, for all* $x \in \mathbb{R}^n$ *,*

> $\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|)$ $V(F(x)) - V(x) \leq 0$

Then the origin is stable.

Continuous time systems: Consider

 $\dot{x} = f(x), \quad x(0) = x_0 \in \mathbb{R}^n$

Definition (KL -stability)

The origin of the continuous time system is globally asymptotically stable, or alternatively KL -stable, if there exists $\beta \in \mathcal{KL}$ such that

 $|x(t)| \leq \beta(|x(0)|, t), \qquad \forall t \in \mathbb{R}_{\geq 0},$

is satisfied for all $x(0) \in \mathbb{R}^n$.

Theorem (Lyapunov stability theorem)

Suppose there exists a smooth function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ *and functions* $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ *such that, for all* $x \in \mathbb{R}^n$,

 $\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|)$

 $\langle \nabla V(x), f(x) \rangle \leq 0$

Then the origin is stable.

Consider the discrete time linear system

 $x^+ = Ax$, $x(0) \in \mathbb{R}^n$ [Solution $x(k) = A^k x(0)$]

Theorem

The following properties are equivalent:

- **1** The origin $x^e = 0$ is exponentially stable;
- 2 *The eigenvalues* $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ of A satisfy $|\lambda_i| < 1$ *for all* $i = 1, \ldots, n$; and
- ³ *For* Q > 0 *there exists a unique* P > 0 *satisfying the discrete time Lyapunov equation*

 $A^T P A - P = -Q.$

A matrix A which satisfies $|\lambda_i| < 1$ for all $i = 1, \ldots, n$ is called a *Schur matrix*.

Consider the continuous time linear system

 $\dot{x} = Ax,$ $x(0) \in \mathbb{R}^n$ [Solution $x(t) = e^{At}x(0)$]

Theorem

The following properties are equivalent:

- **1** The origin $x^e = 0$ is exponentially stable,
- 2 *The eigenvalues* $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ *of A satisfy* $\lambda_i \in \mathbb{C}^$ *for all* $i = 1, \ldots, n$; and
- ³ *For* Q > 0 *there exists a unique* P > 0 *satisfying the continuous time Lyapunov equation*

 $A^T P + P A = -Q.$

A matrix A which satisfies $\lambda_i \in \mathbb{C}^-$ for all $i = 1, \ldots, n$ is called a *Hurwitz matrix*.

5. Discrete Time Systems (Sampling)

Derivative for continuously differentiable function:

$$
\frac{d}{dt}x(t) = \lim_{\Delta \to 0} \frac{x(t + \Delta) - x(t)}{\Delta}
$$

Difference quotient (for $\Delta > 0$ small):

$$
\frac{x(t + \Delta) - x(t)}{\Delta} \approx \frac{d}{dt}x(t) = \dot{x}(t) = f(x(t), u(t))
$$

or equivalently

$$
x(t + \Delta) \approx x(t) + \Delta f(x(t), u(t))
$$

Approximated discrete time system (identify t with $k \cdot \Delta$)

$$
x_d^+ = F(x_d, u_d) \doteq x_d + \Delta f(x_d, u_d)
$$

⇝ This discretization is known as (explicit) *Euler method*.

Approximation of $\dot{x} = 1.1x$

Euler discretization: $x^+ = (1 + \Delta 1.1)x$

5. Discrete Time Systems (Runge-Kutta Methods)

• Consider

where

. . .

$$
\dot{x} = g(t, x).
$$

• Runge-Kutta update formula:

$$
x(t + \Delta) = x(t) + \Delta \sum_{i=1}^{s} b_i k_i
$$

$$
k_1 = g(t, x(t))
$$

\n
$$
k_2 = g(t + c_2 \Delta, x + \Delta(a_{21}k_1))
$$

\n
$$
k_3 = g(t + c_3 \Delta, x + \Delta(a_{31}k_1 + a_{32}k_2))
$$

$$
k_s = g(t + c_s \Delta, x + \Delta(a_{s1}k_1 + a_{s2}k_2 + \dots + a_{s(s-1)}k(s)))
$$

- $s \in \mathbb{N}$ (stage); $a_{ij}, b_{\ell}, c_i \in \mathbb{R}, 1 \leq j < i \leq s, 1 \leq \ell \leq s$ (given parameters)
- The case $f(x, u)$ for sample-and-hold inputs $u(t + \delta) = u_d \in \mathbb{R}^m$ for all $\delta \in [0, \Delta)$ is covered through

$$
g(t, x(t)) = f(x(t), u_d)
$$

5. Discrete Time Systems (Runge-Kutta Methods)

• Consider

where

. . .

$$
\dot{x} = g(t, x).
$$

• Runge-Kutta update formula:

$$
x(t + \Delta) = x(t) + \Delta \sum_{i=1}^{s} b_i k_i
$$

$$
k_1 = g(t, x(t))
$$

\n
$$
k_2 = g(t + c_2 \Delta, x + \Delta(a_{21}k_1))
$$

\n
$$
k_3 = g(t + c_3 \Delta, x + \Delta(a_{31}k_1 + a_{32}k_2))
$$

$$
k_s = g(t + c_s \Delta, x + \Delta(a_{s1}k_1 + a_{s2}k_2 + \cdots + a_{s(s-1)}k(s)))
$$

- $s \in \mathbb{N}$ (stage); $a_{ij}, b_{\ell}, c_i \in \mathbb{R}, 1 \leq j \leq i \leq s, 1 \leq \ell \leq s$ (given parameters)
- \bullet The case $f(x, u)$ for sample-and-hold inputs $u(t + \delta) = u_d \in \mathbb{R}^m$ for all $\delta \in [0, \Delta)$ is covered through

 $g(t, x(t)) = f(x(t), u_d)$

Butcher tableau:

0 c² a²¹ c³ a³¹ a³² c^s as¹ as² · · · as(s−1) b¹ b² · · · bs−¹ b^s

 \rightsquigarrow c_i is only necessary for time-varying systems

Examples: The Euler and the Heun method

$$
\begin{array}{c|cc}\n0 & & \text{and} & \frac{1}{1} & \frac{1}{2} \\
\hline\n\end{array}
$$

 \bullet Heun Method: Update of x in three steps

$$
k_1 = f(x(t), u_d),
$$

\n
$$
k_2 = f(x(t) + \Delta k_1, u_d),
$$

\n
$$
x(t + \Delta) = x(t) + \Delta \left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right).
$$

5. Discrete Time Systems (Runge-Kutta Methods in Matlab)

The function ode23.m relies on the Butcher tableaus

- One scheme is used to approximate $x(t + \Delta)$. \bullet
- The second scheme is needed to approximate the error, to select the step size Δ .

The function ode45.m relies on the Butcher tableaus

7. Input-to-State stability (Definition & Motivation)

Input-to-state stability (ISS) for nonlinear systems:

 $\dot{x} = f(x, w), \quad x(0) = x_0 \in \mathbb{R}^n$ $w \in \mathcal{W} = \{w : \mathbb{R}_{\geq 0} \to \mathbb{R}^m | w \text{ essentially bounded}\}.$

Definition (Input-to-state stability)

The system is said to be *input-to-state stable (ISS)* if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that solutions satisfy

 $|x(t)| \leq \beta(|x(0)|, t) + \gamma(||w||_{\mathcal{L}_{\infty}})$

for all $x \in \mathbb{R}^n$, $w \in \mathcal{W}$, and $t \geq 0$.

• γ ∈ K: *ISS-gain*; • β ∈ KL: *transient bound*.

7. Input-to-State stability (Definition & Motivation)

Input-to-state stability (ISS) for nonlinear systems:

 $\dot{x} = f(x, w), \quad x(0) = x_0 \in \mathbb{R}^n$ $w \in \mathcal{W} = \{w : \mathbb{R}_{\geq 0} \to \mathbb{R}^m | w \text{ essentially bounded}\}.$

Definition (Input-to-state stability)

The system is said to be *input-to-state stable (ISS)* if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that solutions satisfy

 $|x(t)| \leq \beta(|x(0)|, t) + \gamma(||w||_{\mathcal{L}_{\infty}})$

for all $x \in \mathbb{R}^n$, $w \in \mathcal{W}$, and $t \geq 0$.

• γ ∈ K: *ISS-gain*; • β ∈ KL: *transient bound*.

Example

Consider the nonlinear/bilinear system:

 $\dot{x} = -x + xw.$

- The system is 0-input globally asymptotically stable (since $w = 0$ implies $\dot{x} = -x$ and so $x(t) = x(0)e^{-t}$)
- However, consider the bounded input/disturbance $w = 2$. Then $\dot{x} = x$ and so $x(t) = x(0)e^{t}$.
- **Consequently, it is impossible to find** $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that

 $|x(t)| = |x(0)|e^t \leq \beta(|x(0)|, t) + \gamma(2).$

Definition (Input-to-state stability)

 $\dot{x} = f(x, w)$ is said to be *input-to-state stable (ISS)* if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that solutions satisfy

 $|x(t)| \leq \beta(|x(0)|, t) + \gamma(||w||_{\mathcal{L}_{\infty}})$

for all $x \in \mathbb{R}^n$, $w \in \mathcal{W}$, and $t \geq 0$.

Theorem (ISS-Lyapunov function)

 $\dot{x} = f(x, w)$ is ISS if and only if there exist a cont. *differentiable fcn.* $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ *and* $\alpha_1, \alpha_2, \alpha_3, \sigma \in \mathcal{K}_{\infty}$ *such that for all* $x \in \mathbb{R}^n$ *and all* $w \in \mathbb{R}^m$ $\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|)$ $\langle \nabla V(x), f(x, w) \rangle \leq -\alpha_3(|x|) + \sigma(|w|)$

Definition (Input-to-state stability)

 $\dot{x} = f(x, w)$ is said to be *input-to-state stable (ISS)* if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that solutions satisfy

 $|x(t)| \leq \beta(|x(0)|, t) + \gamma(||w||_{\mathcal{L}_{\infty}})$

for all $x \in \mathbb{R}^n$, $w \in \mathcal{W}$, and $t \geq 0$.

Theorem (ISS-Lyapunov function)

 $\dot{x} = f(x, w)$ is ISS if and only if there exist a cont. *differentiable fcn.* $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ *and* $\alpha_1, \alpha_2, \alpha_3, \sigma \in \mathcal{K}_{\infty}$ *such that for all* $x \in \mathbb{R}^n$ *and all* $w \in \mathbb{R}^m$ $\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|)$

 $\langle \nabla V(x), f(x, w) \rangle \leq -\alpha_3(|x|) + \sigma(|w|)$

Example

Consider

$$
\dot{x} = f(x, w) = -x - x^3 + xw, \quad x(0) = x_0 \in \mathbb{R}
$$

The candidate ISS-Lyapunov function $V(x) = \frac{1}{2}x^2$:

$$
\langle \nabla V(x), f(x, w) \rangle = \langle x, -x - x^3 + xw \rangle
$$

= $-x^2 - x^4 + x^2 w$
 $\leq -x^2 - x^4 + \frac{1}{2}x^4 + \frac{1}{2}w^2$
= $-x^2 - \frac{1}{2}x^4 + \frac{1}{2}w^2$

• The inequality follows from Young's inequality:

$$
yz \leq \frac{1}{2}y^2 + \frac{1}{2}z^2
$$

Define $\alpha(s) \doteq s^2 + \frac{1}{2}s^4$ and $\sigma(s) \doteq \frac{1}{2}s^2$, Then

$$
\dot{V}(x) \le -\alpha(|x|) + \sigma(|w|)
$$

i.e., V is an ISS-Lyapunov function, the system is ISS.

7. Input-to-State Stability (Cascade Interconnections)

$$
w_1 \t x_1 = f_1(x_1, w_1) \t w_2 = x_1 \t x_2 = f_2(x_2, w_2) \t x_2
$$

$$
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} f_1(x_1, w_1) \\ f_2(x_2, x_1) \end{bmatrix}
$$

Theorem (ISS Cascade)

Consider the system with $[x_1, x_2]^T \in \mathbb{R}^n$, $w_2 = x_1$. If each *of the subsystems are ISS, then the cascade interconnection is ISS with* w_1 *as input and* x *as state.*

8. LMI Based Controller and Antiwindup Designs

Compact representation: $(x=[x_p^T, x_c^T]^T \in \mathbb{R}^n)$

$$
\left[\begin{array}{c|c|c|c|c|c|c} A & B & E \\ \hline C & D & F \\ \hline K & L & G \end{array}\right] = \left[\begin{array}{c|c|c|c} A_p + B_p D_{c,y} C_{p,y} & B_p C_c & -B_p & B_p D_{c,y} D_{p,y} + B_w \\ B_c C_{p,y} & A_c & 0 & B_c D_{p,y} \\ \hline C_{p,z} & 0 & 0 & D_{p,z} \\ \hline D_{c,y} C_{p,y} & C_c & 0 & D_{c,y} D_{p,y} \end{array}\right] \qquad \begin{array}{c c c c} \dot{x} & = & Ax + Bq + Ew \\ \dot{x} & = & Cx + Dq + Fw \\ u & = & Kx + Lq + Gw \\ q & = & u - \text{sat}(u) \end{array}
$$

$$
\begin{aligned}\n\dot{x} &= Ax + Bu \\
u &= Kx\n\end{aligned}
$$

Goal: Find stabilizing controller, i.e., find K and $P > 0$:

 $V(x(t)) = x(t)^T P x(t) > 0, \quad V(x(t)) < 0 \quad \forall x(t) \neq 0$

$$
\begin{aligned}\n\dot{x} &= Ax + Bu \\
u &= Kx\n\end{aligned}
$$

Goal: Find stabilizing controller, i.e., find K and $P > 0$:

 $V(x(t)) = x(t)^T P x(t) > 0, \quad V(x(t)) < 0 \quad \forall x(t) \neq 0$

In terms of definite matrices:

$$
P > 0, \qquad (A + BK)^T P + P(A + BK) < 0,
$$

$$
P > 0, \qquad A^T P + K^T B^T P + P A + P B K < 0
$$

Define $\Lambda = P^{-1}$, $\Phi = K\Lambda$:

$$
\Lambda > 0, \qquad \Lambda A^T + \Lambda K^T B^T + A\Lambda + BK\Lambda < 0,
$$

\n
$$
\Lambda > 0, \qquad \Lambda A^T + \Phi^T B^T + A\Lambda + B\Phi < 0,
$$

LMI (as convex optimization problem):

$$
\begin{aligned} \min_{\Lambda, \ \Phi} \quad & f(\Lambda, \Phi) \\ \text{subject to} \quad & 0 < \ \Phi \\ & 0 > \Lambda A^T + \Phi^T B^T + A \Lambda + B \Phi \end{aligned}
$$

$$
\begin{aligned}\n\dot{x} &= Ax + Bu \\
u &= Kx\n\end{aligned}
$$

Goal: Find stabilizing controller, i.e., find K and $P > 0$:

$$
V(x(t)) = x(t)^T P x(t) > 0, \quad \dot{V}(x(t)) < 0 \quad \forall x(t) \neq 0
$$

In terms of definite matrices:

$$
P > 0, \qquad (A + BK)^T P + P(A + BK) < 0,
$$

$$
P > 0, \qquad A^T P + K^T B^T P + P A + P B K < 0
$$

Define $\Lambda = P^{-1}$, $\Phi = K\Lambda$:

$$
\Lambda > 0, \qquad \Lambda A^T + \Lambda K^T B^T + A\Lambda + BK\Lambda < 0,
$$

\n
$$
\Lambda > 0, \qquad \Lambda A^T + \Phi^T B^T + A\Lambda + B\Phi < 0,
$$

LMI (as convex optimization problem):

$$
\min_{\Lambda, \Phi} f(\Lambda, \Phi)
$$
\nsubject to
$$
0 < \Phi
$$
\n
$$
0 > \Lambda A^T + \Phi^T B^T + A\Lambda + B\Phi
$$

Lemma (Schur Complement)

Let $Q \in \mathbb{R}^{n \times n}$ and $R \in \mathbb{R}^{q \times q}$, symmetric, and let $S \in \mathbb{R}^{r \times q}$. Then

$$
\left[\begin{array}{cc} Q & S \\ S^T & R \end{array}\right] < 0 \quad \Leftrightarrow \quad Q - SR^{-1}S^T < 0
$$

$$
\begin{aligned}\n\dot{x} &= Ax + Bu \\
u &= Kx\n\end{aligned}
$$

Goal: Find stabilizing controller, i.e., find K and $P > 0$:

$$
V(x(t)) = x(t)^T P x(t) > 0, \quad V(x(t)) < 0 \quad \forall x(t) \neq 0
$$

In terms of definite matrices:

$$
P > 0, \qquad (A + BK)^T P + P(A + BK) < 0,
$$

$$
P > 0, \qquad A^T P + K^T B^T P + P A + P B K < 0
$$

Define $\Lambda = P^{-1}$, $\Phi = K\Lambda$:

$$
\Lambda > 0, \qquad \Lambda A^T + \Lambda K^T B^T + A\Lambda + BK\Lambda < 0,
$$

\n
$$
\Lambda > 0, \qquad \Lambda A^T + \Phi^T B^T + A\Lambda + B\Phi < 0,
$$

LMI (as convex optimization problem):

$$
\min_{\Lambda, \Phi} f(\Lambda, \Phi)
$$

subject to $0 < \Phi$
 $0 > \Lambda A^T + \Phi^T B^T + A\Lambda + B\Phi$

Lemma (Schur Complement)

Let $Q \in \mathbb{R}^{n \times n}$ and $R \in \mathbb{R}^{q \times q}$, symmetric, and let $S \in \mathbb{R}^{r \times q}$. Then

$$
\left[\begin{array}{cc} Q & S \\ S^T & R \end{array}\right] < 0 \quad \Leftrightarrow \quad \quad Q - SR^{-1}S^T < 0
$$

Lemma (S-Lemma or S-Procedure)

Let $M_0, M_1 \in \mathbb{R}^{r \times r}$, symmetric, and suppose there exists $\zeta^* \in \mathbb{R}^r$ such that $(\zeta^*)^T M_1 \zeta^* > 0$. Then the following *statements are equivalent:*

1 There exists $\tau > 0$ such that $M_0 - \tau M_1 > 0$.

- **2** For all $\zeta \neq 0$ such that $\zeta^T M_1 \zeta \geq 0$ it holds that $\zeta^T M_0 \zeta > 0.$
- \bullet If (1) is satisfied, then (2) is satisfied
- For known τ , (1) is an LMI which can be used to verify $(2).$

Consider the nonlinear system

 $\dot{x} = f(x, u)$

- \bullet f : $\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$
- \bullet state x and control input u
- Goal: Define a feedback control law $u = k(x)$ which asymptotically stabilizes the origin.

Consider the nonlinear system

$$
\dot{x} = f(x, u)
$$

- \bullet $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$
- \bullet state x and control input u
- Goal: Define a feedback control law $u = k(x)$ which asymptotically stabilizes the origin.

Control Lyapunov function: $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$

• In terms of a feedback law $u = k(x)$,

 $\frac{d}{dt}V(x(t)) = \langle \nabla V(x), f(x, k(x)) \rangle < 0, \quad \forall x \neq 0$

 \rightsquigarrow V is a Lyapunov function for $\dot{x} = f(x, k(x)) = \tilde{f}(x)$

• For each $x \neq 0$ we can find u such that

$$
\frac{d}{dt}V(x(t)) = \langle \nabla V(x), f(x, u) \rangle < 0
$$

Consider the nonlinear system

 $\dot{x} = f(x, u)$

- \bullet f : $\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$
- \bullet state x and control input u
- Goal: Define a feedback control law $u = k(x)$ which asymptotically stabilizes the origin.

Control Lyapunov function: $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$

• In terms of a feedback law $u = k(x)$,

 $\frac{d}{dt}V(x(t)) = \langle \nabla V(x), f(x, k(x)) \rangle < 0, \quad \forall x \neq 0$

 \rightsquigarrow V is a Lyapunov function for $\dot{x} = f(x, k(x)) = \tilde{f}(x)$

• For each $x \neq 0$ we can find u such that

 $\frac{d}{dt}V(x(t)) = \langle \nabla V(x), f(x, u) \rangle < 0$

Definition (Control Lyapunov function (CLF))

Consider the nonlinear system and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$. A continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is called control Lyapunov function if

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|), \quad \forall x \in \mathbb{R}^n,$

and for all $x \in \mathbb{R}^n \setminus \{0\}$ there exists $u \in \mathbb{R}^m$ such that

 $\langle \nabla V(x), f(x, u) \rangle < 0.$

Control affine systems

 $\dot{x} = f(x) + q(x)u$

Assumptions:

- for simplicity we focus on $u \in \mathbb{R}$
- $f, q : \mathbb{R}^n \to \mathbb{R}^n$ (locally Lipschitz)
- \bullet $f(0) = 0$ without loss of generality

Lie derivative notation

 $L_f V(x) = \langle \nabla V(x), f(x) \rangle$

The decrease condition:

$$
\dot{V}(x) = \langle \nabla V(x), f(x) + g(x)u \rangle \n= L_f V(x) + L_g V(x)u < 0, \quad \forall x \neq 0.
$$

Definition (Control Lyapunov function (CLF))

Consider the nonlinear system $\dot{x} = f(x, u)$ and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$. A continuously differentiable function $V:\mathbb{R}^n\to\mathbb{R}_{\geq0}$ is called control Lyapunov function if $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|), \quad \forall x \in \mathbb{R}^n,$ and for all $x \in \mathbb{R}^n \setminus \{0\}$ there exists $u \in \mathbb{R}^m$ such that

 $\langle \nabla V(x), f(x, u) \rangle < 0.$

Control affine systems

 $\dot{x} = f(x) + q(x)u$

Assumptions:

- for simplicity we focus on $u \in \mathbb{R}$
- $f, q : \mathbb{R}^n \to \mathbb{R}^n$ (locally Lipschitz)
- \bullet $f(0) = 0$ without loss of generality

Lie derivative notation

 $L_f V(x) = \langle \nabla V(x), f(x) \rangle$

The decrease condition:

$$
\begin{aligned} \dot{V}(x) &= \langle \nabla V(x), f(x) + g(x)u \rangle \\ &= L_f V(x) + L_g V(x) u < 0, \quad \forall \ x \neq 0. \end{aligned}
$$

Definition (Control Lyapunov function (CLF))

Consider the nonlinear system $\dot{x} = f(x, u)$ and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$. A continuously differentiable function $V:\mathbb{R}^n\to\mathbb{R}_{\geq 0}$ is called control Lyapunov function if $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|), \quad \forall x \in \mathbb{R}^n,$ and for all $x \in \mathbb{R}^n \setminus \{0\}$ there exists $u \in \mathbb{R}^m$ such that

 $\langle \nabla V(x), f(x, u) \rangle < 0.$

The decrease condition for control affine systems:

 $L_fV(x) < 0 \quad \forall \; x \in \mathbb{R}^n \setminus \{0\}$ such that $L_gV(x) = 0$

In other words

- If $L_q V(x) = 0$ (i.e., we have no control authority)
- \bullet then $L_fV(x) < 0$ needs to be satisfied

9. Control Lyapunov Functions (Sontag's Universal Formula)

Consider a control affine system $(u \in \mathbb{R})$

 $\dot{x} = f(x) + q(x)u$

with corresponding CLF V , i.e.,

 $L_fV(x) < 0 \quad \forall \; x \in \mathbb{R}^n \backslash \{0\}$ such that $L_gV(x) = 0$

Then, for $\kappa > 0$ define the feedback law

$$
k(x)=\left\{\begin{array}{cc}-\left(\kappa+\frac{L_fV(x)+\sqrt{L_fV(x)^2+L_gV(x)^4}}{L_gV(x)^2}\right)L_gV(x),&L_gV(x)\neq 0\\0,&L_gV(x)=0\end{array}\right.
$$

The feedback law

- asymptotically stabilizes the origin
- inherits the regularity properties of the CLF except at the origin
- is continuous at the origin if the CLF satisfies a small control property (i.e., $|k(x)| \rightarrow 0$ for $|x| \rightarrow 0$)

9. Control Lyapunov Functions (Sontag's Universal Formula)

Consider a control affine system $(u \in \mathbb{R})$

 $\dot{x} = f(x) + q(x)u$

with corresponding CLF V , i.e.,

 $L_fV(x) < 0 \quad \forall \; x \in \mathbb{R}^n \backslash \{0\}$ such that $L_gV(x) = 0$

Then, for $\kappa > 0$ define the feedback law

$$
k(x)=\left\{\begin{array}{ll} -\left(\kappa+\frac{L_fV(x)+\sqrt{L_fV(x)^2+L_gV(x)^4}}{L_gV(x)^2}\right)L_gV(x), & L_gV(x)\neq 0 \\ 0, & L_gV(x)=0 \end{array}\right.
$$

Sketch of the proof: For $\kappa = 0$ it holds that

$$
\dot{V}(x) = L_f V(x) + L_g V(x) k(x)
$$
\n
$$
= L_f V(x) - L_g V(x) \left(\frac{L_f V(x) + \sqrt{L_f V(x)^2 + L_g V(x)^4}}{L_g V(x)^2} \right) L_g V(x)
$$
\n
$$
= L_f V(x) - L_f V(x) - \sqrt{L_f V(x)^2 + L_g V(x)^4} = -\sqrt{L_f V(x)^2 + L_g V(x)^4}.
$$

 $\bullet \ \kappa > 0$ adds a term $-\kappa(L_gV(x))^2$ (which guarantees certain ISS properties)

The feedback law

- asymptotically stabilizes the origin
- inherits the regularity properties of the CLF except at the origin
- is continuous at the origin if the CLF satisfies a small control property (i.e., $|k(x)| \rightarrow 0$ for $|x| \rightarrow 0$)

Note that: Formula known as

- **O** Universal formula
- **•** Sontag's formula

(Derived by Eduardo Sontag)

9. Control Lyapunov Functions (Backstepping)

Systems in *strict feedback form*:

 $\dot{x}_1 = f_1(x_1, x_2)$ $\dot{x}_2 = f_2(x_1, x_2, x_3)$. . . $\dot{x}_{n-1} = f_{n-1}(x_1, x_2, \ldots, x_{n-1}, x_n)$ $\dot{x}_n = f_n(x_1, x_2, \ldots, x_n, u).$

Consider

 $\dot{x} = f(x), \quad x(0) = x_0 \in \mathbb{R}^n, \quad (f(0) = 0)$

Definition (Finite-time stability)

The origin is said to be (globally) finite-time stable if there exists a function $T : \mathbb{R}^n \setminus \{0\} \to (0, \infty)$, called the settling-time function, such that the following statements hold:

- **(Stability)** For every $\varepsilon > 0$ there exists a $\delta > 0$ such that, for every $x(0) = x_0 \in \mathcal{B}_\delta \backslash \{0\}, x(t) \in \mathcal{B}_\varepsilon$ for all $t \in [0, T(x_0)).$
- (Finite-time convergence) For every $x(0) = x_0 \in \mathbb{R}^n \backslash \{0\}, x(\cdot)$ is defined on $[0, T(x_0))$, $x(t) \in \mathbb{R}^n \setminus \{0\}$ for all $t \in [0, T(x_0))$, and $x(t) \to 0$ for $t \to T(x_0)$.

Consider

 $\dot{x} = f(x), \quad x(0) = x_0 \in \mathbb{R}^n, \quad (f(0) = 0)$

Definition (Finite-time stability)

The origin is said to be (globally) finite-time stable if there exists a function $T : \mathbb{R}^n \setminus \{0\} \to (0, \infty)$, called the settling-time function, such that the following statements hold:

• (Stability) For every $\varepsilon > 0$ there exists a $\delta > 0$ such that, for every $x(0) = x_0 \in \mathcal{B}_\delta \backslash \{0\}, x(t) \in \mathcal{B}_\varepsilon$ for all $t \in [0, T(x_0)).$

(Finite-time convergence) For every $x(0) = x_0 \in \mathbb{R}^n \backslash \{0\}, x(\cdot)$ is defined on $[0, T(x_0))$, $x(t) \in \mathbb{R}^n \setminus \{0\}$ for all $t \in [0, T(x_0))$, and $x(t) \to 0$ for $t \to T(x_0)$.

Example

Consider

$$
\dot{x} = f(x) = -\sqrt[3]{x^2}
$$
, (with $f(0) = 0$)

Note that

- \bullet f is not Lipschitz at the origin
- uniqueness of solutions can only be guaranteed if $x(t) \neq 0$

We can verify that

$$
x(t) = -\frac{1}{27}(t - 3\operatorname{sign}(x(0))\sqrt[3]{|x(0)|})^3
$$

is a solution for all $x \in \mathbb{R}$. However, for $x(0) > 0$

$$
x(t) = \begin{cases} -\frac{1}{27}(t - 3\sqrt[3]{|x(0)|})^3 & \text{if } t \le 3\sqrt[3]{|x(0)|} \\ 0 & \text{if } t \ge 3\sqrt[3]{|x(0)|} \end{cases}
$$

is also a solution.

Example

Consider

$$
\dot{x} = f(x) = -\sqrt[3]{x^2}
$$
, (with $f(0) = 0$)

Note that

- \bullet f is not Lipschitz at the origin
- uniqueness of solutions can only be guaranteed if $x(t) = 0$

We can verify that

$$
x(t) = -\frac{1}{27}(t - 3\operatorname{sign}(x(0))\sqrt[3]{|x(0)|})^3
$$

is a solution for all $x \in \mathbb{R}$. However, for $x(0) > 0$

$$
x(t) = \begin{cases} -\frac{1}{27}(t - 3\sqrt[3]{|x(0)|})^3 & \text{if } t \le 3\sqrt[3]{\\ } & \text{if } t \ge 3\sqrt[3]{ \end{cases}
$$

is also a solution.

 $|x(0)|$

 $\vert x(0) \vert$

Example

Consider

$$
\dot{x} = f(x) = -\operatorname{sign}(x)\sqrt[3]{x^2}.
$$

We can verify

$$
x(t) = \begin{cases} -\frac{1}{27} \operatorname{sign}(x(0)) (t - 3\sqrt[3]{|x(0)|})^3 & \text{if } t \le 3\sqrt[3]{|x(0)|} \\ 0 & \text{if } t \ge 3\sqrt[3]{|x(0)|} \end{cases}
$$

 \rightsquigarrow The ODE admits unique solutions Once the equilibrium is reached, the inequalities

$$
-\operatorname{sign}(x)\sqrt[3]{x^2} < 0 \text{ for all } x > 0, \text{ and}
$$
\n
$$
-\operatorname{sign}(x)\sqrt[3]{x^2} > 0 \text{ for all } x < 0
$$

ensure that the origin is attractive. It follows from the explicit solution that

• The origin is finite-time stable

• Setting time
$$
T(x) = 3\sqrt[3]{|x|}
$$

Theorem (Lyapunov fcn for finite-time stability)

Consider $\dot{x} = f(x)$ *with* $f(0) = 0$ *. Assume there exist a continuous function* $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$, which is continuously *differentiable on* $\mathbb{R}^n \setminus \{0\}$, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ *and a constant* $\kappa > 0$ *such that*

$$
\alpha_1(|x|) \le V(x) \le \alpha_2(|x|),
$$

$$
\dot{V}(x) = \langle \nabla V(x), f(x) \rangle \le -\kappa \sqrt{V(x)} \qquad \forall x \neq 0.
$$

Then the origin is globally finite-time stable. Moreover, the settling-time $T(x)$: $\mathbb{R}^n \to \mathbb{R}_{\geq 0}$ *is upper bounded by*

 $T(x) \leq \frac{2}{\kappa} \sqrt{\alpha_2(|x|)}.$

As an example, consider:

$$
\dot{x} = x^3 + z,
$$

$$
\dot{z} = u + \delta(t, x, z).
$$

- **O** Unknown disturbance $\delta : \mathbb{R}_{\geq 0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that $|\delta(t, x, z)| \leq L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^2$
- \bullet Thus, δ is bounded but not necessarily continuous

As an example, consider:

$$
\dot{x} = x^3 + z,
$$

$$
\dot{z} = u + \delta(t, x, z).
$$

- **O** Unknown disturbance δ : $\mathbb{R}_{>0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that $|\delta(t, x, z)| \leq L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^2$
- \bullet Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the x -subsystem

- \bullet I.e., we want x to behave as $\dot{x} = -x$ (for all bounded disturbances)
- The desired behavior implies $\dot{x} + x = 0$
- **o** Thus

$$
x^3 + z + x = 0
$$

As an example, consider:

$$
\dot{x} = x^3 + z,
$$

$$
\dot{z} = u + \delta(t, x, z).
$$

- **O** Unknown disturbance δ : $\mathbb{R}_{>0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that $|\delta(t, x, z)| \leq L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^2$
- \bullet Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the x -subsystem

- \bullet I.e., we want x to behave as $\dot{x} = -x$ (for all bounded disturbances)
- The desired behavior implies $\dot{x} + x = 0$
- **o** Thus

$$
x^3 + z + x = 0
$$

Approach: Define a new state

$$
\sigma \doteq x^3 + z + x \quad \text{and} \quad V(\sigma) = \frac{1}{2}\sigma^2
$$

a Then

$$
\dot{V}(\sigma) = \sigma \dot{\sigma} = \sigma (3x^2 \dot{x} + \dot{z} + \dot{x})
$$

= $\sigma (3x^5 + 3x^2 z + u + \delta(t, x, z) + x^3 + z).$

As an example, consider:

$$
\dot{x} = x^3 + z,
$$

$$
\dot{z} = u + \delta(t, x, z).
$$

- **O** Unknown disturbance δ : $\mathbb{R}_{>0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that $|\delta(t, x, z)| \leq L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^2$
- \bullet Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the x -subsystem

- \bullet I.e., we want x to behave as $\dot{x} = -x$ (for all bounded disturbances)
- The desired behavior implies $\dot{x} + x = 0$
- **o** Thus

$$
x^3 + z + x = 0
$$

Approach: Define a new state

 $\sigma \doteq x^3 + z + x$ and $V(\sigma) = \frac{1}{2}\sigma^2$

a Then

$$
\dot{V}(\sigma) = \sigma \dot{\sigma} = \sigma (3x^2 \dot{x} + \dot{z} + \dot{x})
$$

= $\sigma (3x^5 + 3x^2 z + u + \delta(t, x, z) + x^3 + z).$

O To cancel the known terms define

$$
u = v - 3x^5 - 3x^2z - x^3 - z
$$

so that $\dot{V}(\sigma) = \sigma (v + \delta(t, x, z))$ (with new input v)

• Selecting $v = -\rho \operatorname{sign}(\sigma)$, $\rho > 0$, provides the estimate

$$
\dot{V}(\sigma) = \sigma(-\rho \operatorname{sign}(\sigma) + \delta(t, x, z)) = -\rho|\sigma| + \sigma\delta(t, x, z)
$$

$$
\leq -\rho|\sigma| + L_{\delta}|\sigma| = -(\rho - L_{\delta})|\sigma|.
$$

• Finally, with
$$
\rho = L_{\delta} + \frac{\kappa}{\sqrt{2}}
$$
, $\kappa > 0$, we have

$$
\dot{V}(\sigma) \le -\frac{\kappa |\sigma|}{\sqrt{2}} = -\alpha \sqrt{V(\sigma)} \rightsquigarrow \text{finite-time stab. of } \sigma = 0
$$

As an example, consider:

$$
\dot{x} = x^3 + z,
$$

$$
\dot{z} = u + \delta(t, x, z).
$$

- **O** Unknown disturbance δ : $\mathbb{R}_{>0} \times \mathbb{R}^2 \to \mathbb{R}$
- Assumption: there exists $L_{\delta} \in \mathbb{R}_{>0}$ such that $|\delta(t, x, z)| \leq L_{\delta}$ $(t, x, z) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^2$
- \bullet Thus, δ is bounded but not necessarily continuous

Goal: Exponential stability of the x -subsystem

- \bullet I.e., we want x to behave as $\dot{x} = -x$ (for all bounded disturbances)
- The desired behavior implies $\dot{x} + x = 0$
- **o** Thus

$$
x^3 + z + x = 0
$$

Approach: Define a new state

$$
\sigma \doteq x^3 + z + x
$$
 and $V(\sigma) = \frac{1}{2}\sigma^2$

a Then

$$
\dot{V}(\sigma) = \sigma \dot{\sigma} = \sigma \left(3x^2 \dot{x} + \dot{z} + \dot{x}\right)
$$

= $\sigma \left(3x^5 + 3x^2 z + u + \delta(t, x, z) + x^3 + z\right).$

O To cancel the known terms define

$$
u = v - 3x^5 - 3x^2z - x^3 - z
$$

so that $\dot{V}(\sigma) = \sigma (v + \delta(t, x, z))$ (with new input v)

• Selecting $v = -\rho \operatorname{sign}(\sigma)$, $\rho > 0$, provides the estimate

$$
\dot{V}(\sigma) = \sigma(-\rho \operatorname{sign}(\sigma) + \delta(t, x, z)) = -\rho|\sigma| + \sigma\delta(t, x, z)
$$

$$
\leq -\rho|\sigma| + L_{\delta}|\sigma| = -(\rho - L_{\delta})|\sigma|.
$$

• Finally, with
$$
\rho = L_{\delta} + \frac{\kappa}{\sqrt{2}}
$$
, $\kappa > 0$, we have

$$
\dot{V}(\sigma) \le -\frac{\kappa |\sigma|}{\sqrt{2}} = -\alpha \sqrt{V(\sigma)} \rightsquigarrow \text{finite-time stab. of } \sigma = 0
$$

• Note that the control

$$
u = -\left(L_{\delta} + \frac{\kappa}{\sqrt{2}}\right) \operatorname{sign}\left(x^{3} + z + x\right) - 3x^{5} - 3x^{2}z - x^{3} - z
$$

is independent of the term $\delta(t, x, z)$.

Consider:

$$
\dot{x} = x^3 + z,
$$

\n
$$
\dot{z} = u + \delta(t, x, z).
$$

Control law:

$$
u = -\left(L_{\delta} + \frac{\kappa}{\sqrt{2}}\right) \text{sign}\left(x^{3} + z + x\right) - 3x^{5} - 3x^{2}z - x^{3} - z
$$

Parameter selection for the simulations:

- $L_{\delta} = 1$ and $\kappa = 2$
- $\delta(t, x, z) = \sin(t)$ (top)
- $\delta(t, x, z) = \text{sign}(\cos(2t)\sin(2t))$ (bottom)

We observe that

- \bullet σ converges to zero in finite-time
- \bullet Afterwards (x, z) asymptotically approach the origin
- Since the ordinary differential equation is solved numerically, σ is not exactly zero!

Consider:

$$
\dot{x} = x^3 + z,
$$

$$
\dot{z} = u + \delta(t, x, z).
$$

Control law:

$$
u = -\left(L_{\delta} + \frac{\kappa}{\sqrt{2}}\right) \text{sign}\left(x^{3} + z + x\right) - 3x^{5} - 3x^{2}z - x^{3} - z
$$

Parameter selection for the simulations:

- $L_{\delta} = 1$ and $\kappa = 2$
- $\delta(t, x, z) = \sin(t)$ (top)
- $\delta(t, x, z) = \text{sign}(\cos(2t)\sin(2t))$ (bottom)

We observe that

- \bullet σ converges to zero in finite-time
- Afterwards (x, z) asymptotically approach the origin
- Since the ordinary differential equation is solved numerically, σ is not exactly zero!

11. Adaptive Control (Motivations and Examples)

Consider parameter-dependent systems:

 $\dot{x} = f(x, u, \theta), \quad (\theta \in \mathbb{R}^q \text{ constant but unknown})$

Goal: Stabilization of the origin.

11. Adaptive Control (Motivations and Examples)

Consider parameter-dependent systems:

 $\dot{x} = f(x, u, \theta), \quad (\theta \in \mathbb{R}^q \text{ constant but unknown})$

Goal: Stabilization of the origin. Simple motivating example:

 $\dot{x} = \theta x + u$

 \bullet Linear controller: For $u = -kx$ it holds that

$$
\dot{x} = -(k - \theta)x
$$

i.e., asymptotic stability for $(k - \theta) > 0$ and instability for $(k - \theta) < 0$.

• What if a bound on $|\theta|$ is not known?

11. Adaptive Control (Motivations and Examples)

Consider parameter-dependent systems:

 $\dot{x} = f(x, u, \theta), \quad (\theta \in \mathbb{R}^q \text{ constant but unknown})$

Goal: Stabilization of the origin. Simple motivating example:

$$
\dot{x} = \theta x + u
$$

 \bullet Linear controller: For $u = -kx$ it holds that

$$
\dot{x} = -(k - \theta)x
$$

i.e., asymptotic stability for $(k - \theta) > 0$ and instability for $(k - \theta) < 0$.

- What if a bound on $|\theta|$ is not known?
- Nonlinear controller: $u = -k_1x k_2x^3$, $k_1, k_2 \in \mathbb{R}_{>0}$,

$$
\dot{x} = (\theta - k_1)x - k_2x^3 = [(\theta - k_1) - k_2x^2]x.
$$
 (3)

- **►** For $\theta \leq k_1$, [\(3\)](#page-53-0) exhibits a unique equilibrium $x^e = 0$ in $\mathbb R$
- ▶ For $\theta > k_1$, [\(3\)](#page-53-0) exhibits three equilibria

$$
x^e \in \{0, \pm \sqrt{\frac{\theta - k_1}{k_2}}\}
$$

 \rightarrow It can be shown that

$$
x(t) \to S_{\theta} = \left\{ x \in \mathbb{R} \mid |x| \le \sqrt{\frac{1}{k_1}} |\theta| \right\}
$$

Consider parameter-dependent systems:

 $\dot{x} = f(x, u, \theta), \quad (\theta \in \mathbb{R}^q \text{ constant but unknown})$

Goal: Stabilization of the origin. Simple motivating example:

$$
\dot{x} = \theta x + u
$$

Q Linear controller: For $u = -kx$ it holds that

$$
\dot{x}=-(k-\theta)x
$$

i.e., asymptotic stability for $(k - \theta) > 0$ and instability for $(k - \theta) < 0$.

- What if a bound on $|\theta|$ is not known?
- Nonlinear controller: $u = -k_1x k_2x^3$, $k_1, k_2 \in \mathbb{R}_{>0}$,

$$
\dot{x} = (\theta - k_1)x - k_2x^3 = [(\theta - k_1) - k_2x^2]x.
$$
 (3)

- **►** For $\theta \leq k_1$, [\(3\)](#page-53-0) exhibits a unique equilibrium $x^e = 0$ in $\mathbb R$
- ▶ For $\theta > k_1$, [\(3\)](#page-53-0) exhibits three equilibria $x^e \in \{0, \pm \sqrt{\frac{\theta - k_1}{k_2}}\}$

 \rightarrow It can be shown that

$$
x(t) \to S_{\theta} = \left\{ x \in \mathbb{R} \, \Big| \, |x| \leq \sqrt{\frac{1}{k_1}} |\theta| \right\}
$$

Dynamic controller:
$$
u = -k_1 x - \xi x, \xi = x^2
$$

\n
$$
\left[\frac{\dot{x}}{\dot{\xi}}\right] = \left[\frac{\theta x - k_1 x - \xi x}{x^2}\right],
$$

• In terms of error dynamics:
$$
\hat{\theta} = \xi - \theta
$$

$$
\left[\begin{array}{c}\dot{x} \\ \dot{\hat{\theta}}\end{array}\right] = \left[\begin{array}{c}\displaystyle -\hat{\theta}x - k_1 x \\ \displaystyle x^2\end{array}\right],
$$

• Lyapunov function
$$
V(x,\hat{\theta}) = \frac{1}{2}x^2 + \frac{1}{2}\hat{\theta}^2
$$
;

 $\dot{V}(x, \hat{\theta}) = (-(\xi - \theta)x - k_1x)x + (\xi - \theta)x^2 = -k_1x^2$

- $\rightsquigarrow x(t) \rightarrow 0$ for $t \rightarrow \infty$ $\forall x(0) \in \mathbb{R}$, $\xi(0) \in \mathbb{R}$ (LaSalle-Yoshizawa theorem)
- $\bullet \ \xi(t) \to \theta$ for $t \to \infty$ is not guaranteed

• Consider linear systems

$$
\dot{x} = Ax + Bu
$$

with unknown matrices A, B.

Goal: Design a controller so that the unknown system behaves like

$$
\dot{\bar{x}} = \bar{A}\bar{x} + \bar{B}u^e
$$

where $\bar{A} \in \mathbb{R}^{n \times n}$ and $\bar{B} \in \mathbb{R}^{n \times m}$ are design parameters and $u^e \in \mathbb{R}^m$ is a constant reference.

• Consider linear systems

$$
\dot{x} = Ax + Bu
$$

with unknown matrices A, B.

Goal: Design a controller so that the unknown system behaves like

$$
\dot{\bar{x}}=\bar{A}\bar{x}+\bar{B}u^e
$$

where $\bar{A} \in \mathbb{R}^{n \times n}$ and $\bar{B} \in \mathbb{R}^{n \times m}$ are design parameters and $u^e \in \mathbb{R}^m$ is a constant reference.

For \bar{A} Hurwitz, u^e defines the asymptotically stable equilibrium

$$
\bar{x}^e = -\bar{A}^{-1}\bar{B}u^e
$$

Control law:

$$
u=M(\theta)u^e+L(\theta)x,
$$

parameter dependent matrices $M(\cdot)$, $L(\cdot)$, to be designed

• Closed-loop dynamics:

$$
\dot{x} = Ax + B(M(\theta)u^e + L(\theta)x)
$$

= (A + BL(\theta))x + BM(\theta)u^e
= A_{ol}(\theta)x + B_{ol}(\theta)u^e

where

$$
A_{\text{cl}}(\theta) = A + BL(\theta), \qquad B_{\text{cl}}(\theta) = BM(\theta)
$$

• Compatibility conditions

$$
A_{\text{cl}}(\theta) = \bar{A} \qquad \Longleftrightarrow \qquad BL(\theta) = \bar{A} - A,
$$

$$
B_{\text{cl}}(\theta) = \bar{B} \qquad \Longleftrightarrow \qquad BM(\theta) = \bar{B}.
$$

• Overall system dynamics

$$
\begin{bmatrix} \frac{\dot{x}}{\dot{\bar{x}}} \\ \dot{\bar{\theta}} \end{bmatrix} = \begin{bmatrix} (A + BL(\theta))x + BM(\theta)u^e \\ \overline{A}\bar{x} + Bu^e \\ \Psi(x, \bar{x}, u^e) \end{bmatrix}
$$

for Ψ defined appropriately

11. Adaptive Control (Adaptive Backstepping)

Systems in *parametric strict-feedback form*:

$$
\dot{x}_1 = x_2 + \phi_1(x_1)^T \theta
$$

\n
$$
\dot{x}_2 = x_3 + \phi_2(x_1, x_2)^T \theta
$$

\n
$$
\vdots
$$

$$
\dot{x}_{n-1} = x_n + \phi_{n-1}(x_1, \dots, x_{n-1})^T \theta
$$

$$
\dot{x}_n = \beta(x)u + \phi_n(x)^T \theta
$$

where $\beta(x) \neq 0$ for all $x \in \mathbb{R}^n$

Theorem

Let $c_i > 0$ *for* $i \in \{1, \ldots, n\}$ *. Consider the adaptive controller* $u = \frac{1}{\beta(x)} \alpha_n(x, \vartheta_1, \ldots, \vartheta_n)$ $\dot{\vartheta}_i = \Gamma\left(\phi_i(x_1,\ldots,x_i) - \sum_{j=1}^{i-1} \frac{\partial \alpha_{i-1}}{\partial x_j} \phi_j(x_1,\ldots x_j)\right) z_i, \quad i = 1,\ldots,n,$

where $\vartheta_i \in \mathbb{R}^q$ *are multiple estimates of* θ , $\Gamma > 0$ *is the adaptation gain matrix, and the variables* z_i *and the stabilizing functions*

 $\alpha_i = \alpha_i(x_1, \ldots, x_i, \vartheta_1, \ldots, \vartheta_i), \qquad \alpha_i : \mathbb{R}^{i+i \cdot q} \to \mathbb{R}, \qquad i = 1, \ldots, n,$

are defined by the following recursive expressions (and $z_0 \equiv 0$, $\alpha_0 \equiv 0$ for *notational convenience)*

$$
z_i = x_i - \alpha_{i-1}(x_1, \dots, x_i, \vartheta_1, \dots, \vartheta_i)
$$

\n
$$
\alpha_i = -c_i z_i - z_{i-1} - \left(\phi_i - \sum_{j=1}^{i-1} \frac{\partial \alpha_{i-1}}{\partial x_j} \phi_j\right)^T \vartheta_i
$$

\n
$$
+ \sum_{j=1}^{i-1} \left(\frac{\partial \alpha_{i-1}}{\partial x_j} x_{j+1} + \frac{\partial \alpha_{i-1}}{\partial \vartheta_j} \Gamma\left(\phi_j - \sum_{k=1}^{j-1} \frac{\partial \alpha_{j-1}}{\partial x_k} \phi_k\right) z_j\right).
$$

This adaptive controller guarantees global boundedness of $x(\cdot)$, $\vartheta_1(\cdot)$, \ldots , $\vartheta_n(\cdot)$, and $x_1(t) \to 0$, $x_i(t) \to x_i^e$ for $i = 2, \ldots, n$ for $t \to \infty$ where

$$
x_i^e = -\theta^T \phi_{i-1}(0, x_2^e, \dots, x_{i-1}^e), \qquad i = 2, \dots, n.
$$

We consider continuous time system

$$
\dot{x}(t) = f(x(t), u(t)), \quad x(0) = x_0 \in \mathbb{R}^n
$$
 (4)

By assumption

 \bullet f : $\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ locally Lipschitz continuous

Set of inputs and set of solutions:

$$
\mathbb{U} = \{u(\cdot): \mathbb{R}_{\geq 0} \to \mathbb{R}^m | u(\cdot) \text{ measurable}\}
$$

$$
\mathbb{X} = \{x(\cdot): \mathbb{R}_{\geq 0} \to \mathbb{R}^n | x(\cdot) \text{ is absolutely continuous}\}
$$

We say that

 \bullet $(x(\cdot), u(\cdot)) \in \mathbb{X} \times \mathbb{U}$ is a *solution pair* if it satisfies [\(4\)](#page-60-0) for almost all $t \in \mathbb{R}_{\geq 0}$.

Note that:

- If the initial condition is important (or not clear from context), we use $x(\cdot; x_0) \in \mathbb{X}$ and $u(\cdot; x_0) \in \mathbb{U}$
- x_0 , and $u(\cdot)$ are sufficient to describe $x(\cdot)$

For $(x(\cdot), u(\cdot)) \in \mathbb{X} \times \mathbb{U}$ we define

Cost functional (or performance criterion) $J:\mathbb{R}^n\times\mathbb{U}\to\mathbb{R}\cup\{\pm\infty\}$ as

$$
J(x_0, u(\cdot)) = \int_0^\infty \ell(x(\tau), u(\tau))d\tau.
$$

- **Running cost:** $\ell : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$
- \bullet *(Optimal) Value function:* $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$,

$$
V(x_0) = \min_{u(\cdot) \in \mathbb{U}} J(x_0, u(\cdot))
$$

subject to (4) .

(We assume that the minimum exists!)

• Optimal input:

$$
u^{\star}(\cdot) = \arg\min_{u(\cdot)\in\mathbb{U}} J(x_0, u(\cdot))
$$

subject to (4).

12. Optimal Control (Linear Quadratic Regulator)

Linear system:

$$
\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0 \in \mathbb{R}^n
$$

Quadratic cost function:

$$
J(x_0, u(\cdot)) = \int_0^\infty \left(x^T(\tau)Qx(\tau) + u^T(\tau)Ru(\tau) \right) d\tau
$$

Theorem

Let $Q > 0$, $R > 0$ *. If there exists* $P > 0$ *satisfying the continuous time algebraic Riccati equation*

$$
A^T P + P A + Q - P B R^{-1} B^T P = 0
$$

and if $A - BR^{-1}B^TP$ is a *Hurwitz matrix, then*

$$
\mu(x) = -R^{-1}B^T P x
$$

minimizes the quadratic cost function and the optimal value function is given by

$$
V(x_0) = x_0^T P x_0.
$$

Linear system

$$
x(k + 1) = Ax(k) + Bu(k), \quad x(0) = x_0 \in \mathbb{R}^n
$$

Quadratic cost function:

$$
J(x_0, u(\cdot)) = \sum_{k=0}^{\infty} x(k)^T Q x(k) + u(k)^T R u(k)
$$

Theorem

Let $Q > 0$, $R > 0$. *If* there exists $P > 0$ satisfying the *discrete time algebraic Riccati equation*

$$
Q + A^T P A - P - A^T P B \left(R + B^T P B \right)^{-1} B^T P A = 0
$$

and if $A - B(R + B^T P B)^{-1} B^T P A$ *is a Schur matrix, then*

$$
\mu(x) = -(R + B^T P B)^{-1} B^T P A x
$$

minimizes the quadratic cost function and the optimal value function is given by

$$
V(x_0) = x_0^T P x_0.
$$

13. Model Predictive Control (Receding Horizon Principle)

MPC is also known as

- *predictive control*
- *receding horizon control*
- *rolling horizon control*

Here, we consider discrete time systems

$$
x^+ = f(x, u), \qquad x(0) = x_0 \in \mathbb{R}^n
$$

with $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ $f(0,0) = 0$.

- \bullet State constraints $x \in \mathbb{X} \subset \mathbb{R}^n$
- **O** Input constraints $u \in \mathbb{U}(x) \subset \mathbb{R}^m$

- **•** Prediction horizon: $N \in \mathbb{N} \cup \{\infty\}$
- \bullet Set of feasible input trajectories of length N (depending on x_0):

$$
\mathbb{U}_{x_0}^N = \left\{ u_N(\cdot) : \mathbb{N}_{[0,N-1]} \to \mathbb{R}^m \middle| \begin{array}{rcl} x(0) & = & x_0, \\ x(k+1) & = & f(x(k), u(k)) \\ (x(k), u(k)) & \in & \mathbb{X} \times \mathbb{U}(x) \\ \forall & k \in \mathbb{N}_{[0,N-1]} \end{array} \right\}
$$

For clarity, note that

 $u_N(\cdot; x_0) = u_N(\cdot) = [u_N(0), u_N(1), u(2), \ldots, u_N(N-1)]$

- Prediction horizon: $N \in \mathbb{N} \cup \{\infty\}$
- \bullet Set of feasible input trajectories of length N (depending on x_0):

$$
\mathbb{U}_{x_0}^N = \left\{ u_N(\cdot) : \mathbb{N}_{[0,N-1]} \to \mathbb{R}^m \middle| \begin{array}{rcl} x(0) & = & x_0, \\ x(k+1) & = & f(x(k), u(k)) \\ (x(k), u(k)) & \in & \mathbb{X} \times \mathbb{U}(x) \\ \forall & k \in \mathbb{N}_{[0,N-1]} \end{array} \right\}
$$

For clarity, note that

$$
u_N(\cdot; x_0) = u_N(\cdot) = [u_N(0), u_N(1), u(2), \dots, u_N(N-1)]
$$

Cost function: $J_N : \mathbb{R}^n \times \mathbb{U}_{\mathbb{D}}^N \to \mathbb{R} \cup \{\infty\},\$

$$
J_N(x_0, u_N(\cdot)) = \sum_{i=0}^{N-1} \ell(x(i), u(i))
$$

(with running costs $\ell : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$)

Terminal cost $F : \mathbb{R}^n \to \mathbb{R}$ and *terminal constraints* $\mathbb{X}_F \subset \mathbb{R}^n$

- Prediction horizon: $N \in \mathbb{N} \cup \{\infty\}$
- \bullet Set of feasible input trajectories of length N (depending on x_0):

$$
\mathbb{U}_{x_0}^N = \left\{ u_N(\cdot) : \mathbb{N}_{[0,N-1]} \to \mathbb{R}^m \middle| \begin{array}{rcl} x(0) & = & x_0, \\ x(k+1) & = & f(x(k), u(k)) \\ (x(k), u(k)) & \in & \mathbb{X} \times \mathbb{U}(x) \\ \forall & k \in \mathbb{N}_{[0,N-1]} \end{array} \right\}
$$

For clarity, note that

$$
u_N(\cdot; x_0) = u_N(\cdot) = [u_N(0), u_N(1), u(2), \dots, u_N(N-1)]
$$

Cost function: $J_N : \mathbb{R}^n \times \mathbb{U}_{\mathbb{D}}^N \to \mathbb{R} \cup \{\infty\},\$

$$
J_N(x_0, u_N(\cdot)) = \sum_{i=0}^{N-1} \ell(x(i), u(i))
$$

(with running costs $\ell : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$)

- **•** *Terminal cost* $F : \mathbb{R}^n \to \mathbb{R}$ and *terminal constraints* $\mathbb{X}_F \subset \mathbb{R}^n$
- Optimal control problem

$$
V_N(x_0) = \min_{u_N(\cdot) \in \mathbb{U}_{x_0}^N} J_N(x_0, u_N(\cdot)) + F(x(N))
$$

subject to dyn. & init. cond. and $x(N) \in \mathbb{X}_F$

 $(\rightsquigarrow$ finite dimensional optimization problem if N is finite)

- Prediction horizon: $N \in \mathbb{N} \cup \{\infty\}$
- \bullet Set of feasible input trajectories of length N (depending on x_0):

$$
\mathbb{U}_{x_0}^N = \left\{ u_N(\cdot) : \mathbb{N}_{[0,N-1]} \to \mathbb{R}^m \middle| \begin{array}{rcl} x(0) & = & x_0, \\ x(k+1) & = & f(x(k), u(k)) \\ (x(k), u(k)) & \in & \mathbb{X} \times \mathbb{U}(x) \\ \forall & k \in \mathbb{N}_{[0,N-1]} \end{array} \right\}
$$

For clarity, note that

$$
u_N(\cdot; x_0) = u_N(\cdot) = [u_N(0), u_N(1), u(2), \dots, u_N(N-1)]
$$

Cost function: $J_N : \mathbb{R}^n \times \mathbb{U}_{\mathbb{D}}^N \to \mathbb{R} \cup \{\infty\},\$

$$
J_N(x_0, u_N(\cdot)) = \sum_{i=0}^{N-1} \ell(x(i), u(i))
$$

(with running costs $\ell : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$)

- **•** *Terminal cost* $F : \mathbb{R}^n \to \mathbb{R}$ and *terminal constraints* $\mathbb{X}_F \subset \mathbb{R}^n$
- Optimal control problem

$$
V_N(x_0) = \min_{u_N(\cdot) \in \mathbb{U}_{x_0}^N} J_N(x_0, u_N(\cdot)) + F(x(N))
$$

subject to dyn. & init. cond. and $x(N) \in \mathbb{X}_F$

 $(\rightsquigarrow$ finite dimensional optimization problem if N is finite)

- \bullet Even if $V_N : \mathbb{R}^n \to \mathbb{R} \cup {\infty}$ is not known explicitly, for a given $x_0 \in \mathbb{R}^n$, the function $V_N(\cdot)$ can be evaluated in x_0 by solving the OCP.
- *Optimal open-loop input trajectory* $u_N^{\star}(\cdot;x_0)\in \mathbb{U}_{\mathbb{D}}^{N}$ s.t. $x(N)\in \mathbb{X}_{F}$ &

 $V_N(x_0) = J_N(x_0, u_N^{\star}(\cdot; x_0)) + F(x(N))$

 $u_N^{\star}(\cdot;x_0)$ is used to iteratively define a *feedback law* μ_N , i.e.,

 $\mu_N(x_0) = u_N^*(0; x_0)$ $x_{\mu_N}(k + 1) = f(x_{\mu_N}(k), \mu_N(x(k))$

13. Model Predictive Control (Example)

Consider $x^+=Ax+Bu$ with unstable origin and $A = \begin{bmatrix} \frac{6}{5} & \frac{6}{5} \\ -\frac{1}{2} & \frac{6}{5} \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}$ 1

- **Prediction horizon:** $N = 5$
- The running cost: $\ell(x,u) = x^T x + 5u^2$
- Constraints: $u \in \mathbb{U} = [-2.5, 2.5], x \in \mathbb{R}^2$ (i.e., $\mathbb{D} = \mathbb{R}^2 \times \mathbb{U}$

Terminal cost & constraints: $F(x) = x^T x$, $\mathbb{X}_F = \mathbb{R}^2$.

13. Model Predictive Control (Example)

Consider $x^+=Ax+Bu$ with unstable origin and $A = \begin{bmatrix} \frac{6}{5} & \frac{6}{5} \\ -\frac{1}{2} & \frac{6}{5} \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}$ 1

- **Prediction horizon:** $N = 5$
- The running cost: $\ell(x,u) = x^T x + 5u^2$
- Constraints: $u \in \mathbb{U} = [-2.5, 2.5], x \in \mathbb{R}^2$ (i.e., $\mathbb{D} = \mathbb{R}^2 \times \mathbb{U}$
- Terminal cost & constraints: $F(x) = x^T x$, $\mathbb{X}_F = \mathbb{R}^2$.

- Now, use the terminal constraint $X_F = \{0\}$ (which makes $F(x)$ superfluous)
- Prediction horizon $N = 11$ (since for $N < 11$ the OCP is not feasible for $x_0 = [3 \ 3]^T$)

A Run Through Nonlinear Control Topics Stability, control design, and estimation

Philipp Braun

School of Engineering, Australian National University, Canberra, Australia

In Collaboration with:

C. M. Kellett: School of Electrical Engineering, Australian National University, Canberra, Australia

